Northumberland County Implementation Plan for the Chesapeake Bay Tributary Strategy A

Total Page:16

File Type:pdf, Size:1020Kb

Northumberland County Implementation Plan for the Chesapeake Bay Tributary Strategy A Northumberland County Implementation Plan For the Chesapeake Bay Tributary Strategy A. County Description “Chesapeake Bay, the Nation’s largest estuary, has been adversely affected by nutrient enrichment. Excessive nutrients have caused eutrophication, contributing to periods of hypoxia (dissolved-oxygen concentrations lower than 1.0 mg/L) and poor water-clarity conditions that deprive living resources of necessary oxygen and sunlight.”(Sprague et. al. 2000) Freshwater source inputs come from a multitude of different sources, with the Susquehanna River contributing 50% of the freshwater to the Bay. Of the total streamflow into the Bay, the Susquehanna River contributes 60%. Of the total nutrient contribution to the Bay, the Susquehanna River contributes 62% of the total nitrogen and 34% of the total phosphorus. Northumberland County, located at the junction of the North and West Branches of the Susquehanna River, is an area of diverse and unique land uses and cultures. With a total area of 460 square miles and a population of 94,428, Northumberland County is, for the majority, a rural county. With a little over 123,500 acres of farm land within the county limits, agriculture has always been and continues to be a substantial amount of the land use in Northumberland County. The culture of Northumberland County is just as diverse as its land use. The east central and west central parts of the county are mostly urban while the northern half of the county brings in some of the Amish community. Northumberland County contributes approximately 3 million pounds of total nitrogen, 73,000 pounds of total phosphorus and 24,000 tons of total sediment to the Bay each year. Tillage practices, forested areas and urban areas are the largest contributors to this load as can be seen in Appendix #1. As mentioned earlier, agriculture is a large part of the economy and land use of Northumberland County. Ranking fourth in Pennsylvania for the production of corn grain and soybeans and fourteenth in the production of wheat, grain farming is a substantial component of the agriculture in the county. The types and sizes of the livestock operations vary greatly depending on their location within the county. The plan will go into further detail in a later section. 2 B. Water Resources/Quality There are seven major water bodies and their associated watersheds within Northumberland County. Each of these water bodies have their own unique impairments due to the watersheds which impact them. Below is a list of each of these water bodies and their impairments, take note that these are in no order of significance. The charts are in appendix #2. The Mahantango Creek, which forms the southern boundary of the county, has an associated watershed of 28,800 acres. At one time the Mahantango Creek was polluted by abandoned mine discharge. As a result of the efforts of the Mahantango Creek Watershed Association, the Commonwealth of Pennsylvania constructed a mine acid- neutralizing plant in the headwaters of the Mahantango in 1970. Capable of treating up to 32 million gallons of abandoned mine discharge per day, the plant has effectively neutralized acid mine discharge in the Mahantango and has enabled it to support trout and other aquatic life. The population of the watershed is listed at 3,975 people. The land use of the watershed consists mostly of agricultural operations at 15,840 acres (55%), 11,232 acres forested (39%) and 1,728 acres urban (6%). Two major soils associations are predominant in the agricultural areas of this watershed. The Weikert-Berks-Hartleton association is characterized as gently sloping to steep, shallow to deep, well drained soils on hills and ridges; formed in material weathered from shale and some sandstone. The Klinesville-Calvin-Leck Kill association is characterized as gently sloping to steep, shallow to deep, well drained soils on hills and ridges; formed in material weathered from red shale. The major soils associations in Northumberland County are delineated in Appendix #3. The average slope for the watershed is 16.2%. The creek is listed as a warm water fishery and is stocked with trout by the Pennsylvania Fish and Boat Commission. With these types of land use, the major forms of impairments come from non-point source pollution. 3 The Mahantango Creek has been listed on the 303D list due to siltation from removal of vegetation on agricultural operations. One of the main sources of nutrient and sediment loading comes from the livestock feeding areas/barnyards and the untimely and over application of manure to croplands. Also, since the grazed livestock operations in this watershed are mainly beef operations, impacts to stream banks, minimal buffers and overgrazed pastures are a main source of the nutrient and sediment runoff to the watershed’s streams. Another source of non-point source pollution in the watershed comes in the form of conventional tillage and minimal cover crop planting. Due to the steep terrain (8-25% slope) and topography of the watershed, these two impacts produce a substantial amount of nutrient and sediment loading to the Mahantango Creek and its tributaries. The dirt and gravel roads of the Mahantango Creek Watershed are another area of concern. Taking into account the topography and the number of unimproved surfaces in the watershed we can see how these areas can be a major concern of sediment loading to the stream. The Mahantango Creek is part of the Tri-Valley Watershed Association coverage area. The agricultural operations of this watershed consist mainly of grain production and livestock operations. An approximate breakdown by crop for the watershed is as follows; Corn 47.2% 7,476 acres Alfalfa and Hay 12.9% 2,043 acres Set Aside 14.5% 2,297 acres Small Grains 9.9% 1,568 acres Soybeans 9.1% 1,441 acres Pasture 4.7% 744 acres Vegetables and Other 1.7 % 267 acres Total 15,840 acres 4 There are currently 47 livestock operations in the Mahantango Watershed. An approximate breakdown by type of animal is as follows: Type of Operation # of Farms # of Animals Dairy 6 475 Swine 13 16,300 Poultry 8 590,000 Beef 15 1,300 Sheep 5 522 The second major watershed to be discussed is the Mahanoy Creek. With a total watershed area of 100,480 acres, this is one of the larger watersheds in the county. The stream flows east to west through East Cameron, West Cameron and Little Mahanoy townships. The land use for the area is broken down into 66,317 acres forested (66%), 21,101 acres agricultural (21%), 4,019 acres urban (4%) and 9,043 acres mine land (9%). The population of the watershed is listed at 38,824 people. The watershed for this creek includes land in Schuylkill County as well as Columbia County. Two major soils associations are predominant in the agricultural areas of this watershed. The Weikert- Berks-Hartleton association is characterized as gently sloping to steep, shallow to deep, well drained soils on hills and ridges; formed in material weathered from shale and some sandstone. The Klinesville-Calvin-Leck Kill association is characterized as gently sloping to steep, shallow to deep, well drained soils on hills and ridges; formed in material weathered from red shale. The major soils associations in Northumberland County are delineated in Appendix #3. The watershed has an average slope of 19.9%. The Mahanoy Creek is listed as a warm water fishery. Included in the watershed is Schwaben Creek which will be broken into a separate watershed later on. The Mahanoy Creek has a completed TMDL and has been listed on the 303d list as impaired by abandoned mine drainage, siltation from crop related agriculture and atmospheric deposition. The major source of pollution in this watershed is due to abandoned mine drainage from 32 mine discharges with over half of these being considered large discharges (greater than 1.0 cubic foot per second). Agriculture impacts 5 of the watershed are located primarily on the lower reaches of the watershed. One of the main sources of nutrient and sediment loading from agricultural operations comes from the livestock feeding areas/barnyards and the untimely and over application of manure to croplands. Also, since the grazed livestock operations in this watershed are mainly beef and dairy operations, impacts to stream banks, minimal buffers and overgrazed pastures are a main source of the nutrient and sediment runoff to the watershed’s streams. Another source of non-point source pollution in the watershed comes in the form of conventional tillage and minimal cover crop planting. Due to the steep terrain and topography of the watershed, these two impacts produce a substantial amount of nutrient and sediment loading to the Mahanoy Creek and its tributaries. The agricultural operations of this watershed consist mainly of grain production and livestock operations. An approximate breakdown by crop for the watershed is as follows; Corn 49.4% 10,424 acres Small Grains 20.9% 4,410 acres Set Aside 9.7% 2,047 acres Alfalfa and Hay 7.6% 1,604 acres Pasture 7.2% 1,519 acres Soybeans 5.1% 1,076 acres Vegetables and Other 0.1 % 21 acres Total 21,101 acres 6 There are currently 7 livestock operations in the Mahanoy Watershed. An approximate breakdown by type of animal is as follows: Type of Operation # of Farms # of Animals Dairy 2 100 Swine 0 0 Poultry 1 30,000 Beef 4 300 Sheep 1 40 The third watershed to be discussed is the Schwaben Creek watershed. Schwaben Creek is a tributary to the Mahanoy Creek, but due to its drastically different land use, it has been decided to subdivide this stream into a separate watershed.
Recommended publications
  • The Conowingo Tunnel and the Anthracite Mine Flood-Control Project a Historical Perspective on a “Solution” to the Anthracite Mine Drainage Problem
    The Conowingo Tunnel and the Anthracite Mine Flood-Control Project A Historical Perspective on a “Solution” to the Anthracite Mine Drainage Problem Michael C. Korb, P.E. Environmental Program Manager Pennsylvania Department of Environmental Protection Bureau of Abandoned Mine Reclamation (BAMR) Wilkes Barre District Office [email protected] www.depweb.state.pa.us Abstract Fifty-seven years ago, Pennsylvania’s Anthracite Mine Drainage Commission recommended that the Conowingo Tunnel, an expensive, long-range solution to the Anthracite Mine Drainage problem, be “tabled” and that a cheaper, short-range “job- stimulus” project be implemented instead. Today Pennsylvania’s anthracite region has more than 40 major mine water discharges, which have a combined average flow of more than 285,000 gallons per minute (GPM). Two of these average more than 30,000 GPM, 10 more of the discharges are greater than 6,000 GPM, while another 15 average more than 1,000 GPM. Had the Conowingo Tunnel Project been completed, most of this Pennsylvania Anthracite mine water problem would have been Maryland’s mine water problem. Between 1944 and 1954, engineers of the US Bureau of Mines carried out a comprehensive study resulting in more than 25 publications on all aspects of the mine water problem. The engineering study resulted in a recommendation of a fantastic and impressive plan to allow the gravity drainage of most of the Pennsylvania anthracite mines into the estuary of the Susquehanna River, below Conowingo, Maryland, by driving a 137-mile main tunnel with several laterals into the four separate anthracite fields. The $280 million (1954 dollars) scheme was not executed, but rather a $17 million program of pump installations, ditch installation, stream bed improvement and targeted strip-pit backfilling was initiated.
    [Show full text]
  • NON-TIDAL BENTHIC MONITORING DATABASE: Version 3.5
    NON-TIDAL BENTHIC MONITORING DATABASE: Version 3.5 DATABASE DESIGN DOCUMENTATION AND DATA DICTIONARY 1 June 2013 Prepared for: United States Environmental Protection Agency Chesapeake Bay Program 410 Severn Avenue Annapolis, Maryland 21403 Prepared By: Interstate Commission on the Potomac River Basin 51 Monroe Street, PE-08 Rockville, Maryland 20850 Prepared for United States Environmental Protection Agency Chesapeake Bay Program 410 Severn Avenue Annapolis, MD 21403 By Jacqueline Johnson Interstate Commission on the Potomac River Basin To receive additional copies of the report please call or write: The Interstate Commission on the Potomac River Basin 51 Monroe Street, PE-08 Rockville, Maryland 20850 301-984-1908 Funds to support the document The Non-Tidal Benthic Monitoring Database: Version 3.0; Database Design Documentation And Data Dictionary was supported by the US Environmental Protection Agency Grant CB- CBxxxxxxxxxx-x Disclaimer The opinion expressed are those of the authors and should not be construed as representing the U.S. Government, the US Environmental Protection Agency, the several states or the signatories or Commissioners to the Interstate Commission on the Potomac River Basin: Maryland, Pennsylvania, Virginia, West Virginia or the District of Columbia. ii The Non-Tidal Benthic Monitoring Database: Version 3.5 TABLE OF CONTENTS BACKGROUND ................................................................................................................................................. 3 INTRODUCTION ..............................................................................................................................................
    [Show full text]
  • Maryland Darter Etheostoma Sellare
    U.S. Fish & Wildlife Service Maryland darter Etheostoma Sellare Introduction The Maryland darter is a small freshwater fish only known from a limited area in Harford County, Maryland. These areas, Swan Creek, Gashey’s Run (a tributary of Swan Creek) and Deer Creek, are part of the larger Susquehanna River drainage basin. Originally discovered in Swan Creek nymphs. Spawning is assumed to species of darters. Electrotrawling is in 1912, the Maryland darter has not occur during late April, based on other the method of towing a net from a boat been seen here since and only small species, but no Maryland darters have with electrodes attached to the net that numbers of individuals have been been observed during reproduction. send small, harmless pulses through found in Gashey’s Run and Deer the water to stir up fish. Electrofishing Creek. A Rare Species efforts in the Susquehanna are Some biologists suspect that the continuing. Due to its scarcity, the Maryland Maryland darter could be hiding darter was federally listed as in the deep, murky waters of the A lack of adequate surveying of endangered in 1967, and critical Susquehanna River. Others worry large rivers in the past due to limited habitat was designated in 1984. The that the decreased darter population technology leaves hope for finding darter is also state listed. The last is evidence that the desirable habitat Maryland darters in this area. The new known sighting of the darter was in for these fish has diminished, possibly studies would likely provide definitive 1988. due to water quality degradation and information on the population status effects of residential development of the Maryland darter and a basis for Characteristics in the watershed.
    [Show full text]
  • Pennsylvania Department of Transportation Section 106 Annual Report - 2019
    Pennsylvania Department of Transportation Section 106 Annual Report - 2019 Prepared by: Cultural Resources Unit, Environmental Policy and Development Section, Bureau of Project Delivery, Highway Delivery Division, Pennsylvania Department of Transportation Date: April 07, 2020 For the: Federal Highway Administration, Pennsylvania Division Pennsylvania State Historic Preservation Officer Advisory Council on Historic Preservation Penn Street Bridge after rehabilitation, Reading, Pennsylvania Table of Contents A. Staffing Changes ................................................................................................... 7 B. Consultant Support ................................................................................................ 7 Appendix A: Exempted Projects List Appendix B: 106 Project Findings List Section 106 PA Annual Report for 2018 i Introduction The Pennsylvania Department of Transportation (PennDOT) has been delegated certain responsibilities for ensuring compliance with Section 106 of the National Historic Preservation Act (Section 106) on federally funded highway projects. This delegation authority comes from a signed Programmatic Agreement [signed in 2010 and amended in 2017] between the Federal Highway Administration (FHWA), the Advisory Council on Historic Preservation (ACHP), the Pennsylvania State Historic Preservation Office (SHPO), and PennDOT. Stipulation X.D of the amended Programmatic Agreement (PA) requires PennDOT to prepare an annual report on activities carried out under the PA and provide it to
    [Show full text]
  • Susquhanna River Fishing Brochure
    Fishing the Susquehanna River The Susquehanna Trophy-sized muskellunge (stocked by Pennsylvania) and hybrid tiger muskellunge The Susquehanna River flows through (stocked by New York until 2007) are Chenango, Broome, and Tioga counties for commonly caught in the river between nearly 86 miles, through both rural and urban Binghamton and Waverly. Local hot spots environments. Anglers can find a variety of fish include the Chenango River mouth, Murphy’s throughout the river. Island, Grippen Park, Hiawatha Island, the The Susquehanna River once supported large Smallmouth bass and walleye are the two Owego Creek mouth, and Baileys Eddy (near numbers of migratory fish, like the American gamefish most often pursued by anglers in Barton) shad. These stocks have been severely impacted Fishing the the Susquehanna River, but the river also Many anglers find that the most enjoyable by human activities, especially dam building. Susquehanna River supports thriving populations of northern pike, and productive way to fish the Susquehanna is The Susquehanna River Anadromous Fish Res- muskellunge, tiger muskellunge, channel catfish, by floating in a canoe or small boat. Using this rock bass, crappie, yellow perch, bullheads, and method, anglers drift cautiously towards their toration Cooperative (SRFARC) is an organiza- sunfish. preferred fishing spot, while casting ahead tion comprised of fishery agencies from three of the boat using the lures or bait mentioned basin states, the Susquehanna River Commission Tips and Hot Spots above. In many of the deep pool areas of the (SRBC), and the federal government working Susquehanna, trolling with deep running lures together to restore self-sustaining anadromous Fishing at the head or tail ends of pools is the is also effective.
    [Show full text]
  • 3702 Curtin Road November 15, 2011
    APPLICATION TO THE USDA-ARS LONG TERM AGRO-ECOSYSTEM RESEARCH (LTAR) NETWORK FOR THE PASTURE SYSTEMS AND WATERSHED MANAGEMENT RESEARCH UNIT’S UPPER CHESAPEAKE BAY / SUSQUEHANNA RIVER COMPONENT PASTURE SYSTEMS AND WATERSHED MANAGEMENT RESEARCH UNIT 3702 CURTIN ROAD UNIVERSITY PARK, PA 16802 SUBMITTED BY JOHN SCHMIDT, RESEARCH LEADER POC: PETER KLEINMAN [email protected] NOVEMBER 15, 2011 Introduction We propose to establish an Upper Chesapeake Bay/ Susquehanna River component of the nascent Long Term Agro-ecosystem Research (LTAR) network, with leadership of that component by USDA-ARS Pasture Systems and Watershed Management Research Unit (PSWMRU). To fully represent the Upper Chesapeake Bay/ Susquehanna River region, four watershed locations are identified where intensive research would be focused in each of the major physiographic provinces contained within the region. Due to varied physiographic and biotic zones within the region, multiple watershed sites are required to represent the diversity of agricultural conditions. The PSWMRU has a long history of high-impact research on watershed and grazing land management, and has an established nexus of regional and national collaborative networks that would rapidly expand the linkages desired under LTAR (GRACEnet, the Conservation Effects Assessment Project, the Northeast Pasture Consortium and SERA-17). Research from the PSWMRU underpins state and national agricultural management guidelines (Phosphorus Index, Pasture Conditioning Score Sheet, NRCS practice standards). However, it is the leadership of the PSWMRU in Chesapeake Bay mitigation activities, reflected in the geographic organization of the proposed network by Bay watershed’s physiographic provinces that makes the proposed Upper Chesapeake Bay/ Susquehanna River component an appropriate starting point for the LTAR network.
    [Show full text]
  • Abandoned Mine Drainage Workgroup Overview
    ABANDONED MINE DRAINAGE The headwaters of the Schuylkill River are located in the serene mountain valleys of Schuylkill County, Pennsylvania. An area rich in scenic beauty and coal mining history, the Little Schuylkill and Upper Schuylkill Rivers are designated cold-water fisheries, and the Schuylkill main stem is a State Scenic River at the confluence of these two tributary waterways. Abandoned Mine Drainage (AMD) is the primary cause of pollution in the Schuylkill River headwaters and the biggest source of metals downstream. AMD is created deep below the ground in abandoned mines where streams, groundwater, and stormwater fill tunnels that were once kept dry by active pumping operations. Water and oxygen react with lingering iron sulfide (pyrite) producing metal-laden and sometimes highly acidic discharges that exit the tunnels in telltale orange and silver plumes, easily visible in these regional surface waters. Abandoned mine discharge Schuylkill PottsvillPottsville River Watershed NJ S Reading ch uy Pottstown lk ill Trenton Riv e Norri r Norristown r PA e iv Philadelphia R Camden re wa N Wilmington la e DE D W E MD S Abandoned mine tunnel AMD interferes with vegetative growth and reproduction of aquatic animals by armoring the streambed with deposits of iron and other metals. Acidity and metals impair both surface and ground drinking water resources and quickly corrode pipes and industrial mechanisms. Unattractive waterways marred by AMD can hinder tourism and recreational opportunities like fishing, boating, and swimming that attract so many people to visit, vacation, and reside in this region. Passive AMD treatment system AMD treatment is expensive, but so is the economic and environmental damage that results from untreated AMD.
    [Show full text]
  • Kayaking • Fishing • Lodging Table of Contents
    KAYAKING • FISHING • LODGING TABLE OF CONTENTS Fishing 4-13 Kayaking & Tubing 14-15 Rules & Regulations 16 Lodging 17-19 1 W. Market St. Lewistown, PA 17044 www.JRVVisitors.com 717-248-6713 [email protected] The Juniata River Valley Visitors Bureau thanks the following contributors to this directory. Without your knowledge and love of our waterways, this directory would not be possible. Joshua Hill Nick Lyter Brian Shumaker Penni Abram Paul Wagner Bob Wert Todd Jones Helen Orndorf Ryan Cherry Thankfully, The Juniata River Valley Visitors Bureau Jenny Landis, executive director Buffie Boyer, marketing assistant Janet Walker, distribution manager 2 PAFLYFISHING814 Welcome to the JUNIATA RIVER VALLEY Located in the heart of Central Pennsylvania, the Juniata River Valley, is named for the river that flows from Huntingdon County to Perry County where it meets the Susquehanna River. Spanning more than 100 miles, the Juniata River flows through a picturesque valley offering visitors a chance to explore the area’s wide fertile valleys, small towns, and the natural heritage of the region. The Juniata River watershed is comprised of more than 6,500 miles of streams, including many Class A fishing streams. The river and its tributaries are not the only defining characteristic of our landscape, but they are the center of our recreational activities. From traditional fishing to fly fishing, kayaking to camping, the area’s waterways are the ideal setting for your next fishing trip or family vacation. Come and “Discover Our Good Nature” any time of year! Find Us! The Juniata River Valley is located in Central Pennsylvania midway between State College and Harrisburg.
    [Show full text]
  • Draft 2021 LRTP
    DRAFT SEDA‐COG Metropolitan Planning Organization (MPO) LONG RANGE TRANSPORTATION PLAN The Draft Long Range Transportation Plan includes regional overview information and the MPO region’s long range vision for prioritizing transportation investments. This copy of the draft plan is available as part of a 30‐day comment period beginning on May 24, 2021, and ending on June 22, 2021. The public comment period provides the public an opportunity to provide feedback on all facets of the Long Range Transportation Plan before its adoption. The plan can be reviewed online at: http://www.seda‐cog.org/departments/transportation/long‐range‐plan. Written and electronic comments may be submitted via email, SEDA‐COG web portal, fax, or Postal Service by 4:00 p.m. on Tuesday, June 22, 2021. Email comments may be submitted to lrtp@seda‐cog.org or through the web portal at http://www.seda‐cog.org/departments/transportation/transportation‐comments Comments may be faxed to 570‐524‐9190 Please address all written comments to: Mr. Don Kiel SEDA‐COG MPO 201 Furnace Road Lewisburg, PA 17837 If you would like to provide comments or discuss the draft plan in person, a Virtual Public Meeting will be held during the public comment period as follows: Date: June 3, 2021 Time: 7:00 p.m. to 8:00 p.m. Location: The content of this Notice is available in alternative formats and other languages upon request by contacting the SEDA‐COG MPO at 570‐524‐4491, or by written correspondence directed to the MPO at 201 Furnace Road, Lewisburg, PA 17837, or by email at jsaylor@seda‐cog.org.
    [Show full text]
  • Brook Trout Outcome Management Strategy
    Brook Trout Outcome Management Strategy Introduction Brook Trout symbolize healthy waters because they rely on clean, cold stream habitat and are sensitive to rising stream temperatures, thereby serving as an aquatic version of a “canary in a coal mine”. Brook Trout are also highly prized by recreational anglers and have been designated as the state fish in many eastern states. They are an essential part of the headwater stream ecosystem, an important part of the upper watershed’s natural heritage and a valuable recreational resource. Land trusts in West Virginia, New York and Virginia have found that the possibility of restoring Brook Trout to local streams can act as a motivator for private landowners to take conservation actions, whether it is installing a fence that will exclude livestock from a waterway or putting their land under a conservation easement. The decline of Brook Trout serves as a warning about the health of local waterways and the lands draining to them. More than a century of declining Brook Trout populations has led to lost economic revenue and recreational fishing opportunities in the Bay’s headwaters. Chesapeake Bay Management Strategy: Brook Trout March 16, 2015 - DRAFT I. Goal, Outcome and Baseline This management strategy identifies approaches for achieving the following goal and outcome: Vital Habitats Goal: Restore, enhance and protect a network of land and water habitats to support fish and wildlife, and to afford other public benefits, including water quality, recreational uses and scenic value across the watershed. Brook Trout Outcome: Restore and sustain naturally reproducing Brook Trout populations in Chesapeake Bay headwater streams, with an eight percent increase in occupied habitat by 2025.
    [Show full text]
  • Shoup's Run Watershed Association
    11/1/2004 Shoup Run Watershed Restoration Plan Developed by the Huntingdon County Conservation District for The Shoup Run Watershed Association Introduction Watershed History The Shoup Run, locally known as Shoup’s Run, watershed drains approximately 13,746 acres or 21.8 square miles, in the Appalachian Mountain, Broad Top region of the Valley-Ridge Physiographic Province. Within this province, the area lies within the northwestern section of the Broad Top Mountain Plateau. This area is characterized by narrow valleys and moderately steep mountain slopes. Shoup Run is located in Huntingdon County, but includes drainage from portions of Bedford County. Shoup Run flows into the Raystown Branch of the Juniata River near the community of Saxton at river mile 42.4. Shoup Run has five named tributaries (Figure 1). Approximately 10% of the surface area of the Shoup Run basin has been surface mined. Much of the mining activity was done prior to current regulations and few of the mines were reclaimed to current specifications. Surface mining activity ended in the early 1980’s. There is currently no active mining in the watershed. Deep mines underlie approximately 12% of the Shoup Run watershed. Many abandoned deep mine entries and openings still exist in the Shoup Run Basin. Deep mining was done below the water table in many locations. In order to dewater the mines, drifts were driven into the deep mines to allow water to flow down slope and out of many of the mines. The bedrock in this area is folded and faulted. Tunnels were driven through many different lithologies to allow drainage.
    [Show full text]
  • Pine Knot Mine Drainage Tunnel –
    QUANTITY AND QUALITY OF STREAM WATER DRAINING MINED AREAS OF THE UPPER SCHUYLKILL RIVER BASIN, SCHUYLKILL COUNTY, PENNSYLVANIA, USA, 2005-20071 Charles A. Cravotta III,2 and John M. Nantz Abstract: Hydrologic effects of abandoned anthracite mines were documented by continuous streamflow gaging coupled with synoptic streamflow and water- quality monitoring in headwater reaches and at the mouths of major tributaries in the upper Schuylkill River Basin, Pa., during 2005-2007. Hydrograph separation of the daily average streamflow for 10 streamflow-gaging stations was used to evaluate the annual streamflow characteristics for October 2005 through September 2006. Maps showing stream locations and areas underlain by underground mines were used to explain the differences in total annual runoff, base flow, and streamflow yields (streamflow/drainage area) for the gaged watersheds. For example, one stream that had the lowest yield (59.2 cm/yr) could have lost water to an underground mine that extended beneath the topographic watershed divide, whereas the neighboring stream that had the highest yield (97.3 cm/yr) gained that water as abandoned mine drainage (AMD). Although the stream-water chemistry and fish abundance were poor downstream of this site and others where AMD was a major source of streamflow, the neighboring stream that had diminished streamflow met relevant in-stream water-quality criteria and supported a diverse fish community. If streamflow losses could be reduced, natural streamflow and water quality could be maintained in the watersheds with lower than normal yields. Likewise, stream restoration could lead to decreases in discharges of AMD from underground mines, with potential for decreased metal loading and corresponding improvements in downstream conditions.
    [Show full text]