Decremental Data Structures for Connectivity and Dominators in Directed Graphs∗† Loukas Georgiadis1, Thomas Dueholm Hansen2, Giuseppe F. Italiano3, Sebastian Krinninger4, and Nikos Parotsidis5 1 University of Ioannina, Ioannina, Greece
[email protected] 2 Aarhus University, Aarhus, Denmark
[email protected] 3 University of Rome Tor Vergata, Rome, Italy
[email protected] 4 University of Vienna, Faculty of Computer Science, Vienna, Austria
[email protected] 5 University of Rome Tor Vergata, Rome, Italy
[email protected] Abstract We introduce a new dynamic data structure for maintaining the strongly connected components (SCCs) of a directed graph (digraph) under edge deletions, so as to answer a rich repertoire of connectivity queries. Our main technical contribution is a decremental data structure that supports sensitivity queries of the form “are u and v strongly connected in the graph G \ w?”, for any triple of vertices u, v, w, while G undergoes deletions of edges. Our data structure processes a sequence of edge deletions in a digraph with n vertices in O(mn log n) total time and O(n2 log n) space, where m is the number of edges before any deletion, and answers the above queries in constant time. We can leverage our data structure to obtain decremental data structures for many more types of queries within the same time and space complexity. For instance for edge- related queries, such as testing whether two query vertices u and v are strongly connected in G \ e, for some query edge e. As another important application of our decremental data structure, we provide the first nontrivial algorithm for maintaining the dominator tree of a flow graph under edge deletions.