Performance of Secondary Structure Prediction Methods on Proteins

Total Page:16

File Type:pdf, Size:1020Kb

Performance of Secondary Structure Prediction Methods on Proteins Performance of Secondary Structure Prediction Methods on Proteins PerformanceContaining of Structurally Secondary Ambivalent Structure Prediction Sequence Methods Fragments on Proteins Containing Structurally Ambivalent Sequence Fragments K. Mani Saravanan, Samuel Selvaraj Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India Received 3 July 2012; revised 4 September 2012; accepted 23 September 2012 Published online 19 October 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/bip.22178 # ABSTRACT: fragments. 2012 Wiley Periodicals, Inc. Biopolymers Several approaches for predicting secondary structures (Pept Sci) 100: 148-153, 2013. from sequences have been developed and reached a fair Keywords: octapeptides; secondary structure prediction; accuracy. One of the most rigorous tests for these segment overlap measure; structurally ambivalent frag- prediction methods is their ability to correctly predict ments; protein folding identical fragments of protein sequences adopting This article was originally published online as an accepted preprint. different secondary structures in unrelated proteins. In The ‘‘Published Online’’ date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers our previous work, we obtained 30 identical octapeptide editorial office at [email protected] sequence fragments adopting different backbone conformations. It is of interest to find whether the INTRODUCTION presence of structurally ambivalent fragments in proteins he general observation that protein sequences with detectable similarity will share a common structural will affect the accuracy of secondary structure prediction topology has yielded fairly accurate three-dimen- methods or not. Hence, in this work, we have made a sional structures by means of comparative modeling systematic comparative analysis on secondary structure and threading procedures.1–3 In contrast, there are Tcertain examples reported that similar sequences adopt dif- prediction results of 30 identical octapeptide pairs and 52 ferent structures to perform important biological functions. identical heptapeptide pairs adopting different One such example is a pair of designed proteins in which an conformations with the aid of segment overlap measure. IgG-binding, 4b+a fold can be transformed into an albumin- The results reveal the better performance of profile-based binding, 3-a fold via a mutational pathway where neither 4 methods such as PSIpred and JPred and misprediction by function nor native structure is completely lost. Contrarily, it was also shown that the distant sequences adopt similar struc- classical rule-based methods such as Garnier Osguthorpe tures from the crystal structures of intestinal fatty acid binding Robson Method and Double Prediction Method. The protein and Manduca sexta fatty acid binding protein, which results discussed here insist that modern secondary shares 19% sequence identity but structurally aligned to 1.62- structure prediction methods are able to better A˚ root mean square deviation of their Ca atoms.5 discriminate conformationally ambivalent peptide The idea behind the designed proteins with such high sequence identity with different structure and function is from the classical work by Kabsch and Sander,6 in which they Additional Supporting Information may be found in the online version of this article. reported that identical pentapeptides in unrelated proteins Correspondence to: Samuel Selvaraj, Department of Bioinformatics, School of adopt different secondary structures. Wilson et al.7 also Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; e-mail: [email protected] observed that common sequences of up to eight residues do Contract grant sponsor: Council of Scientific and Industrial Research (CSIR), occur in unrelated proteins and that sequence-specific anti- Government of India bodies can be generated to test binding to identical sequences Contract grant number: 09/475(0157)/2010-EMR-I VC 2012 Wiley Periodicals, Inc. contained in unrelated proteins. 148 PeptideScience Volume 100 / Number 2 Performance of Secondary Structure Prediction Methods 149 Secondary structure predictions are playing a key role in Computation of Segment Overlap Measure finding important fragments of protein sequences that are To measure prediction accuracy of the different secondary structure involved in maintaining the folding and stability of three- prediction methods, we have computed segment overlap measure dimensional protein structure. Over the years, many second- between DSSP-assigned secondary structure and predicted second- ary structures of each of all the methods incorporated in the NPS ary structure prediction approaches have been implemented web server, SYMPRED web server, and JPred server by using the 8–11 and tested by various research groups. Gromiha and Sel- program obtained from Zemla et al.,19 who proposed the segment varaj12 assessed the performance of several secondary struc- overlap measure to assess the accuracy of secondary structure pre- ture prediction methods in different structural classes of diction methods. The segment overlap measure can be defined as globular proteins and suggested that all the methods predict follows. Use s1 and s2 to denote segments of secondary structure in conformational state i (i.e., H, E, or C). Segments s1 (DSSP-assigned all-alpha class of proteins accurately. Jacoboni et al.13 have secondary structure) and s2 (predicted secondary structures) corre- made a stringent test on secondary structure prediction spond to the two secondary structure assignments being compared. methods by predicting identical short sequences that are The first assignment is considered as a reference and is typically known to adopt different conformations in unrelated pro- based on experiment, and the second assignment is the one being teins. Such secondary structure predictions may be used to evaluated. The two assignments are further referred to as ‘‘observed’’ and ‘‘predicted,’’ respectively. Let (s1, s2) denote a pair of overlap- guide the design of site-directed mutagenesis studies to locate 14 ping segments, S(i), the set of all the overlapping pairs of segments potential functionally important residues. (s1, s2) in state i: In our previous work, we have made an identical octapep- SðiÞ¼ðs1 \ s2Þ; s1 \ s2 6¼ u; tide search and found 30 identical octapeptide fragments with different secondary structures.15 These fragments of protein Here, s1 and s2 are both in conformational state i. sequences may undergo conformational rearrangements to For state i (H, E, and C), the segment overlap measure is defined as follows: bind other molecules to perform their specific biological role. X X Considering such examples, protein scientists want to make use sovðiÞ¼1003½1=N minovðs1; s2Þ of surprising protein fragments with similar sequences adopting i¼fH;E;Cg SðiÞ different secondary structures to understand protein folding þ @ðs1; s2Þ=moxovðs1; s2Þ3lenðs1Þ andstability.Ourfocusisontheeffectsofstructurallyambiva- lent octapeptide segments in proteins on structure prediction Here, s1 and s2 are the observed and predicted secondary structure outcomes. Hence, we have benchmarked several secondary segments in the particular secondary structural state, respectively; S(i) is the number of all segment pairs (s1, s2), where s1 and s2 have at structure prediction methods on 30 octapeptides of alternating least one residue in a secondary structural state in common; minov(s1, structure in terms of segment overlap measure. We have also s2) is the length of the actual overlap of s1 and s2; and maxov(s1, s2) is compared the secondary structure prediction accuracy of struc- the length of the total extent for which either of the segment s1 or s2 turally ambivalent octapeptides with the secondary structure has a residue in particular secondary structural state. Niis the total prediction accuracy of structurally ambivalent heptapeptides. number of amino acid residues observed in the ith secondary structural conformation. The definition of d(s1,s2)isasfollows: @ðs1; s2Þ¼minfðmax ovðs1; s2ÞÞ min ovðs1; s2ÞÞ; min ovðs1; s2Þ; MATERIALS AND METHODS intðlenðs1Þ=2Þ; intðlenðs2Þ=2Þg: Dataset and Secondary Structure Prediction Segment overlap measure has been defined to evaluate the correct- In our previous work,15 we have searched for identical fragments in ness of segment prediction with respect to a reference assignment unrelated Protein Data Bank16 sequences. From our search, we have (Sov observed). The latter measure is calculated with s1 standing for found 52 structurally ambivalent heptapeptides and 30 structurally predicted segments and s2 for observed and corresponds to Sov pre- 19 ambivalent octapeptide pairs with different secondary structures, dicted. We have not used the Q3 measure to benchmark the pre- which form the source of our study. Each protein sequence (not diction accuracy as the segment overlap measure itself takes into only the ambivalent peptide) containing the conformationally more account on structural kind of information, whereas the Q3 20 ambivalent fragments was subjected to consensus secondary struc- measure does not consider it. All the computations have been ture prediction by using NPS web server,17 SYMPRED (http:// automated and performed on SUN ULTRA 40M2 workstation. www.ibi.vu.nl/programs/sympredwww/), and JPred secondary structure prediction server.18 From the secondary
Recommended publications
  • An Effective Computational Method Incorporating Multiple Secondary
    Old Dominion University ODU Digital Commons Computer Science Faculty Publications Computer Science 2017 An Effective Computational Method Incorporating Multiple Secondary Structure Predictions in Topology Determination for Cryo-EM Images Abhishek Biswas Old Dominion University Desh Ranjan Old Dominion University Mohammad Zubair Old Dominion University Stephanie Zeil Old Dominion University Kamal Al Nasr See next page for additional authors Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs Part of the Biochemistry Commons, Computer Sciences Commons, Molecular Biology Commons, and the Statistics and Probability Commons Repository Citation Biswas, Abhishek; Ranjan, Desh; Zubair, Mohammad; Zeil, Stephanie; Al Nasr, Kamal; and He, Jing, "An Effective Computational Method Incorporating Multiple Secondary Structure Predictions in Topology Determination for Cryo-EM Images" (2017). Computer Science Faculty Publications. 81. https://digitalcommons.odu.edu/computerscience_fac_pubs/81 Original Publication Citation Biswas, A., Ranjan, D., Zubair, M., Zeil, S., Al Nasr, K., & He, J. (2017). An effective computational method incorporating multiple secondary structure predictions in topology determination for cryo-em images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(3), 578-586. doi:10.1109/tcbb.2016.2543721 This Article is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Authors Abhishek Biswas, Desh Ranjan, Mohammad Zubair, Stephanie Zeil, Kamal Al Nasr, and Jing He This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/computerscience_fac_pubs/81 HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author IEEE/ACM Manuscript Author Trans Comput Manuscript Author Biol Bioinform.
    [Show full text]
  • Chapter 13 Protein Structure Learning Objectives
    Chapter 13 Protein structure Learning objectives Upon completing this material you should be able to: ■ understand the principles of protein primary, secondary, tertiary, and quaternary structure; ■use the NCBI tool CN3D to view a protein structure; ■use the NCBI tool VAST to align two structures; ■explain the role of PDB including its purpose, contents, and tools; ■explain the role of structure annotation databases such as SCOP and CATH; and ■describe approaches to modeling the three-dimensional structure of proteins. Outline Overview of protein structure Principles of protein structure Protein Data Bank Protein structure prediction Intrinsically disordered proteins Protein structure and disease Overview: protein structure The three-dimensional structure of a protein determines its capacity to function. Christian Anfinsen and others denatured ribonuclease, observed rapid refolding, and demonstrated that the primary amino acid sequence determines its three-dimensional structure. We can study protein structure to understand problems such as the consequence of disease-causing mutations; the properties of ligand-binding sites; and the functions of homologs. Outline Overview of protein structure Principles of protein structure Protein Data Bank Protein structure prediction Intrinsically disordered proteins Protein structure and disease Protein primary and secondary structure Results from three secondary structure programs are shown, with their consensus. h: alpha helix; c: random coil; e: extended strand Protein tertiary and quaternary structure Quarternary structure: the four subunits of hemoglobin are shown (with an α 2β2 composition and one beta globin chain high- lighted) as well as four noncovalently attached heme groups. The peptide bond; phi and psi angles The peptide bond; phi and psi angles in DeepView Protein secondary structure Protein secondary structure is determined by the amino acid side chains.
    [Show full text]
  • Increasing the Accuracy of Single Sequence Prediction Methods Using a Deep Semi-Supervised Learning Framework Lewis Moffat 1,∗ and David T
    Structural Bioinformatics Downloaded from https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btab491/6313164 by guest on 07 July 2021 Increasing the Accuracy of Single Sequence Prediction Methods Using a Deep Semi-Supervised Learning Framework Lewis Moffat 1,∗ and David T. Jones 1,∗ 1Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK; and Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK ∗To whom correspondence should be addressed. Associate Editor: XXXXXXX Received on XXXXX; revised on XXXXX; accepted on XXXXX Abstract Motivation: Over the past 50 years, our ability to model protein sequences with evolutionary information has progressed in leaps and bounds. However, even with the latest deep learning methods, the modelling of a critically important class of proteins, single orphan sequences, remains unsolved. Results: By taking a bioinformatics approach to semi-supervised machine learning, we develop Profile Augmentation of Single Sequences (PASS), a simple but powerful framework for building accurate single- sequence methods. To demonstrate the effectiveness of PASS we apply it to the mature field of secondary structure prediction. In doing so we develop S4PRED, the successor to the open-source PSIPRED-Single method, which achieves an unprecedented Q3 score of 75.3% on the standard CB513 test. PASS provides a blueprint for the development of a new generation of predictive methods, advancing our ability to model individual protein sequences. Availability: The S4PRED model is available as open source software on the PSIPRED GitHub repository (https://github.com/psipred/s4pred), along with documentation. It will also be provided as a part of the PSIPRED web service (http://bioinf.cs.ucl.ac.uk/psipred/) Contact: [email protected], [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
    [Show full text]
  • Bi-Allelic Novel Variants in CLIC5 Identified in a Cameroonian
    G C A T T A C G G C A T genes Article Bi-Allelic Novel Variants in CLIC5 Identified in a Cameroonian Multiplex Family with Non-Syndromic Hearing Impairment Edmond Wonkam-Tingang 1, Isabelle Schrauwen 2 , Kevin K. Esoh 1 , Thashi Bharadwaj 2, Liz M. Nouel-Saied 2 , Anushree Acharya 2, Abdul Nasir 3 , Samuel M. Adadey 1,4 , Shaheen Mowla 5 , Suzanne M. Leal 2 and Ambroise Wonkam 1,* 1 Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; [email protected] (E.W.-T.); [email protected] (K.K.E.); [email protected] (S.M.A.) 2 Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Centre, New York, NY 10032, USA; [email protected] (I.S.); [email protected] (T.B.); [email protected] (L.M.N.-S.); [email protected] (A.A.); [email protected] (S.M.L.) 3 Synthetic Protein Engineering Lab (SPEL), Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; [email protected] 4 West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG 54, Ghana 5 Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-21-4066-307 Received: 28 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: DNA samples from five members of a multiplex non-consanguineous Cameroonian family, segregating prelingual and progressive autosomal recessive non-syndromic sensorineural hearing impairment, underwent whole exome sequencing.
    [Show full text]
  • Further Confirmation of the Association of SLC12A2 with Non-Syndromic
    www.nature.com/jhg ARTICLE OPEN Further confirmation of the association of SLC12A2 with non-syndromic autosomal-dominant hearing impairment Samuel M. Adadey1,2,9, Isabelle Schrauwen3,9, Elvis Twumasi Aboagye1, Thashi Bharadwaj3, Kevin K. Esoh 2, Sulman Basit 4, 3 3 5 2 6 1 Anushree Acharya , Liz M. Nouel-Saied ,✉ Khurram Liaqat , Edmond✉ Wonkam-Tingang , Shaheen Mowla , Gordon A. Awandare , Wasim Ahmad 7, Suzanne M. Leal 3,8 and Ambroise Wonkam 2 © The Author(s) 2021 Congenital hearing impairment (HI) is genetically heterogeneous making its genetic diagnosis challenging. Investigation of novel HI genes and variants will enhance our understanding of the molecular mechanisms and to aid genetic diagnosis. We performed exome sequencing and analysis using DNA samples from affected members of two large families from Ghana and Pakistan, segregating autosomal-dominant (AD) non-syndromic HI (NSHI). Using in silico approaches, we modeled and evaluated the effect of the likely pathogenic variants on protein structure and function. We identified two likely pathogenic variants in SLC12A2, c.2935G>A:p.(E979K) and c.2939A>T:p.(E980V), which segregate with NSHI in a Ghanaian and Pakistani family, respectively. SLC12A2 encodes an ion transporter crucial in the homeostasis of the inner ear endolymph and has recently been reported to be implicated in syndromic and non-syndromic HI. Both variants were mapped to alternatively spliced exon 21 of the SLC12A2 gene. Exon 21 encodes for 17 residues in the cytoplasmatic tail of SLC12A2, is highly conserved between species, and preferentially expressed in cochlear tissues. A review of previous studies and our current data showed that out of ten families with either AD non-syndromic or syndromic HI, eight (80%) had variants within the 17 amino acid residue region of exon 21 (48 bp), suggesting that this alternate domain is critical to the transporter activity in the inner ear.
    [Show full text]
  • Bayesian Model of Protein Primary Sequence for Secondary Structure Prediction
    Bayesian Model of Protein Primary Sequence for Secondary Structure Prediction Qiwei Li1, David B. Dahl2*, Marina Vannucci1, Hyun Joo3, Jerry W. Tsai3 1 Department of Statistics, Rice University, Houston, Texas, United States of America, 2 Department of Statistics, Brigham Young University, Provo, Utah, United States of America, 3 Department of Chemistry, University of the Pacific, Stockton, California, United States of America Abstract Determining the primary structure (i.e., amino acid sequence) of a protein has become cheaper, faster, and more accurate. Higher order protein structure provides insight into a protein’s function in the cell. Understanding a protein’s secondary structure is a first step towards this goal. Therefore, a number of computational prediction methods have been developed to predict secondary structure from just the primary amino acid sequence. The most successful methods use machine learning approaches that are quite accurate, but do not directly incorporate structural information. As a step towards improving secondary structure reduction given the primary structure, we propose a Bayesian model based on the knob- socket model of protein packing in secondary structure. The method considers the packing influence of residues on the secondary structure determination, including those packed close in space but distant in sequence. By performing an assessment of our method on 2 test sets we show how incorporation of multiple sequence alignment data, similarly to PSIPRED, provides balance and improves the accuracy of the predictions. Software implementing the methods is provided as a web application and a stand-alone implementation. Citation: Li Q, Dahl DB, Vannucci M, Joo H, Tsai JW (2014) Bayesian Model of Protein Primary Sequence for Secondary Structure Prediction.
    [Show full text]
  • The Structure and Dynamics of Bmr1 Protein from Brugia Malayi: in Silico Approaches
    Int. J. Mol. Sci. 2014, 15, 11082-11099; doi:10.3390/ijms150611082 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article The Structure and Dynamics of BmR1 Protein from Brugia malayi: In Silico Approaches Bee Yin Khor, Gee Jun Tye, Theam Soon Lim, Rahmah Noordin and Yee Siew Choong * Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; E-Mails: [email protected] (B.Y.K.); [email protected] (G.J.T.); [email protected] (T.S.L.); [email protected] (R.N.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +604-653-4837; Fax: +604-653-4803. Received: 28 January 2014; in revised form: 25 March 2014 / Accepted: 4 June 2014 / Published: 19 June 2014 Abstract: Brugia malayi is a filarial nematode, which causes lymphatic filariasis in humans. In 1995, the disease has been identified by the World Health Organization (WHO) as one of the second leading causes of permanent and long-term disability and thus it is targeted for elimination by year 2020. Therefore, accurate filariasis diagnosis is important for management and elimination programs. A recombinant antigen (BmR1) from the Bm17DIII gene product was used for antibody-based filariasis diagnosis in “Brugia Rapid”. However, the structure and dynamics of BmR1 protein is yet to be elucidated. Here we study the three dimensional structure and dynamics of BmR1 protein using comparative modeling, threading and ab initio protein structure prediction. The best predicted structure obtained via an ab initio method (Rosetta) was further refined and minimized.
    [Show full text]
  • The PSIPRED Protein Structure Prediction Server Liam J
    Vol. 16 no. 4 2000 BIOINFORMATICS APPLICATIONS NOTE Pages 404–405 The PSIPRED protein structure prediction server Liam J. McGuffin 1, 2, Kevin Bryson 1 and David T. Jones 1, 2 1Protein Bioinformatics Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK and 2Department of Biological Sciences, Brunel University, Uxbridge, UB8 3PH, UK Received on November 8, 1999; accepted on December 14, 1999 Abstract Prediction of secondary structure (PSIPRED) Summary: The PSIPRED protein structure prediction A new highly accurate secondary structure prediction server allows users to submit a protein sequence, perform method, PSIPRED incorporates two feed-forward neural a prediction of their choice and receive the results of the networks which perform an analysis on output obtained prediction both textually via e-mail and graphically via the from PSI-BLAST (Position Specific Iterated BLAST) web. The user may select one of three prediction methods (Altschul et al., 1997). to apply to their sequence: PSIPRED, a highly accurate Using a stringent cross validation procedure to evaluate secondary structure prediction method; MEMSAT 2, a performance, PSIPRED has been shown to be capable new version of a widely used transmembrane topology of achieving an average Q3 score of 76.5%. This is prediction method; or GenTHREADER, a sequence profile the highest level of accuracy published for any method based fold recognition method. to date. Predictions produced by PSIPRED were also Availability: Freely available to non-commercial users at submitted to the CASP3 (Third Critical Assessment http://globin.bio.warwick.ac.uk/psipred/ of Structure Prediction) server and assessed during the Contact: [email protected] CASP3 meeting, which took place in December 1998 at Asilomar.
    [Show full text]
  • Biophysical Analysis of the N-Terminal Domain from The
    This is a repository copy of Biophysical Analysis of the N-Terminal Domain from the Human Protein Phosphatase 1 Nuclear Targeting Subunit PNUTS Suggests an Extended Transcription Factor TFIIS-Like Fold. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/108536/ Version: Accepted Version Article: Zacharchenko, T, Barsukov, I, Rigden, DJ et al. (2 more authors) (2016) Biophysical Analysis of the N-Terminal Domain from the Human Protein Phosphatase 1 Nuclear Targeting Subunit PNUTS Suggests an Extended Transcription Factor TFIIS-Like Fold. Protein Journal, 35 (5). pp. 340-345. ISSN 1572-3887 https://doi.org/10.1007/s10930-016-9677-7 © 2016, Springer Science+Business Media New York. This is an author produced version of a paper published in Protein Journal. The final version is available at Springer via https://doi.org/10.1007/s10930-016-9677-7. Uploaded in accordance with the publisher's self-archiving policy. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]
  • Protein Fold Recognition by Threading
    ¢¡¤£ ¥§¦©¨ ¦ ¨ ¦© ¢ ¦ T H R E A D E R 3 U s e r G u id e Protein Fold Recognition by Threading Program and documentation by David T. Jones Copyright (C) 2002 University College London Department of Computer Science Bioinformatics Unit Gower Street London WC1E 6BT United Kingdom Tel. +44 020 7679 7982 E-mail. [email protected] WWW. http://bioinf.cs.ucl.ac.uk Contents CHAPTER 1 : GETTING STARTED 3 INSTALLATION 3 RUNNING THREADER 3 USING THE THREADING EXPERT (texp) 4 CHAPTER 2 : RUNNING THREADER 3 6 COMMAND-LINE OPTIONS 6 INTERPRETING THE RESULTS 8 GENERAL ADVICE 10 CHAPTER 3 : NEW FEATURES FOR VERSION 3 11 SO WHAT'S NEW? 11 STATISTICAL TESTS 13 USING PREDICTED SECONDARY STRUCTURE 11 USING SEQUENCE SIMILARITY TO IMPROVE ALIGNMENTS 16 LOCATING STRUCTURAL DOMAINS BY THREADING 16 Chapter 1 Getting Started Installing and running THREADER 3 INSTALLATION Before you try to install this program, make sure your computer system is suitable. THREADER 3 needs a lot of memory to run properly, and ideally needs a reasonably fast CPU – though you can run it on a slow machine if you have the patience. The basic Silicon Graphics version requires Irix 6.4 or a later version and will run on R4000, R5000, R8000, R10000 or R12000 series CPUs. R2000/R3000 series CPUs are not supported. The Sun version requires Solaris 7 or a later version. The Linux version is built using Red Hat Linux 7, but should work with any comparably recent Linux distribution. If you have problems running the Linux version, try the statically linked version (linux-static).
    [Show full text]
  • The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis
    PROTOCOL The Phyre2 web portal for protein modeling, prediction and analysis Lawrence A Kelley1, Stefans Mezulis1, Christopher M Yates1,2, Mark N Wass1,2 & Michael J E Sternberg1 1Structural Bioinformatics Group, Imperial College London, London, UK. 2Present addresses: University College London (UCL) Cancer Institute, London, UK (C.M.Y.); Centre for Molecular Processing, School of Biosciences, University of Kent, Kent, UK (M.N.W.). Correspondence should be addressed to L.A.K. ([email protected]). Published online 7 May 2015; doi:10.1038/nprot.2015.053 Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user’s protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model.
    [Show full text]
  • The PSIPRED Protein Analysis Workbench
    Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz297 The PSIPRED Protein Analysis Workbench: 20 years Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz297/5480136 by Medical Research Council, [email protected] on 22 May 2019 on Daniel W.A. Buchan* and David T. Jones UCL Bioinformatics Group, Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK Received February 01, 2019; Revised April 02, 2019; Editorial Decision April 11, 2019; Accepted April 15, 2019 ABSTRACT of the previous step or steps. The complete data analysis task can then be defined by the input data, the required The PSIPRED Workbench is a web server offering a outputs and the dependency graph of data transformations range of predictive methods to the bioscience com- that take the data from input to output. Often, data analy- munity for 20 years. Here, we present the work we sis tasks decomposed into steps in this manner are regarded have completed to update the PSIPRED Protein Anal- as pipelines or workflows. A range of workflow manage- ysis Workbench and make it ready for the next 20 ment tools, both proprietary and open source, are readily years. The main focus of our recent website upgrade available. Such as Microsoft Azure, Spotify’s Luigi, Twitter work has been the acceleration of analyses in the Storm, HADOOP and so forth. In the Open Source space face of increasing protein sequence database size. Apache Taverna (https://taverna.incubator.apache.org/)isa We additionally discuss any new software, the new user-centric tool for specify workflows which can access a hardware infrastructure, our webservices and web heterogenous set of data processing web services.
    [Show full text]