Math 371 Lecture #20 §6.1: Ideals and Congruence, Part I

Total Page:16

File Type:pdf, Size:1020Kb

Math 371 Lecture #20 §6.1: Ideals and Congruence, Part I Math 371 Lecture #20 x6.1: Ideals and Congruence, Part I We have seen congruence in the ring of integers Z and congruence in the ring of polyno- mials F [x]. Can we apply the notion of congruence to any ring? Examples. (a) In Z, the congruence a ≡ b (mod 6) means that a − b is a multiple of 6. Let I be the subset of Z that consists of all integer multiplies of 6: I = f6k : k 2 Zg = 6Z: Then a ≡ b (mod 6) means that a − b 2 I. We know that I = 6Z is a subring of Z, but it has a very important \absorption" property. For any k 2 Z and any t 2 I, does kt 2 I? Well, we have t = 6i for some i 2 Z, so that kt = k(6i) = 6(ki) where ki 2 Z, and hence kt 2 I. (b) In Q[x] congruence f(x) ≡ g(x) (mod x3 − 2) means that f(x) − g(x) is a polynomial multiple of x3 − 2. For the subring 3 I = fh(x)(x − 2) : h(x) 2 Q[x]g; of Q[x], we have that f(x) ≡ g(x) (mod x3 − 2) when f(x) − g(x) 2 I. Does I have the \absorption" property? Well, for k(x) 2 Q[x] and t(x) 2 I, we have k(x)t(x) = k(x)h(x)(x3 − 2) 2 I: These examples suggest that congruence in a ring might be obtained by subrings having the \absorption" property. We give these kind of absorbing rings a name. Definition. A subring I of a ring R is called an ideal if whenever r 2 R and a 2 I we have ra 2 I and ar 2 I. We include absorption on the right and on the left to accommodate noncommutative rings. Of course, if the ring R is commutative, the subring I is commutative, so that ar = ra and only one absorption condition needs to be checked. Not every subring I of a ring R is an ideal. Example. The subring Z of Q is not an ideal because for 3 2 Z and 1=2 2 Q, we have 3(1=2) 62 Z. Sometimes for noncommutative rings, the \left" absorption ra 2 I or the \right" absorp- tion ar 2 I may hold while the other does not. Example. The subset a b I = : a; b 2 0 0 Q of M(Q) is a subring that absorbs on the right, a b r s ar + bt as + bu = 2 I 0 0 t u 0 0 but not on the left, r s a b ra rb = 62 I: t u 0 0 ta tb We say that subring I is a right ideal but not a two-sided ideal. There is a simple way to determine when a nonempty subset of a ring is an ideal. Theorem 6.1. A nonempty subset I of a ring R is an ideal if and only if (1) for a; b 2 I we have a − b 2 I, and (2) for r 2 R and a 2 I, we have ra 2 I and ar 2 I. Proof. An ideal I of R satisfies the two conditions. Suppose that a nonempty subset I of R satisfies the two conditions. By condition (2), the set I absorbs on the left and the right, so it remains to show that I is a subring. For this we need to show that I is closed under subtraction (which is condition (1)), and closed under multiplication which follows from condition (2) because I ⊂ R so that a; b 2 I implies ab 2 I. Thus I is an ideal of R. Example. For an integer k ≥ 2, the subring kZ of Z is an ideal by Theorem 6.1. The ideal kZ has a special form. Theorem 6.2. Let R be a commutative ring with identity. For any c 2 R, the set I = frc : r 2 Rg is an ideal of R. Proof. For r1c; r2c 2 I, we have r1c − r2c = (r1 − r2)c 2 I because r1 − r2 2 R; this is condition (1) of Theorem 6.1. For r 2 R and sc 2 I, we have r(sc) = (rs)c 2 I because rs 2 R; by commutativity of R we also have cr 2 I; this is condition (2) of Theorem 6.1. Thus I is an ideal of R. We give the ideals described in Theorem 6.1 a special name. Definition. An ideal of the form frc : r 2 Rg for some c 2 R is called the principal ideal generated by c, and is denoted by (c). Example. For a commutative ring F with identity and p(x) 2 F [x], the ideal (p(x)) (no- tice that we have already been using this notation) is a principal ideal of F [x] generated by p(x). If F is a field, then F [x]=(p(x)) is the commutative ring with identity obtained from F [x] by forming congruence classes modulo the principal ideal generated by p(x). Not every ideal I in a commutative ring R with identity needs be a principal ideal generated by one element of R. n Example. Is the subset I of polynomials f(x) = anx + ··· + a1x + a0 in Z[x] for which 3 j a0 and 3 j a1 is a principal ideal of Z[x]? n k For f(x) = anx + ··· + a1x + a0 and g(x) = bkx + ··· + b1x + b0 in I, we have that the coefficients of x and 1 in f(x) + g(x) are a1 + b1 and a0 + b0, which are both divisible by 3 since a0; a1; b0; b1 are. l For h(x) = clx +···+c1x+c0 2 Z[x], the coefficients of x and 1 in f(x)h(x) are a1c0 +a0c1 and a0c0 which are divisible by 3 because a0; a1 are divisible by 3. By Theorem 6.1, the set I is an ideal of Z[x]. If I were a principal ideal generated by a single element of Z[x], then there would be p(x) 2 Z[x] such that I = (p(x)). This would mean that f(x) = 3 2 I would be a nonzero polynomial multiple of p(x). This requires that that either p(x) = ±1 or p(x) = ±3. If p(x) = ±1, then 2x would be a polynomial multiple of p(x), and hence 2x 2 I, a contradiction. So p(x) = ±3. But g(x) = x2 2 I is not a polynomial multiple of p(x) = ±3 in Z[x]. Thus there is no p(x) 2 Z[x] such that I = (p(x)). There is generalization of a principal ideal that accounts for this ideal and many other ideals. Theorem 6.3. Let R be a commutative ring with identity, and let c1; c2; : : : ; cn 2 R. Then the set I = fr1c1 + r2c2 + ··· + rncn : ri 2 Rg is an ideal in R. Idea of Proof. Apply Theorem 6.1. Definition. The ideal I in Theorem 6.3 is called an ideal generated by the finitely many generators c1; c2; ··· ; cn, or a finitely generated ideal. n Example. The ideal I of Z[x] of polynomials f(x) = anx + ··· + a1x + a0 where 3 j a0 2 and 3 j a1 is a finitely generated ideal of Z[x] with generators c1 = x and c2 = 3: 2 I = fr1(x)x + r2(x)3 : r1(x); r2(x) 2 Z[x]g:.
Recommended publications
  • Subset Semirings
    University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2013 Subset Semirings Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy [email protected] Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebraic Geometry Commons, Analysis Commons, and the Other Mathematics Commons Recommended Citation W.B. Vasantha Kandasamy & F. Smarandache. Subset Semirings. Ohio: Educational Publishing, 2013. This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Subset Semirings W. B. Vasantha Kandasamy Florentin Smarandache Educational Publisher Inc. Ohio 2013 This book can be ordered from: Education Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: 1-866-880-5373 Copyright 2013 by Educational Publisher Inc. and the Authors Peer reviewers: Marius Coman, researcher, Bucharest, Romania. Dr. Arsham Borumand Saeid, University of Kerman, Iran. Said Broumi, University of Hassan II Mohammedia, Casablanca, Morocco. Dr. Stefan Vladutescu, University of Craiova, Romania. Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/eBooks-otherformats.htm ISBN-13: 978-1-59973-234-3 EAN: 9781599732343 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One INTRODUCTION 7 Chapter Two SUBSET SEMIRINGS OF TYPE I 9 Chapter Three SUBSET SEMIRINGS OF TYPE II 107 Chapter Four NEW SUBSET SPECIAL TYPE OF TOPOLOGICAL SPACES 189 3 FURTHER READING 255 INDEX 258 ABOUT THE AUTHORS 260 4 PREFACE In this book authors study the new notion of the algebraic structure of the subset semirings using the subsets of rings or semirings.
    [Show full text]
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • Introduction to the P-Adic Space
    Introduction to the p-adic Space Joel P. Abraham October 25, 2017 1 Introduction From a young age, students learn fundamental operations with the real numbers: addition, subtraction, multiplication, division, etc. We intuitively understand that distance under the reals as the absolute value function, even though we never have had a fundamental introduction to set theory or number theory. As such, I found this topic to be extremely captivating, since it almost entirely reverses the intuitive notion of distance in the reals. Such a small modification to the definition of distance gives rise to a completely different set of numbers under which the typical axioms are false. Furthermore, this is particularly interesting since the p-adic system commonly appears in natural phenomena. Due to the versatility of this metric space, and its interesting uniqueness, I find the p-adic space a truly fascinating development in algebraic number theory, and thus chose to explore it further. 2 The p-adic Metric Space 2.1 p-adic Norm Definition 2.1. A metric space is a set with a distance function or metric, d(p, q) defined over the elements of the set and mapping them to a real number, satisfying: arXiv:1710.08835v1 [math.HO] 22 Oct 2017 (a) d(p, q) > 0 if p = q 6 (b) d(p,p)=0 (c) d(p, q)= d(q,p) (d) d(p, q) d(p, r)+ d(r, q) ≤ The real numbers clearly form a metric space with the absolute value function as the norm such that for p, q R ∈ d(p, q)= p q .
    [Show full text]
  • Discriminants and the Monoid of Quadratic Rings
    DISCRIMINANTS AND THE MONOID OF QUADRATIC RINGS JOHN VOIGHT Abstract. We consider the natural monoid structure on the set of quadratic rings over an arbitrary base scheme and characterize this monoid in terms of discriminants. Quadratic field extensions K of Q are characterized by their discriminants. Indeed, there is a bijection 8Separable quadratic9 < = ∼ × ×2 algebras over Q −! Q =Q : up to isomorphism ; p 2 ×2 Q[ d] = Q[x]=(x − d) 7! dQ wherep a separable quadratic algebra over Q is either a quadratic field extension or the algebra Q[ 1] ' Q × Q of discriminant 1. In particular, the set of isomorphism classes of separable quadratic extensions of Q can be given the structure of an elementary abelian 2-group, with identity element the class of Q × Q: we have simply p p p Q[ d1] ∗ Q[ d2] = Q[ d1d2] p × ×2 up to isomorphism. If d1; d2; dp1d2 2pQ n Q then Q( d1d2) sits as the third quadratic subfield of the compositum Q( d1; d2): p p Q( d1; d2) p p p Q( d1) Q( d1d2) Q( d2) Q p Indeed, ifpσ1 isp the nontrivial elementp of Gal(Q( d1)=Q), then therep is a unique extension of σ1 to Q( d1; d2) leaving Q( d2) fixed, similarly with σ2, and Q( d1d2) is the fixed field of the composition σ1σ2 = σ2σ1. This characterization of quadratic extensions works over any base field F with char F 6= 2 and is summarized concisely in the Kummer theory isomorphism H1(Gal(F =F ); {±1g) = Hom(Gal(F =F ); {±1g) ' F ×=F ×2: On the other hand, over a field F with char F = 2, all separable quadratic extensions have trivial discriminant and instead they are classified by the (additive) Artin-Schreier group F=}(F ) where }(F ) = fr + r2 : r 2 F g Date: January 17, 2021.
    [Show full text]
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
    A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields).
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • Arxiv:1709.01693V2 [Math.AC] 14 May 2018 Togypiaymnis Rl Ood,C-Monoids
    PUISEUX MONOIDS AND TRANSFER HOMOMORPHISMS FELIX GOTTI Abstract. There are several families of atomic monoids whose arithmetical invari- ants have received a great deal of attention during the last two decades. The factoriza- tion theory of finitely generated monoids, strongly primary monoids, Krull monoids, and C-monoids are among the most systematically studied. Puiseux monoids, which are additive submonoids of Q≥0 consisting of nonnegative rational numbers, have only been studied recently. In this paper, we provide evidence that this family com- prises plenty of monoids with a basically unexplored atomic structure. We do this by showing that the arithmetical invariants of the well-studied atomic monoids men- tioned earlier cannot be transferred to most Puiseux monoids via homomorphisms that preserve atomic configurations, i.e., transfer homomorphisms. Specifically, we show that transfer homomorphisms from a non-finitely generated atomic Puiseux monoid to a finitely generated monoid do not exist. We also find a large family of Puiseux monoids that fail to be strongly primary. In addition, we prove that the only nontrivial Puiseux monoid that accepts a transfer homomorphism to a Krull monoid is N0. Finally, we classify the Puiseux monoids that happen to be C-monoids. 1. Introduction The study of the phenomenon of non-unique factorizations in the ring of integers OK of an algebraic number field K was initiated by L. Carlitz in the 1950’s, and it was later carried out on more general integral domains. As a result, many techniques to measure the non-uniqueness of factorizations in several families of integral domains were sys- tematically developed during the second half of the last century (see [2] and references therein).
    [Show full text]
  • A Brief History of Ring Theory
    A Brief History of Ring Theory by Kristen Pollock Abstract Algebra II, Math 442 Loyola College, Spring 2005 A Brief History of Ring Theory Kristen Pollock 2 1. Introduction In order to fully define and examine an abstract ring, this essay will follow a procedure that is unlike a typical algebra textbook. That is, rather than initially offering just definitions, relevant examples will first be supplied so that the origins of a ring and its components can be better understood. Of course, this is the path that history has taken so what better way to proceed? First, it is important to understand that the abstract ring concept emerged from not one, but two theories: commutative ring theory and noncommutative ring the- ory. These two theories originated in different problems, were developed by different people and flourished in different directions. Still, these theories have much in com- mon and together form the foundation of today's ring theory. Specifically, modern commutative ring theory has its roots in problems of algebraic number theory and algebraic geometry. On the other hand, noncommutative ring theory originated from an attempt to expand the complex numbers to a variety of hypercomplex number systems. 2. Noncommutative Rings We will begin with noncommutative ring theory and its main originating ex- ample: the quaternions. According to Israel Kleiner's article \The Genesis of the Abstract Ring Concept," [2]. these numbers, created by Hamilton in 1843, are of the form a + bi + cj + dk (a; b; c; d 2 R) where addition is through its components 2 2 2 and multiplication is subject to the relations i =pj = k = ijk = −1.
    [Show full text]
  • Formal Power Series License: CC BY-NC-SA
    Formal Power Series License: CC BY-NC-SA Emma Franz April 28, 2015 1 Introduction The set S[[x]] of formal power series in x over a set S is the set of functions from the nonnegative integers to S. However, the way that we represent elements of S[[x]] will be as an infinite series, and operations in S[[x]] will be closely linked to the addition and multiplication of finite-degree polynomials. This paper will introduce a bit of the structure of sets of formal power series and then transfer over to a discussion of generating functions in combinatorics. The most familiar conceptualization of formal power series will come from taking coefficients of a power series from some sequence. Let fang = a0; a1; a2;::: be a sequence of numbers. Then 2 the formal power series associated with fang is the series A(s) = a0 + a1s + a2s + :::, where s is a formal variable. That is, we are not treating A as a function that can be evaluated for some s0. In general, A(s0) is not defined, but we will define A(0) to be a0. 2 Algebraic Structure Let R be a ring. We define R[[s]] to be the set of formal power series in s over R. Then R[[s]] is itself a ring, with the definitions of multiplication and addition following closely from how we define these operations for polynomials. 2 2 Let A(s) = a0 + a1s + a2s + ::: and B(s) = b0 + b1s + b1s + ::: be elements of R[[s]]. Then 2 the sum A(s) + B(s) is defined to be C(s) = c0 + c1s + c2s + :::, where ci = ai + bi for all i ≥ 0.
    [Show full text]
  • Formal Power Series Rings, Inverse Limits, and I-Adic Completions of Rings
    Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely many variables over a ring R, and show that it is Noetherian when R is. But we begin with a definition in much greater generality. Let S be a commutative semigroup (which will have identity 1S = 1) written multi- plicatively. The semigroup ring of S with coefficients in R may be thought of as the free R-module with basis S, with multiplication defined by the rule h k X X 0 0 X X 0 ( risi)( rjsj) = ( rirj)s: i=1 j=1 s2S 0 sisj =s We next want to construct a much larger ring in which infinite sums of multiples of elements of S are allowed. In order to insure that multiplication is well-defined, from now on we assume that S has the following additional property: (#) For all s 2 S, f(s1; s2) 2 S × S : s1s2 = sg is finite. Thus, each element of S has only finitely many factorizations as a product of two k1 kn elements. For example, we may take S to be the set of all monomials fx1 ··· xn : n (k1; : : : ; kn) 2 N g in n variables. For this chocie of S, the usual semigroup ring R[S] may be identified with the polynomial ring R[x1; : : : ; xn] in n indeterminates over R. We next construct a formal semigroup ring denoted R[[S]]: we may think of this ring formally as consisting of all functions from S to R, but we shall indicate elements of the P ring notationally as (possibly infinite) formal sums s2S rss, where the function corre- sponding to this formal sum maps s to rs for all s 2 S.
    [Show full text]