The PSIPRED Protein Analysis Workbench
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Effective Computational Method Incorporating Multiple Secondary
Old Dominion University ODU Digital Commons Computer Science Faculty Publications Computer Science 2017 An Effective Computational Method Incorporating Multiple Secondary Structure Predictions in Topology Determination for Cryo-EM Images Abhishek Biswas Old Dominion University Desh Ranjan Old Dominion University Mohammad Zubair Old Dominion University Stephanie Zeil Old Dominion University Kamal Al Nasr See next page for additional authors Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs Part of the Biochemistry Commons, Computer Sciences Commons, Molecular Biology Commons, and the Statistics and Probability Commons Repository Citation Biswas, Abhishek; Ranjan, Desh; Zubair, Mohammad; Zeil, Stephanie; Al Nasr, Kamal; and He, Jing, "An Effective Computational Method Incorporating Multiple Secondary Structure Predictions in Topology Determination for Cryo-EM Images" (2017). Computer Science Faculty Publications. 81. https://digitalcommons.odu.edu/computerscience_fac_pubs/81 Original Publication Citation Biswas, A., Ranjan, D., Zubair, M., Zeil, S., Al Nasr, K., & He, J. (2017). An effective computational method incorporating multiple secondary structure predictions in topology determination for cryo-em images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(3), 578-586. doi:10.1109/tcbb.2016.2543721 This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Authors Abhishek Biswas, Desh Ranjan, Mohammad Zubair, Stephanie Zeil, Kamal Al Nasr, and Jing He This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/computerscience_fac_pubs/81 HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author IEEE/ACM Manuscript Author Trans Comput Manuscript Author Biol Bioinform. -
Homology Modeling and Analysis of Structure Predictions of the Bovine Rhinitis B Virus RNA Dependent RNA Polymerase (Rdrp)
Int. J. Mol. Sci. 2012, 13, 8998-9013; doi:10.3390/ijms13078998 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Homology Modeling and Analysis of Structure Predictions of the Bovine Rhinitis B Virus RNA Dependent RNA Polymerase (RdRp) Devendra K. Rai and Elizabeth Rieder * Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-631-323-3177; Fax: +1-631-323-3006. Received: 3 May 2012; in revised form: 3 July 2012 / Accepted: 11 July 2012 / Published: 19 July 2012 Abstract: Bovine Rhinitis B Virus (BRBV) is a picornavirus responsible for mild respiratory infection of cattle. It is probably the least characterized among the aphthoviruses. BRBV is the closest relative known to Foot and Mouth Disease virus (FMDV) with a ~43% identical polyprotein sequence and as much as 67% identical sequence for the RNA dependent RNA polymerase (RdRp), which is also known as 3D polymerase (3Dpol). In the present study we carried out phylogenetic analysis, structure based sequence alignment and prediction of three-dimensional structure of BRBV 3Dpol using a combination of different computational tools. Model structures of BRBV 3Dpol were verified for their stereochemical quality and accuracy. The BRBV 3Dpol structure predicted by SWISS-MODEL exhibited highest scores in terms of stereochemical quality and accuracy, which were in the range of 2Å resolution crystal structures. The active site, nucleic acid binding site and overall structure were observed to be in agreement with the crystal structure of unliganded as well as template/primer (T/P), nucleotide tri-phosphate (NTP) and pyrophosphate (PPi) bound FMDV 3Dpol (PDB, 1U09 and 2E9Z). -
Chapter 13 Protein Structure Learning Objectives
Chapter 13 Protein structure Learning objectives Upon completing this material you should be able to: ■ understand the principles of protein primary, secondary, tertiary, and quaternary structure; ■use the NCBI tool CN3D to view a protein structure; ■use the NCBI tool VAST to align two structures; ■explain the role of PDB including its purpose, contents, and tools; ■explain the role of structure annotation databases such as SCOP and CATH; and ■describe approaches to modeling the three-dimensional structure of proteins. Outline Overview of protein structure Principles of protein structure Protein Data Bank Protein structure prediction Intrinsically disordered proteins Protein structure and disease Overview: protein structure The three-dimensional structure of a protein determines its capacity to function. Christian Anfinsen and others denatured ribonuclease, observed rapid refolding, and demonstrated that the primary amino acid sequence determines its three-dimensional structure. We can study protein structure to understand problems such as the consequence of disease-causing mutations; the properties of ligand-binding sites; and the functions of homologs. Outline Overview of protein structure Principles of protein structure Protein Data Bank Protein structure prediction Intrinsically disordered proteins Protein structure and disease Protein primary and secondary structure Results from three secondary structure programs are shown, with their consensus. h: alpha helix; c: random coil; e: extended strand Protein tertiary and quaternary structure Quarternary structure: the four subunits of hemoglobin are shown (with an α 2β2 composition and one beta globin chain high- lighted) as well as four noncovalently attached heme groups. The peptide bond; phi and psi angles The peptide bond; phi and psi angles in DeepView Protein secondary structure Protein secondary structure is determined by the amino acid side chains. -
Increasing the Accuracy of Single Sequence Prediction Methods Using a Deep Semi-Supervised Learning Framework Lewis Moffat 1,∗ and David T
Structural Bioinformatics Downloaded from https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btab491/6313164 by guest on 07 July 2021 Increasing the Accuracy of Single Sequence Prediction Methods Using a Deep Semi-Supervised Learning Framework Lewis Moffat 1,∗ and David T. Jones 1,∗ 1Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK; and Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK ∗To whom correspondence should be addressed. Associate Editor: XXXXXXX Received on XXXXX; revised on XXXXX; accepted on XXXXX Abstract Motivation: Over the past 50 years, our ability to model protein sequences with evolutionary information has progressed in leaps and bounds. However, even with the latest deep learning methods, the modelling of a critically important class of proteins, single orphan sequences, remains unsolved. Results: By taking a bioinformatics approach to semi-supervised machine learning, we develop Profile Augmentation of Single Sequences (PASS), a simple but powerful framework for building accurate single- sequence methods. To demonstrate the effectiveness of PASS we apply it to the mature field of secondary structure prediction. In doing so we develop S4PRED, the successor to the open-source PSIPRED-Single method, which achieves an unprecedented Q3 score of 75.3% on the standard CB513 test. PASS provides a blueprint for the development of a new generation of predictive methods, advancing our ability to model individual protein sequences. Availability: The S4PRED model is available as open source software on the PSIPRED GitHub repository (https://github.com/psipred/s4pred), along with documentation. It will also be provided as a part of the PSIPRED web service (http://bioinf.cs.ucl.ac.uk/psipred/) Contact: [email protected], [email protected] Supplementary information: Supplementary data are available at Bioinformatics online. -
Bi-Allelic Novel Variants in CLIC5 Identified in a Cameroonian
G C A T T A C G G C A T genes Article Bi-Allelic Novel Variants in CLIC5 Identified in a Cameroonian Multiplex Family with Non-Syndromic Hearing Impairment Edmond Wonkam-Tingang 1, Isabelle Schrauwen 2 , Kevin K. Esoh 1 , Thashi Bharadwaj 2, Liz M. Nouel-Saied 2 , Anushree Acharya 2, Abdul Nasir 3 , Samuel M. Adadey 1,4 , Shaheen Mowla 5 , Suzanne M. Leal 2 and Ambroise Wonkam 1,* 1 Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; [email protected] (E.W.-T.); [email protected] (K.K.E.); [email protected] (S.M.A.) 2 Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; [email protected] (I.S.); [email protected] (T.B.); [email protected] (L.M.N.-S.); [email protected] (A.A.); [email protected] (S.M.L.) 3 Synthetic Protein Engineering Lab (SPEL), Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; [email protected] 4 West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG 54, Ghana 5 Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-21-4066-307 Received: 28 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: DNA samples from five members of a multiplex non-consanguineous Cameroonian family, segregating prelingual and progressive autosomal recessive non-syndromic sensorineural hearing impairment, underwent whole exome sequencing. -
Dnpro: a Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations Xiao Zhou and Jianlin Cheng*
DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations Xiao Zhou and Jianlin Cheng* Computer Science Department University of Missouri Columbia, MO 65211, USA *Corresponding author: [email protected] a function from the data to map the input information Abstract—A single amino acid mutation can have a significant regarding a protein and its mutation to the energy change impact on the stability of protein structure. Thus, the prediction of without the need of approximating the physics underlying protein stability change induced by single site mutations is critical mutation stability. This data-driven formulation of the and useful for studying protein function and structure. Here, we problem makes it possible to apply a large array of machine presented a new deep learning network with the dropout technique learning methods to tackle the problem. Therefore, a wide for predicting protein stability changes upon single amino acid range of machine learning methods has been applied to the substitution. While using only protein sequence as input, the overall same problem. E Capriotti et al., 2004 [2] presented a neural prediction accuracy of the method on a standard benchmark is >85%, network for predicting protein thermodynamic stability with which is higher than existing sequence-based methods and is respect to native structure; J Cheng et al., 2006 [1] developed comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results MUpro, a support vector machine with radial basis kernel to demonstrate that deep learning is a promising technique for protein improve mutation stability prediction; iPTREE based on C4.5 stability prediction. -
Further Confirmation of the Association of SLC12A2 with Non-Syndromic
www.nature.com/jhg ARTICLE OPEN Further confirmation of the association of SLC12A2 with non-syndromic autosomal-dominant hearing impairment Samuel M. Adadey1,2,9, Isabelle Schrauwen3,9, Elvis Twumasi Aboagye1, Thashi Bharadwaj3, Kevin K. Esoh 2, Sulman Basit 4, 3 3 5 2 6 1 Anushree Acharya , Liz M. Nouel-Saied ,✉ Khurram Liaqat , Edmond✉ Wonkam-Tingang , Shaheen Mowla , Gordon A. Awandare , Wasim Ahmad 7, Suzanne M. Leal 3,8 and Ambroise Wonkam 2 © The Author(s) 2021 Congenital hearing impairment (HI) is genetically heterogeneous making its genetic diagnosis challenging. Investigation of novel HI genes and variants will enhance our understanding of the molecular mechanisms and to aid genetic diagnosis. We performed exome sequencing and analysis using DNA samples from affected members of two large families from Ghana and Pakistan, segregating autosomal-dominant (AD) non-syndromic HI (NSHI). Using in silico approaches, we modeled and evaluated the effect of the likely pathogenic variants on protein structure and function. We identified two likely pathogenic variants in SLC12A2, c.2935G>A:p.(E979K) and c.2939A>T:p.(E980V), which segregate with NSHI in a Ghanaian and Pakistani family, respectively. SLC12A2 encodes an ion transporter crucial in the homeostasis of the inner ear endolymph and has recently been reported to be implicated in syndromic and non-syndromic HI. Both variants were mapped to alternatively spliced exon 21 of the SLC12A2 gene. Exon 21 encodes for 17 residues in the cytoplasmatic tail of SLC12A2, is highly conserved between species, and preferentially expressed in cochlear tissues. A review of previous studies and our current data showed that out of ten families with either AD non-syndromic or syndromic HI, eight (80%) had variants within the 17 amino acid residue region of exon 21 (48 bp), suggesting that this alternate domain is critical to the transporter activity in the inner ear. -
Bayesian Model of Protein Primary Sequence for Secondary Structure Prediction
Bayesian Model of Protein Primary Sequence for Secondary Structure Prediction Qiwei Li1, David B. Dahl2*, Marina Vannucci1, Hyun Joo3, Jerry W. Tsai3 1 Department of Statistics, Rice University, Houston, Texas, United States of America, 2 Department of Statistics, Brigham Young University, Provo, Utah, United States of America, 3 Department of Chemistry, University of the Pacific, Stockton, California, United States of America Abstract Determining the primary structure (i.e., amino acid sequence) of a protein has become cheaper, faster, and more accurate. Higher order protein structure provides insight into a protein’s function in the cell. Understanding a protein’s secondary structure is a first step towards this goal. Therefore, a number of computational prediction methods have been developed to predict secondary structure from just the primary amino acid sequence. The most successful methods use machine learning approaches that are quite accurate, but do not directly incorporate structural information. As a step towards improving secondary structure reduction given the primary structure, we propose a Bayesian model based on the knob- socket model of protein packing in secondary structure. The method considers the packing influence of residues on the secondary structure determination, including those packed close in space but distant in sequence. By performing an assessment of our method on 2 test sets we show how incorporation of multiple sequence alignment data, similarly to PSIPRED, provides balance and improves the accuracy of the predictions. Software implementing the methods is provided as a web application and a stand-alone implementation. Citation: Li Q, Dahl DB, Vannucci M, Joo H, Tsai JW (2014) Bayesian Model of Protein Primary Sequence for Secondary Structure Prediction. -
The Structure and Dynamics of Bmr1 Protein from Brugia Malayi: in Silico Approaches
Int. J. Mol. Sci. 2014, 15, 11082-11099; doi:10.3390/ijms150611082 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article The Structure and Dynamics of BmR1 Protein from Brugia malayi: In Silico Approaches Bee Yin Khor, Gee Jun Tye, Theam Soon Lim, Rahmah Noordin and Yee Siew Choong * Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; E-Mails: [email protected] (B.Y.K.); [email protected] (G.J.T.); [email protected] (T.S.L.); [email protected] (R.N.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +604-653-4837; Fax: +604-653-4803. Received: 28 January 2014; in revised form: 25 March 2014 / Accepted: 4 June 2014 / Published: 19 June 2014 Abstract: Brugia malayi is a filarial nematode, which causes lymphatic filariasis in humans. In 1995, the disease has been identified by the World Health Organization (WHO) as one of the second leading causes of permanent and long-term disability and thus it is targeted for elimination by year 2020. Therefore, accurate filariasis diagnosis is important for management and elimination programs. A recombinant antigen (BmR1) from the Bm17DIII gene product was used for antibody-based filariasis diagnosis in “Brugia Rapid”. However, the structure and dynamics of BmR1 protein is yet to be elucidated. Here we study the three dimensional structure and dynamics of BmR1 protein using comparative modeling, threading and ab initio protein structure prediction. The best predicted structure obtained via an ab initio method (Rosetta) was further refined and minimized. -
11: Catchup II Machine Learning and Real-World Data (MLRD)
11: Catchup II Machine Learning and Real-world Data (MLRD) Ann Copestake Lent 2019 Last session: HMM in a biological application In the last session, we used an HMM as a way of approximating some aspects of protein structure. Today: catchup session 2. Very brief sketch of protein structure determination: including gamification and Monte Carlo methods (and a little about AlphaFold). Related ideas are used in many very different machine learning applications . What happens in catchup sessions? Lecture and demonstrated session scheduled as in normal session. Lecture material is non-examinable. Time for you to catch-up in demonstrated sessions or attempt some starred ticks. Demonstrators help as usual. Protein structure Levels of structure: Primary structure: sequence of amino acid residues. Secondary structure: highly regular substructures, especially α-helix, β-sheet. Tertiary structure: full 3-D structure. In the cell: an amino acid sequence (as encoded by DNA) is produced and folds itself into a protein. Secondary and tertiary structure crucial for protein to operate correctly. Some diseases thought to be caused by problems in protein folding. Alpha helix Dcrjsr - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9131613 Bovine rhodopsin By Andrei Lomize - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=34114850 found in the rods in the retina of the eye a bundle of seven helices crossing the membrane (membrane surfaces marked by horizontal lines) supports a molecule of retinal, which changes structure when exposed to light, also changing the protein structure, initiating the visual pathway 7-bladed propeller fold (found naturally) http://beautifulproteins.blogspot.co.uk/ Peptide self-assembly mimic scaffold (an engineered protein) http://beautifulproteins.blogspot.co.uk/ Protein folding Anfinsen’s hypothesis: the structure a protein forms in nature is the global minimum of the free energy and is determined by the animo acid sequence. -
The PSIPRED Protein Structure Prediction Server Liam J
Vol. 16 no. 4 2000 BIOINFORMATICS APPLICATIONS NOTE Pages 404–405 The PSIPRED protein structure prediction server Liam J. McGuffin 1, 2, Kevin Bryson 1 and David T. Jones 1, 2 1Protein Bioinformatics Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK and 2Department of Biological Sciences, Brunel University, Uxbridge, UB8 3PH, UK Received on November 8, 1999; accepted on December 14, 1999 Abstract Prediction of secondary structure (PSIPRED) Summary: The PSIPRED protein structure prediction A new highly accurate secondary structure prediction server allows users to submit a protein sequence, perform method, PSIPRED incorporates two feed-forward neural a prediction of their choice and receive the results of the networks which perform an analysis on output obtained prediction both textually via e-mail and graphically via the from PSI-BLAST (Position Specific Iterated BLAST) web. The user may select one of three prediction methods (Altschul et al., 1997). to apply to their sequence: PSIPRED, a highly accurate Using a stringent cross validation procedure to evaluate secondary structure prediction method; MEMSAT 2, a performance, PSIPRED has been shown to be capable new version of a widely used transmembrane topology of achieving an average Q3 score of 76.5%. This is prediction method; or GenTHREADER, a sequence profile the highest level of accuracy published for any method based fold recognition method. to date. Predictions produced by PSIPRED were also Availability: Freely available to non-commercial users at submitted to the CASP3 (Third Critical Assessment http://globin.bio.warwick.ac.uk/psipred/ of Structure Prediction) server and assessed during the Contact: [email protected] CASP3 meeting, which took place in December 1998 at Asilomar. -
Advances in Rosetta Protein Structure Prediction on Massively Parallel Systems
UC San Diego UC San Diego Previously Published Works Title Advances in Rosetta protein structure prediction on massively parallel systems Permalink https://escholarship.org/uc/item/87g6q6bw Journal IBM Journal of Research and Development, 52(1) ISSN 0018-8646 Authors Raman, S. Baker, D. Qian, B. et al. Publication Date 2008 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Advances in Rosetta protein S. Raman B. Qian structure prediction on D. Baker massively parallel systems R. C. Walker One of the key challenges in computational biology is prediction of three-dimensional protein structures from amino-acid sequences. For most proteins, the ‘‘native state’’ lies at the bottom of a free- energy landscape. Protein structure prediction involves varying the degrees of freedom of the protein in a constrained manner until it approaches its native state. In the Rosetta protein structure prediction protocols, a large number of independent folding trajectories are simulated, and several lowest-energy results are likely to be close to the native state. The availability of hundred-teraflop, and shortly, petaflop, computing resources is revolutionizing the approaches available for protein structure prediction. Here, we discuss issues involved in utilizing such machines efficiently with the Rosetta code, including an overview of recent results of the Critical Assessment of Techniques for Protein Structure Prediction 7 (CASP7) in which the computationally demanding structure-refinement process was run on 16 racks of the IBM Blue Gene/Le system at the IBM T. J. Watson Research Center. We highlight recent advances in high-performance computing and discuss future development paths that make use of the next-generation petascale (.1012 floating-point operations per second) machines.