Slope Stabilisation and Soil Nailing with TITAN Micropiles Temporary and Permanent
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GEOTEXTILE TUBE and GABION ARMOURED SEAWALL for COASTAL PROTECTION an ALTERNATIVE by S Sherlin Prem Nishold1, Ranganathan Sundaravadivelu 2*, Nilanjan Saha3
PIANC-World Congress Panama City, Panama 2018 GEOTEXTILE TUBE AND GABION ARMOURED SEAWALL FOR COASTAL PROTECTION AN ALTERNATIVE by S Sherlin Prem Nishold1, Ranganathan Sundaravadivelu 2*, Nilanjan Saha3 ABSTRACT The present study deals with a site-specific innovative solution executed in the northeast coastline of Odisha in India. The retarded embankment which had been maintained yearly by traditional means of ‘bullah piling’ and sandbags, proved ineffective and got washed away for a stretch of 350 meters in 2011. About the site condition, it is required to design an efficient coastal protection system prevailing to a low soil bearing capacity and continuously exposed to tides and waves. The erosion of existing embankment at Pentha ( Odisha ) has necessitated the construction of a retarded embankment. Conventional hard engineered materials for coastal protection are more expensive since they are not readily available near to the site. Moreover, they have not been found suitable for prevailing in in-situ marine environment and soil condition. Geosynthetics are innovative solutions for coastal erosion and protection are cheap, quickly installable when compared to other materials and methods. Therefore, a geotextile tube seawall was designed and built for a length of 505 m as soft coastal protection structure. A scaled model (1:10) study of geotextile tube configurations with and without gabion box structure is examined for the better understanding of hydrodynamic characteristics for such configurations. The scaled model in the mentioned configuration was constructed using woven geotextile fabric as geo tubes. The gabion box was made up of eco-friendly polypropylene tar-coated rope and consists of small rubble stones which increase the porosity when compared to the conventional monolithic rubble mound. -
Mechanically Stabilized Embankments
Part 8 MECHANICALLY STABILIZED EMBANKMENTS First Reinforced Earth wall in USA -1969 Mechanically Stabilized Embankments (MSEs) utilize tensile reinforcement in many different forms: from galvanized metal strips or ribbons, to HDPE geotextile mats, like that shown above. This reinforcement increases the shear strength and bearing capacity of the backfill. Reinforced Earth wall on US 50 Geotextiles can be layered in compacted fill embankments to engender additional shear strength. Face wrapping allows slopes steeper than 1:1 to be constructed with relative ease A variety of facing elements may be used with MSEs. The above photo illustrates the use of hay bales while that at left uses galvanized welded wire mesh HDPE geotextiles can be used as wrapping elements, as shown at left above, or attached to conventional gravity retention elements, such as rock-filled gabion baskets, sketched at right. Welded wire mesh walls are constructed using the same design methodology for MSE structures, but use galvanized wire mesh as the geotextile 45 degree embankment slope along San Pedro Boulevard in San Rafael, CA Geotextile soil reinforcement allows almost unlimited latitude in designing earth support systems with minimal corridor disturbance and right-of-way impact MSEs also allow roads to be constructed in steep terrain with a minimal corridor of disturbance as compared to using conventional 2:1 cut and fill slopes • Geotextile grids can be combined with low strength soils to engender additional shear strength; greatly enhancing repair options when space is tight Geotextile tensile soil reinforcement can also be applied to landslide repairs, allowing selective reinforcement of limited zones, as sketch below left • Short strips, or “false layers” of geotextiles can be incorporated between reinforcement layers of mechanically stabilized embankments (MSE) to restrict slope raveling and erosion • Section through a MSE embankment with a 1:1 (45 degree) finish face inclination. -
Linktm Gabions and Mattresses Design Booklet
LinkTM Gabions and Mattresses Design Booklet www.globalsynthetics.com.au Australian Company - Global Expertise Contents 1. Introduction to Link Gabions and Mattresses ................................................... 1 1.1 Brief history ...............................................................................................................................1 1.2 Applications ..............................................................................................................................1 1.3 Features of woven mesh Link Gabion and Mattress structures ...............................................2 1.4 Product characteristics of Link Gabions and Mattresses .........................................................2 2. Link Gabions and Mattresses .............................................................................. 4 2.1 Types of Link Gabions and Mattresses .....................................................................................4 2.2 General specification for Link Gabions, Link Mattresses and Link netting...............................4 2.3 Standard sizes of Link Gabions, Mattresses and Netting ........................................................6 2.4 Durability of Link Gabions, Link Mattresses and Link Netting ..................................................7 2.5 Geotextile filter specification ....................................................................................................7 2.6 Rock infill specification .............................................................................................................8 -
An Experimental Study of a Nailed Soil Slope: Effects of Surcharge Loading and Nails Characteristics
applied sciences Article An Experimental Study of a Nailed Soil Slope: Effects of Surcharge Loading and Nails Characteristics Mahmoud H. Mohamed 1 , Mohd Ahmed 1,*, Javed Mallick 1 and Pham V. Hoa 2 1 Civil Engineeg Department, College of Engineering, K. K. University, Abha 61421, Saudi Arabia; [email protected] (M.H.M.); [email protected] (J.M.) 2 Ho Chi Minh City Institute, Vietnam Academy of Science and Technology, Ho Chi Minh City 008428, Vietnam; [email protected] * Correspondence: [email protected]; Tel.: +966-172-418-439 Abstract: The earth nailing system is a ground improvement technique used to stabilize earth slopes. The behavior of the earth nailing system is dependent on soil and nailing characteristics, such as the spacing between nails, the orientation, length, and method of installation of nails, soil properties, slope height and angle, and surcharge loading, among others. In the present study, a three-dimensional physical model was built to simulate a soil nailed slope with a model scale of 1:10 with various soil nail characteristics. The simulated models consist of Perspex strips as facing and steel bars as a reinforcing system to stabilize the soil slope. Sand beds in the model were formed, using a sand raining system. The performance of nailed soil slope models under three important nails characteristics, i.e., length, spacing and orientation, with varying surcharge loading were studied. It was observed that there is a reduction in the lateral movement of slope and footing settlements with an increase in length. It was found that the slope face horizontal pressure is non-linear with different nail characteristics. -
Mechanically Stabilized Earth Wall Abutments for Bridge Support
JOINT TRANSPORTATION RESEARCH PROGRAM FHWA/IN/JTRP-2006/38 Final Report MECHANICALLY STABILIZED EARTH WALL ABUTMENTS FOR BRIDGE SUPPORT Ioannis Zevgolis Philippe Bourdeau April 2007 TECHNICAL Summary Technology Transfer and Project Implementation Information INDOT Research TRB Subject Code: 62-6 Soil Compaction and Stabilization April 2007 Publication No.FHWA/IN/JTRP-2006/38, SPR-2855 Final Report Mechanically Stabilized Earth Wall Abutments for Bridge Support Introduction Using MSE structures as direct bridge abutments objective of this study was to investigate on the would be a significant simplification in the design possible use of MSE bridge abutments as direct and construction of current bridge abutment support of bridges on Indiana highways and to systems and would lead to faster construction of lead to drafting guidelines for INDOT engineers highway bridge infrastructures. Additionally, it to decide in which cases such a solution would be would result in construction cost savings due to applicable. The study was composed of two major elimination of deep foundations. This solution parts. First, analysis was performed based on would also contribute to better compatibility of conventional methods of design in order to assess deformation between the components of bridge the performance of MSE bridge abutments with abutment systems, thus minimize the effects of respect to external and internal stability. differential settlements and the undesirable “bump” Consequently, based on the obtained results, finite at bridge / embankment transitions. Cost savings in element analysis was performed in order to maintenance and retrofitting would also result. The investigate deformation issues. Findings MSE walls have been successfully used walls compared to conventional reinforced as direct bridge abutments for more than thirty concrete walls is their ability to withstand years. -
5 Embankment Construction
5 Embankment Construction Rock Embankment Lift Requirements Compaction Methods Shale and Soft Rock Embankments Lift and Compaction Requirements Embankments on Hillsides and Slopes Embankments over Existing Roads Treatment of Existing Roadbeds Density Control Settlement Control Method of Measurement CHAPTER FIVE: EMBANKMENT CONSTRUCTION The purpose of this chapter is to teach the Technician how to properly inspect embankment construction. The knowledge acquired will enable the Technician to implement the skills necessary to insure a good, solid, and lasting embankment which is absolutely necessary for a durable and safe highway. Different classifications of materials encountered, lift requirements, compaction methods, benching, density tests, moisture content, earthwork calculations, and Specifications relating to each particular area of embankment of construction will be discussed. ROCK EMBANKMENT Rock excavation consists of removing rock which cannot be excavated without blasting. This material includes all boulders or other detached stones each having a volume of 1/2 yd3 or more. In a rock fill, the lifts are thick and the voids between the rock chunks are large. Although these voids are filled with fines at the top and sides of the embankment, inside the embankment many large voids remain. If these rock pieces remain intact, deformations are small within the embankment because of the friction and interlocking between pieces. LIFT REQUIREMENTS The requirements for a rock embankment are: 1) No large stones are allowed to nest and are distributed over the area to avoid pockets. Voids are filled with small stones. 2) The final 2 ft of the embankment just below the subgrade elevation is required to be composed of suitable material placed in layers not exceeding 8 in. -
A Qljarter Century of Geotechnical Researcll
A QlJarter Century of Geotechnical Researcll PUBLICATION NO. FHWA-RD-98-139 FEBRUARY 1999 1111111111111111111111111111111 PB99-147365 \c-c.J/t).:.. L~.i' . u.s. D~~~~~~~Co~~~~~erce~ Natronal_Tec~nical Information Service u.s. DepartillCi"li of Transportation Spnngfleld, Virginia 22161 Research, Development & Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 FOREWORD This report summarizes Federal Highway Administration (FHW!\) geotechnical research and development activities during the past 25 years. The report incl!Jde~: significant accomplishments in the areas of bridge foundations, ground improvenl::::nt, and soil and rock behavior. A fourth category included important miscellaneous efrorts tl'12t did not fit the areas mentioned. The report vlill be useful to re~earchers and praGtitior,c:;rs in geotechnology. --------:"--; /~ /1 I~t(./l- /-~~:r\ .. T. Paul Teng (j Director, Office of Infrastructure Research, Development. and Technologv NOTiCE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States G~)\fernm8nt assumes no liahillty for its contt?!nts or use thereof. Thir. report dor~s not constiil)tl":: a standard, specification, or regu!p,tion. The; United States Government does not endorse products or n18;1ufaGturers, Traderrlc,rks or nianufacturers' narl1es appear in thi;-, report only bec:8'I)Se they arc considered essential to tile object of the document. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-RD-98-139 4. Title and Subtitle 5. Report Date A Quarter Century of Geotechnical Research February 1999 6. Performing Organization Code ). -
BRIDGE DESIGN MEMORANDUM – DM0211 TO: RPG Structural
BRIDGE DESIGN MEMORANDUM – DM0211 TO: RPG Structural Engineers Design Consultants DATE: July 7, 2011 RE: SCDOT Geotechnical Design Manual, Version 1.1 Revisions to Chapters 4, 8, 9, 10, and 17 The first paragraph of Section 4.3 of the SCDOT Geotechnical Design Manual shall be amended by inserting the following sentence between the fifth and sixth sentences: Any requests to deviate from these minimum requirements shall be made in writing and shall be forwarded to the PCS/GDS for consideration. All testing shall be to a sufficient depth to effectively evaluate the appropriate limit state conditions and shall fully penetrate any formation that will affect performance (e.g., settlement or slope instability of a roadway embankment or roadway structure). The paragraph in Section 4.3.3 of the Manual shall be deleted and replaced with the following paragraph: All roadway embankments shall have one testing location at least every 500 feet along the roadway embankment. In addition, roadway embankments within 150 feet of a bridge end shall have a minimum of two testing locations; one at the bridge end (which is also used for bridge foundation design) and one at a point 150 feet from the bridge end. The testing location 150 feet from the bridge end must be to a depth that is sufficient to effectively evaluate Extreme Event I limit state for the roadway embankment design. SCDOT Geotechnical Design Manual, Version 1.1 DM0211 Page 2 July 7, 2011 Table 8-11 of the Manual shall be deleted and replaced with the following table: Table 8-11, Roadway Structure Operational Classification (ROC) Roadway Structure Operational Classification Description (ROC) Roadway embankments located within 150 feet of a bridge with OC = I. -
Stability Analysis of Slope Under Different Soil Nailing Parameters Based on the Geostudio
International Journal of IJGE 2015 1(2): 88-92 Geohazards and Environmen t http://ijge.camdemia.ca, [email protected] Available at http://ojs.library.dal.ca/ijge Technical Notes Stability Analysis of Slope under Different Soil Nailing Parameters Based on the GeoStudio Ou-Ling Tang* and Qing-Ming Jiang Chengdu University of Technology, Chengdu 610059, P.R. China Abstract: In order to investigate the influence of different soil nailing parameters on the safety factor of a slope, the slope stability is analyzed by the GeoStudio software with different analysis methods. Soil nailing parameters (such as nail inclination, nail horizontal space, nail diameter and length) that influence the slope stability are analyzed by the Morgenstern-Price method. As the results show, the slope has the highest safety factor when the obliquity of soil nailing is about 15°, the safety factor decreases with the increase of soil-nail horizontal space with an evident acceptable space range of 2 m or less and increases linearly with the increase of soil-nail diameter and length. However when the soil- nail length equals approximately the height of the slope, the safety factor increases slowly. These results can provide a design base for field engineers. Keywords : soil nailing, retaining parameter, safety factor, Morgenstern-Price method 1 Introduction used the FLAC to simulate the change of nail’s Soil nailing is a technique of in-situ ground length, inclination, assigned the way and soil reinforcement which is widely used in the layer parameter to the influence of the horizontal foundations, pit excavations and permanent displacement of foundation pit and the greatest Sun (2007) discussed slopes. -
Coming Full Circle 32 30 Years of Launched Soil Nails 48 Ground Stabilization for Underground Construc
20 Ground Improvement 32 30 years of 48 Ground stabilization for 72 The Rise of UAVs – Coming Full Circle Launched Soil Nails Underground Construction in Geotechnics SEPTEMBER // OCTOBER 2016 Ground Improvement Proudly published by the Geo-Institute of ASCE SEPT/OCT GROUND 2016 IMPROVEMENT THE EVOLUTION OF LAUNCHED SOIL NAILS A 30-Year Retrospective By Colby Barrett, JD, PE, M.ASCE, and Graeme Quickfall Fiberglass launched soil nails used for bluff stabilization in Northern California. 32 GEOSTRATA SEPTEMBER/OCTOBER 2016 aunched soil nails are a unique remedial technology in the geotechnical construction Ltoolbox. These 20-ft-long, 1.5-in.-diameter nails are installed in a single shot using a compressed air “cannon” at velocities of up to 250 miles/hour, and at rates approaching 250 nails/day. The nails reinforce an unstable or potentially unstable soil mass by transferring the nail’s tensile and shear capacity into the sliding soil. However, at least as interesting as the tool itself, is the story behind the development of launched soil nail technology over the past 30 years. This story is not just one of technological innovation, advance- ment, and refinement of a specific piece of construction equipment. It stands as a testament of the innovative, bold, and resourceful char- acter of engineers and practitioners in the geotechnical construction industry. It’s also an insight into how engineers from three continents — often working independently — responded to challenges as diverse as national tragedy, shrinking infrastructure budgets, and the challenges posed by geohazards across the globe, to create a powerful new tool that continues to be refined, updated, and improved to the present day. -
Applications of Geosynthetics in Embankments- a Review
ISSN (Online) 2393-8021 ISSN (Print) 2394-1588 IARJSET International Advanced Research Journal in Science, Engineering and Technology nCORETech LBS College of Engineering, Kasaragod Vol. 5, Special Issue 1, Feburary 2016 Applications of Geosynthetics in Embankments- A Review Ankita I K1, Devika G2, Lakshmi Priya K3, Remya R4, Jayamohan J5 Third Year Students, Civil Engineering Dept, LBS Institute of Technology for Women, Thiruvananthapuram, India1,2,3,4 Associate Professor, Civil Engineering Dept, LBS Institute of Technology for Women, Thiruvananthapuram, India5 Abstract: Construction and maintenance of embankments form an integral part of every highway or railway projects which are keystones of the economy of our nation. In many locations good soil will not be available for the foundation and also for the construction of embankment. In such cases reinforcing soil with geosynthetic is a very effective and economic option. This paper thoroughly reviews the improvements in load settlement behaviour of embankments attained by inclusion of various forms of natural and polymeric geosynthetics. It is seen from literature that natural geosynthetics made with coir or jute can also be effectively used for improving the durability and stability of embankments. Keywords: Embankments, Natural geosynthetics, Polymeric geosynthetics, Stability of embankments. I. INTRODUCTION Geosynthetics have become well established construction materials for geotechnical and environmental applications in most parts of the world. Geosynthetic-reinforced structures have been used worldwide due to their successful performance and economic efficiency. Over the years, these products have helped designers and contractors to solve several types of engineering problems where the use of conventional construction materials would be restricted or considerably more expensive. -
Slope Stabilization and Repair Solutions for Local Government Engineers
Slope Stabilization and Repair Solutions for Local Government Engineers David Saftner, Principal Investigator Department of Civil Engineering University of Minnesota Duluth June 2017 Research Project Final Report 2017-17 • mndot.gov/research To request this document in an alternative format, such as braille or large print, call 651-366-4718 or 1- 800-657-3774 (Greater Minnesota) or email your request to [email protected]. Please request at least one week in advance. Technical Report Documentation Page 1. Report No. 2. 3. Recipients Accession No. MN/RC 2017-17 4. Title and Subtitle 5. Report Date Slope Stabilization and Repair Solutions for Local Government June 2017 Engineers 6. 7. Author(s) 8. Performing Organization Report No. David Saftner, Carlos Carranza-Torres, and Mitchell Nelson 9. Performing Organization Name and Address 10. Project/Task/Work Unit No. Department of Civil Engineering CTS #2016011 University of Minnesota Duluth 11. Contract (C) or Grant (G) No. 1405 University Dr. (c) 99008 (wo) 190 Duluth, MN 55812 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Minnesota Local Road Research Board Final Report Minnesota Department of Transportation Research Services & Library 14. Sponsoring Agency Code 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155-1899 15. Supplementary Notes http:// mndot.gov/research/reports/2017/201717.pdf 16. Abstract (Limit: 250 words) The purpose of this project is to create a user-friendly guide focusing on locally maintained slopes requiring reoccurring maintenance in Minnesota. This study addresses the need to provide a consistent, logical approach to slope stabilization that is founded in geotechnical research and experience and applies to common slope failures.