Aeronautics. America in Space: the First Decade
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Press Release
National Aeronautic Association FOR IMMEDIATE RELEASE Contact: David Ivey, 703-527-0226 E-Mail: [email protected] SpaceShipOne Team Named 2004 Collier Trophy Winner Arlington, VA – SpaceShipOne, the first-ever privately financed, manned spacecraft has won the prestigious Robert J. Collier Trophy Monday, taking its place alongside the greatest advances in aviation history. The Collier Trophy has been awarded each year since 1911 by the National Aeronautic Association “for the greatest achievement in aviation in America…” SpaceshipOne went into space for the first time on June 21, 2004, when Mike Melvill piloted the craft 100 kilometers above the Earth’s surface, an altitude considered to be the beginning of space. In the fall of last year, SS1 made a pair of return trips to space within a week of each other to earn the $10 million Ansari X-Prize, given to the first team to prove that civilian manned spaceflight is feasible. The amazing vehicle was designed and built by a small firm in Mojave, California, Scaled Composites, LLC, which was founded in 1982 by aircraft designer Burt Rutan. The cost of the project, about $26 million, was covered by investor Paul G. Allen, the co-founder of Microsoft. Capable of carrying a pilot and two passengers to space, SS1 is made primarily of graphite and epoxy. It reaches space much like a rocket would, traveling straight up at many times the speed of sound after being released from its carrier ship, White Knight. It featured the revolutionary idea of a “carefree” re-entry into the Earth’s atmosphere, by reconfiguring its wings, which are then moved back into position to allow the pilot to glide the craft back to Earth. -
Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere
NPTEL –Aerospace Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere 1.1 Introduction Hypersonic flight has special traits, some of which are seen in every hypersonic flight. Presence of these particular features during a flight is highly dependant on type of trajectory, configuration etc. In short it is the mission requirement which decides the nature of hypersonic atmosphere encountered by the flight vehicle. Some missions are designed for high deceleration in outer atmosphere during reentry. Hence, those flight vehicles experience longer flight duration at high angle of attacks due to which blunt nosed configuration are generally preferred for such aircrafts. On the contrary, some missions are centered on low flight duration with major deceleration closer to earth surface hence these vehicles have sharp nose and low angle of attack flights. Reentry flight path of hypersonic vehicle is thus governed by the parameters called as ballistic parameter and lifting parameter. These parameters are obtained by applying momentum conservation equation in the direction of the flight path and normal to it. Velocity-altitude map of the flight is thus made from the knowledge of these governing flight parameters, weight and surface area. Ballistic parameter is considered for non lifting reentry flights like flight path of Apollo capsule, however lifting parameter is considered for lifting reentry trajectories like that of space shuttle. Therefore hypersonic flight vehicles are classified in four different types based on the design constraints imposed from mission specifications. 1. Reentry Vehicles (RV): These vehicles are typically launched using rocket propulsion system. Reentry of these vehicles is controlled by control surfaces. -
Notes on Earth Atmospheric Entry for Mars Sample Return Missions
NASA/TP–2006-213486 Notes on Earth Atmospheric Entry for Mars Sample Return Missions Thomas Rivell Ames Research Center, Moffett Field, California September 2006 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical confer- NASA Scientific and Technical Information (STI) ences, symposia, seminars, or other meetings Program Office plays a key part in helping NASA sponsored or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the Lead Center for projects, and missions, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. English- aeronautical and space science STI in the world. language translations of foreign scientific and The Program Office is also NASA’s institutional technical material pertinent to NASA’s mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office’s diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results . even • TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of NASA For more information about the NASA STI programs and include extensive data or theoreti- Program Office, see the following: cal analysis. -
Performances of a Small Hypersonic Airplane (Hyplane)
Politecnico di Torino Porto Institutional Repository [Proceeding] PERFORMANCES OF A SMALL HYPERSONIC AIRPLANE (HYPLANE) Original Citation: Savino R.; Russo G.; D’Oriano V.; Visone M.; Battipede M.; Gili P. (2014). PERFORMANCES OF A SMALL HYPERSONIC AIRPLANE (HYPLANE). In: 65th International Astronautical Congress„ Toronto, Canada, 29 September - 3 October 2014. pp. 1-13 Availability: This version is available at : http://porto.polito.it/2591763/ since: February 2015 Publisher: International Astronautical Federation (IAF) Terms of use: This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions. html Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters. (Article begins on next page) 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the Authors. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-14-D2.4 PERFORMANCES OF A SMALL HYPERSONIC AIRPLANE (HYPLANE) Raffaele Savino Department of Industrial Engineering, University of Naples “Federico II”, Italy Gennaro Russo Trans-Tech srl and Space Renaissance Italia, Italy Vera D’Oriano*, Michele Visone Blue Engineering, Italy Manuela Battipede, Piero Gili Department of Mechanical and Aerospace Engineering, Polytechnic of Turin, Italy In the present work a preliminary performance study regarding a small hypersonic airplane named HyPlane is presented. It is designed for long duration sub-orbital space tourism missions, in the frame of the Space Renaissance (SR) Italia Space Tourism Program. -
Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018)
Old Dominion University ODU Digital Commons Mechanical & Aerospace Engineering Theses & Dissertations Mechanical & Aerospace Engineering Summer 2018 Aerothermodynamic Analysis of a Mars Sample Return Earth- Entry Vehicle Daniel A. Boyd Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds Part of the Aerodynamics and Fluid Mechanics Commons, Space Vehicles Commons, and the Thermodynamics Commons Recommended Citation Boyd, Daniel A.. "Aerothermodynamic Analysis of a Mars Sample Return Earth-Entry Vehicle" (2018). Master of Science (MS), Thesis, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/xhmz-ax21 https://digitalcommons.odu.edu/mae_etds/43 This Thesis is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE by Daniel A. Boyd B.S. May 2008, Virginia Military Institute M.A. August 2015, Webster University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE AEROSPACE ENGINEERING OLD DOMINION UNIVERSITY August 2018 Approved by: __________________________ Robert L. Ash (Director) __________________________ Oktay Baysal (Member) __________________________ Jamshid A. Samareh (Member) __________________________ Shizhi Qian (Member) ABSTRACT AEROTHERMODYNAMIC ANALYSIS OF A MARS SAMPLE RETURN EARTH-ENTRY VEHICLE Daniel A. Boyd Old Dominion University, 2018 Director: Dr. Robert L. Ash Because of the severe quarantine constraints that must be imposed on any returned extraterrestrial samples, the Mars sample return Earth-entry vehicle must remain intact through sample recovery. -
Armstrong Releases021.Pdf
NeilA. Armstrong Director Institute of Engineering & Medicine University of Cincinnati Neil A. Armstrong is the Director of the Institute of Engineering and Medicine at the University of Cincinnati. The Institute is a research organization concerned with interdisciplinary approaches to problem solving in a variety of engineering and medical- areas. Professor Armstrong also teaches at the university, primarily in the School of Aerospace Engineering. As a naval aviator, he flew 78 combat missi ons during the Korean action. As a civilian, Professor Armstrong served the National Aeronautics and Space Administration and its predecessor agency, the National Advisory Committee for Aeronautics, for 17 years, as engineer, test pilot, astronaut and administrator. As a test pilot at NASA's flight Research Center at Edwards, California, he was a project pilot on many pioneering high speed aircraft, including the well known 4000 mph X-IS. He has flown over 200 different models of aircraft including jets, rockets, helicopters and gliders. Professor Armstrong transferred to astronaut status in 1962. He was assigned as a command pilot for the Gemini 8 mission. Gemini 8 was launched on March 16, 1966, and Armstrong performed the first successful docking of two vehicles in space. As spacecraft commander for Apollo 11, the first manned lunar landing mission, Armstrong gained the distinction of being the first man to land a craft on the moon and the first to step on its surface. Professor Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, Office of Advanced Research and Technology, NASA Headquarters, Washington, D. C. In this position, he was responsible for the coordination and management of overall NASA research and technology work related to aeronautics. -
Who Will Win the Most Prestigious Trophy in Aviation
National Aeronautic Association FOR IMMEDIATE RELEASE Contact: David Ivey, 703-527-0226 February 16, 2006 ECLIPSE AVIATION WINS 2005 COLLIER TROPHY Eclipse Aviation Corporation has won the 2005 Robert J. Collier Trophy "for the greatest achievement in aeronautics or astronautics in America.” The 95 year-old trophy, aviation’s most prestigious award, will be presented to the company “for leadership, innovation, and the advancement of general aviation” in the production of very light jets, specifically, the Eclipse 500. Eclipse joins past winners of the trophy including Orville Wright, Howard Hughes, Chuck Yeager, Scott Crossfield, the crew of Apollo 11, and SpaceShipOne. The award has been administered by the National Aeronautic Association (NAA) since 1911. Announcing the 2005 winner, NAA President and CEO David Ivey said the selection committee’s criteria included recognition of the rich heritage of the Collier Trophy, and “the spirit of entrepreneurship, technical innovation, and the impact on American aviation,” exemplified by the Eclipse 500. Led by Eclipse’s founder, president and CEO Vern Raburn, Eclipse is applying innovations created in the technology industry to drive down cost, increase performance, improve safety, and spur a new type of air travel—the air taxi. Innovations to the Eclipse 500 including friction stir welding, the PhostrEx™ fire suppression system, electromechanical actuators and digital electronics with integrated software. Perhaps the company’s greatest contribution is making jet technology available to a larger segment of the population. With an acquisition cost one-third of today’s small jets and the lowest operating cost per mile of any jet, the Eclipse 500 provides the lowest jet costs ever achieved. -
Modelling a Hypersonic Single Expansion Ramp Nozzle of a Hypersonic Aircraft Through Parametric Studies
energies Article Modelling a Hypersonic Single Expansion Ramp Nozzle of a Hypersonic Aircraft through Parametric Studies Andrew Ridgway, Ashish Alex Sam * and Apostolos Pesyridis College of Engineering, Design and Physical Sciences, Brunel University London, London UB8 3PH, UK; [email protected] (A.R.); [email protected] (A.P.) * Correspondence: [email protected]; Tel.: +44-1895-267-901 Received: 26 September 2018; Accepted: 7 December 2018; Published: 10 December 2018 Abstract: This paper aims to contribute to developing a potential combined cycle air-breathing engine integrated into an aircraft design, capable of performing flight profiles on a commercial scale. This study specifically focuses on the single expansion ramp nozzle (SERN) and aircraft-engine integration with an emphasis on the combined cycle engine integration into the conceptual aircraft design. A parametric study using computational fluid dynamics (CFD) have been employed to analyze the sensitivity of the SERN’s performance parameters with changing geometry and operating conditions. The SERN adapted to the different operating conditions and was able to retain its performance throughout the altitude simulated. The expansion ramp shape, angle, exit area, and cowl shape influenced the thrust substantially. The internal nozzle expansion and expansion ramp had a significant effect on the lift and moment performance. An optimized SERN was assembled into a scramjet and was subject to various nozzle inflow conditions, to which combustion flow from twin strut injectors produced the best thrust performance. Side fence studies observed longer and diverging side fences to produce extra thrust compared to small and straight fences. Keywords: scramjet; single expansion ramp nozzle; hypersonic aircraft; combined cycle engines 1. -
Tactical Missile Structures and Materials Technology
WILLIAM C. CAYWOOD, ROBERT M. RIVELLO, and LOUIS B. WECKESSER TACTICAL MISSILE STRUCTURES AND MATERIALS TECHNOLOGY Significant advances have occurred in missile structures and materials technology since the late 1940's. Some of the advances were the result of improvements in design concepts and material prop erties; others were from the development of new materials and fabrication techniques. Rapid strides in computer technology and methods of structural analysis have also played an important role. This article discusses the structural design requirements for the next generation of missiles and reviews the technological advances that will make it possible to meet those requirements. INTRODUCTION Antenna housing The Applied Physics Laboratory's experience in Cowl assembly tactical missile structural design began with the devel opment of the rocket-powered Terrier and the ramjet-powered Talos in the late 1940's. The air frames for those missiles were designed with conven tional aircraft materials, using slide rules, mechanical desk calculators, handbooks, and rule-of-thumb pro cedures. To ensure adequate safety margins, conser Innerbody fairing vative analytical procedures were pursued, followed Sheet magnesium Innerbody by extensive environmental testing. Simple aluminum forward cone Cast magnesium and steel structures operating at temperatures below Figure 1 - Magnesium components in Talos represented 300°F for Terrier and 600°F for Talos made up the 13 % of the weight of the primary load-carrying structure major portion of the missiles. Terrier was con and 10 % of the gross launch weight. structed primarily from machined castings. Talos, shown in Fig. 1 with its central air duct configura tion, used sheet metal construction. -
Colonel Gordon Cooper, US Air Force Leroy Gordon
Colonel Gordon Cooper, U.S. Air Force Leroy Gordon "Gordo" Cooper Jr. was an American aerospace engineer, U.S. Air Force pilot, test pilot, and one of the seven original astronauts in Project Mercury, the first manned space program of the U.S. Cooper piloted the longest and final Mercury spaceflight in 1963. He was the first American to sleep in space during that 34-hour mission and was the last American to be launched alone to conduct an entirely solo orbital mission. In 1965, Cooper flew as Command Pilot of Gemini 5. Early life and education: Cooper was born on 6 March 1927 in Shawnee, OK to Leroy Gordon Cooper Sr. (Colonel, USAF, Ret.) and Hattie Lee Cooper. He was active in the Boy Scouts where he achieved its second highest rank, Life Scout. Cooper attended Jefferson Elementary School and Shawnee High School and was involved in football and track. He moved to Murray, KY about two months before graduating with his class in 1945 when his father, Leroy Cooper Sr., a World War I veteran, was called back into service. He graduated from Murray High School in 1945. Cooper married his first wife Trudy B. Olson (1927– 1994) in 1947. She was a Seattle native and flight instructor where he was training. Together, they had two daughters: Camala and Janita Lee. The couple divorced in 1971. Cooper married Suzan Taylor in 1972. Together, they had two daughters: Elizabeth and Colleen. The couple remained married until his death in 2004. After he learned that the Army and Navy flying schools were not taking any candidates the year he graduated from high school, he decided to enlist in the Marine Corps. -
Intellipedia-Mothership.Pdf
This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Mother ship - lntellipedia Doc,lD: 6637158 (U) Mother ship UNCLASSIFIED From Intellipedia I (b) (3) - P . L . 86- 36 1 You have new messages (last change). See the Wikipe~ia article A mother ship is a vessel or aircraft that carries a smaller vessel or Mother ship · aircraft that operates independently from it. Examples include bombers converted to carry experimental aircraft to altitudes where they can conduct their research (such as the B-52 carrying the X-15), or ships that carry small submarines to an area of ocean to be explored (such as the Atlantis II carrying the Alvin). The mothership may also recover the smaller craft, or may go its own way after releasing it. I Contents • 1 Usage I • 2 In science fiction and UFOs • 3 See also I L.•___ 4 References ___; Usage The term mother ship dates back to the nineteenth century whaling trade when small, fast ships were used to chase and kill whales. The dead meat from several boats was then brought back to the larger, slower ship for processing and storage until the return to land. This model enabled a far more efficient method of whaling. -
Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883
Journal of Aviation/Aerospace Education & Research Volume 13 Number 1 JAAER Fall 2003 Article 1 Fall 2003 Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883 Thomas Forenz Follow this and additional works at: https://commons.erau.edu/jaaer Scholarly Commons Citation Forenz, T. (2003). Assessing the Evolution of the Airborne Generation of Thermal Lift in Aerostats 1783 to 1883. Journal of Aviation/Aerospace Education & Research, 13(1). https://doi.org/10.15394/ jaaer.2003.1559 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Forenz: Assessing the Evolution of the Airborne Generation of Thermal Lif Thermal Lift ASSESSING THE EVOLUTION OF THE AIRBORNE GENERATION OF THERMAL LIFT IN AEROSTATS 1783 TO 1883 Thomas Forenz ABSTRACT Lift has been generated thermally in aerostats for 219 years making this the most enduring form of lift generation in lighter-than-air aviation. In the United States over 3000 thermally lifted aerostats, commonly referred to as hot air balloons, were built and flown by an estimated 12,000 licensed balloon pilots in the last decade. The evolution of controlling fire in hot air balloons during the first century of ballooning is the subject of this article. The purpose of this assessment is to separate the development of thermally lifted aerostats from the general history of aerostatics which includes all gas balloons such as hydrogen and helium lifted balloons as well as thermally lifted balloons.