Pupal Traits and Adult Emergence in the Pine Processionary Moth Thaumetopoea Pityocampa (Lepidoptera: Notodontidae) Are Affected by Pupal Density

Total Page:16

File Type:pdf, Size:1020Kb

Pupal Traits and Adult Emergence in the Pine Processionary Moth Thaumetopoea Pityocampa (Lepidoptera: Notodontidae) Are Affected by Pupal Density EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 116: 320–329, 2019 http://www.eje.cz doi: 10.14411/eje.2019.035 ORIGINAL ARTICLE Pupal traits and adult emergence in the pine processionary moth Thaumetopoea pityocampa (Lepidoptera: Notodontidae) are affected by pupal density CARMELO P. BONSIGNORE 1, FRANCESCO MANTI 1, ELVIRA CASTIGLIONE 1 and ANDREA BATTISTI 2 1 Laboratorio di Entomologia ed Ecologia Applicata – Dipartimento PAU, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Salita Melissari s.n, 89100, Italy; e-mails: [email protected], [email protected], [email protected] 2 DAFNAE, University of Padova, Agripolis, 35020 Legnaro, Italy; e-mail: [email protected] Key words. Lepidoptera, Notodontidae, Thaumetopoea pityocampa, cocoon, gregariousness, pupal density, pupal size, emergence, Pinus Abstract. The expectation is that the phenology of an herbivore is infl uenced by abiotic factors and its own population density dur- ing development. In this study, we investigated how the pupal density affected the pupal traits and emergence of Thaumetopoea pityocampa moths over a period of 3 years in two clearings in a pine forest. The pupae were larger in years when the pupal density was high and in the clearing exposed to less solar radiation. There was no relationship between the time of pupation and pupal size. Large pupae were positively correlated with an early emergence of adult moths and a longer period of adult emergence. Up to 13.9% of the pupae developed without cocoons, especially in years when they were abundant, but this did not affect the emer- gence of the moths. Incidence of pupal diapause was density-dependent and only occurred at a low level in dense populations. Overall, our results indicate that gregariousness confers important fi tness-related advantages in this species. INTRODUCTION spin a silken cocoon in which they pupate. The duration of In some Lepidoptera, such as the pine processionary the period from larval emergence to pupation varies from moth (PPM; Thaumetopoea pityocampa [Denis & Schif- year to year and site to site, and the total period may be up fermüller, 1775]), the pupae develop in the soil close to to 2 months (Demolin, 1971; Buxton, 1990; Bonsignore the trees that were inhabited by the larvae. The PPM is a et al., 2015; Robinet et al., 2015). The larvae select sites univoltine species and is widespread in the Mediterranean, well exposed to sun, e.g., the edge of a forest, where the including southwest Europe, the Balkans and North Africa thermal conditions and/or the microclimatic conditions in (Roques, 2015). This species is one of the most important the soil are favourable (Dulaurent-Mercadal et al., 2011; pests of various types of pines and cedars, and can hin- Samalens & Rossi, 2011). The habitat infl uences pupation der the growth of infested trees (Jacquet et al., 2012). The success and survival in PPMs (Markalas, 1989; Dulaurent- spread of this pest into new areas requires the presence of Mercadal et al., 2011; Torres-Muros et al., 2017), and the appropriate host plants and is facilitated by climate warm- pupae suffer additional mortality due to natural enemies, ing or a high population density (Hodar & Zamora, 2004; such as parasitoids (Bonsignore et al., 2015), predacious Battisti et al., 2005; Castagneyrol et al., 2016). birds (Barbaro & Battisti, 2011) and entomopathogenic Pine processionary moth lays its eggs on pine needles fungi (Er et al., 2007). The adults emerge during summer, during summer. The eggs hatch 30 to 45 days later (Aydın but some pupae can spend 2 or more years in diapause and et al., 2018). Thus, the larvae feed throughout autumn and the adults generally disperse over short distances (Bon- during winter and spring depending on temperature. The signore & Manti, 2013; Roques, 2015). larvae are gregarious from early on in their development Pupation has a physiological basis as it is associated with and spin conspicuous tents in tree tops. After completing reaching a particular size (D’Amico et al., 2001; David- their feeding, generally during late winter, larvae typical- owitz et al., 2003). Traits such as pupal weight or size are ly form a procession in which they walk head to tail in a considered important because they can affect the longevity column to reach their pupation sites on the ground. They of females and fi tness of adults (Calvo & Molina, 2005; then burrow into the soil to a depth of a few centimeters, Fantinou et al., 2008). For example, pupal size may affect Final formatted article © Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice. An Open Access article distributed under the Creative Commons (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 320 Bonsignore et al., Eur. J. Entomol. 116: 320–329, 2019 doi: 10.14411/eje.2019.035 male phenotype, which could infl uence male mating suc- of pupae in each clearing) in order to obtain a better un- cess (Fox et al., 1995). The relationships between pupal derstanding of development during the pupal stage and its traits and pupal density in gregarious Lepidoptera may effect on the adult phenology of PPM. vary according to the population dynamics of a species and are not easy to understand. Pine processionary moth MATERIALS AND METHODS infestations are not evenly distributed within pine forests Experimental site and mainly occur at the edges of pine stands (Samalens & Two pupation areas located in two clearings in a Pinus nigra Rossi, 2011). Several studies have shown that the adults forest in Aspromonte National Park, Calabria (South Italy) are more likely to oviposit near the edges of pine stands (38°04´10˝N and 15°49´38˝E, at 1200 m above sea level) were (Samalens & Rossi, 2011) than more than 25 m from the studied for three years (2010–2012). The vegetation in both edges (Parlak et al., 2019). Thus, clearings within forests clearings (designated as A and B) consisted of grassland and low 2 are suitable sites for PPMs as they create edges and open shrubs. Area A (ca 175 m ) had a south-easterly aspect and a slope of 5%. Area B (about 403 m2) had a south-westerly aspect and a areas where their processioning larvae can pupate in sun- slope of 4%. The distance between the two sites was about 70 exposed soils. Pine forests with suitable pupation sites for m and they were also separated by a dirt road between the pine supporting large aggregations of PPM occur in southern trees, which limited the movement of larvae between the two Italy (Bonsignore et al., 2011, 2015). areas (Fig. 1). The soil in areas A and B did not differ in terms of The relationships between pupal traits, population den- pH (5.8–6.0) and texture (sand 88%, silt 5–9%, clay 3–7% and sity and adult phenology in PPM need to be determined in total limestone 1%) and the average organic matter content in the order to better understand the mechanisms that determine top 15-cm layer was 22.4–26.4%. the relationships between their development and environ- The temperatures during the period of the study were obtained mental variables. Over a period of 3 years we investigated from a weather station (ARPACAL, Regional Agency for Envi- ronmental Protection of Calabria) located close to the sites stud- two clearings within a pine forest where pupae developed. ied (see Supplementary Fig. S1). Microclimatic differences be- We studied PPM from when the larvae pupated in the soil tween the two areas, including solar radiation, temperature and until the moths emerged. We aimed to determine whether soil moisture, were recorded for one season (from April 1 to July pupal traits such as size and presence or absence of a co- 30, 2014, while pupae were in the soil) at an interval of 15-min coon varied in time and with population density (number at a height of 1.80 m above the ground and 10 cm deep in the Fig. 1. Map showing the geographical locations of areas A and B in which the marked colonies pupated. Circles of different colours in boxes indicate the fl ags used for identifying the different pupal colonies. 321 Bonsignore et al., Eur. J. Entomol. 116: 320–329, 2019 doi: 10.14411/eje.2019.035 soil using Micro Station HOBO® data loggers (Onset Computer mean pupa length was analyzed using Spearman’s correlation co- Corporation, Bourne, USA). The assessment of solar radiation effi cient. Pupal length and weight were analyzed independently showed that area A was less exposed than area B. The average using ANOVA. The factors included in the full factorial model solar radiation (day and night) (W/m2) for area A was 72.69 and included the year and clearing. Linear regression was used to de- that for area B was 193.30. Area A was cooler and moister than termine the relationship between the mean pupal length and the area B, with an average temperature of 13.95°C for area A and total number of individuals that pupated on each date. 14.57°C for area B (see Supplementary Fig. S2) and the soil The percentage of pupae without cocoons was calculated for moisture (volume of water per volume of soil, m³/m³) in the fi rst each year and compared with the density of individuals at each 10 cm was 0.1529 for area A and 0.062 for area B. pupation site. For all years, the percentages were compared using a chi-squared (χ2) test of the equality of distributions. The weights Survey of pupation sites and pupae collection of the cocoons in different years were compared using ANOVA.
Recommended publications
  • Immediate and Delayed Mortality of the Pine Processionary Moth Treated by Bacillus Thuringiensis Var
    Turkish Journal of Forestry | Türkiye Ormancılık Dergisi 2016, 17(Special Issue): 76-79 | Research article (Araştırma makalesi) Immediate and delayed mortality of the pine processionary moth treated by Bacillus thuringiensis var. kurstaki 3a 3b in the sub-Saharian pine reforestations Mohamed Zamouma,*, Jean-Claude Martinb, Atia Bensidic, Rachid Bahmaned Abstract: In the reforestations of Pinus halepensis, situated in the Algerian sub-Saharian region, 1 500 hectares were treated by an aerial application against the third and fourth larval stage of the pine processionary moth. The microbiological insecticide used contained Bacillus thuringiensis var. kurstaki 3a 3b. The immediate mortality was evaluated by sampling colonies of caterpillars 7 and 14 days after the application of the treatment, and the delayed mortality was determined firstly for caterpillars after 80 and 100 days in the field and secondly for pupae by collecting and rearing surviving caterpillars to Btk at the end of the larval cycle during the nomadic period. The mortality rate of the caterpillars increased between 7 and 100 days and averaged 93 % in the treated zone. The caterpillars exposed to the treatment were more contaminated by Beauveria bassiana and infested by the larval- pupal parasitoïds Erigorgus femorator Aub. (Hym, Ichneumonidae) and Phryxe caudata Rond. (Dip., Tachninidae). The sex ratio of surviving moths was 1.7 in favour of males which suggests that female caterpillars are more vulnerable to Btk. Keywords: Thaumetopoea pityocampa, Parasitism, Insect control, Pinus halepensis Aşağı Sahra’da çam ağaçlandırma sahalarında Bacillus thuringiensis var. kurstaki 3a 3b ile ilaçlanan çam kese böceklerinin anında ve geç ölümü Özet: Cezayir’de Aşağı Sahra bölgesinde bulunan ağaçlandırılmış Pinus halepensis ormanında 1500 hektarlık alana çam kese böceğinin üçüncü ve dördüncü larva evresine karşı havadan ilaçlama uygulaması yapılmıştır.
    [Show full text]
  • Micro-Evolutionary Change and Population Dynamics of a Brood Parasite and Its Primary Host: the Intermittent Arms Race Hypothesis
    Oecologia (1998) 117:381±390 Ó Springer-Verlag 1998 Manuel Soler á Juan J. Soler á Juan G. Martinez Toma sPe rez-Contreras á Anders P. Mùller Micro-evolutionary change and population dynamics of a brood parasite and its primary host: the intermittent arms race hypothesis Received: 7 May 1998 / Accepted: 24 August 1998 Abstract A long-term study of the interactions between Key words Brood parasitism á Clamator glandarius á a brood parasite, the great spotted cuckoo Clamator Coevolution á Parasite counter-defences á Pica pica glandarius, and its primary host the magpie Pica pica, demonstrated local changes in the distribution of both magpies and cuckoos and a rapid increase of rejection of Introduction both mimetic and non-mimetic model eggs by the host. In rich areas, magpies improved three of their defensive Avian brood parasites exploit hosts by laying eggs in mechanisms: nest density and breeding synchrony in- their nests, and parental care for parasitic ospring is creased dramatically and rejection rate of cuckoo eggs subsequently provided by the host. Parasitism has a increased more slowly. A stepwise multiple regression strongly adverse eect on the ®tness of hosts, given that analysis showed that parasitism rate decreased as host the young parasite ejects all host ospring or outcom- density increased and cuckoo density decreased. A lo- petes them during the nestling period (Payne 1977; gistic regression analysis indicated that the probability Rothstein 1990). Thus, there is strong selection acting on of changes in magpie nest density in the study plots was hosts to evolve defensive mechanisms against a brood signi®cantly aected by the density of magpie nests parasite which, in turn, will develop adaptive counter- during the previous year (positively) and the rejection defences.
    [Show full text]
  • Climate-Related Transboundary Pests and Diseases
    HLC/08/BAK/4 CLIMATE-RELATED TRANSBOUNDARY PESTS AND DISEASES TECHNICAL BACKGROUND DOCUMENT FROM THE EXPERT CONSULTATION HELD ON 25 TO 27 FEBRUARY 2008 FAO, ROME CLIMATE CHANGE AND PEST DISEASES The movement of plant pests, animal diseases and invasive alien aquatic organisms across physical and political boundaries threatens food security and creates a global public concern across all countries and all regions. Countries allocate large resources to limit the spread and control of transboundary pests and diseases 1 such as avian influenza, foot-and-mouth disease and locust. They also adapt animal and plant health services and activities and cooperate regionally and globally for prevention, early warning and control. There is clear evidence that climate change is altering the distribution, incidence and intensity of animal and plant pests and diseases such as Bluetongue, a sheep disease that is moving north into more temperate zones of Europe. Cannon (see Annex 1) found examples of plant pests whose distribution is shifting in the United Kingdom and other parts of Europe, most likely due to climatic factors. For example, migrant moths of the Old World bollworm ( Helicoverpa armigera) had a phenomenal increase in the United Kingdom from 1969-2004 and there have been outbreaks at the northern edge of its range in Europe; cottony cushion scale ( Icerya purchasi) populations appear to be spreading northwards perhaps as a consequence of global warming; and cottony camellia scale ( Pulvinaria – Chloropulvinaria – floccifera) has become much more common in the United Kingdom, extending its range northwards in England and increasing its host range in the last decade or so, which is almost certainly in response to climate change.
    [Show full text]
  • Natural Biological Control of the Pine Processionary Moth Thaumetopoea Pityocampa (Den
    R Agricultural and Forest Entomology (1999) 1, 27±31 Natural biological control of the pine processionary moth Thaumetopoea pityocampa (Den. & Schiff.) by the Argentine ant Linepithema humile (Mayr) in Portugal M. J. Way,1 M. R. Paiva2 and M. E. Cammell1 1Imperial College of Science, Technology and Medicine, Silwood Park, Ascot, Berks SL5 7PY, U.K. and 2Universidade Nova de Lisboa, FCT, P-2825 Monte de Caparica, Portugal Abstract 1 Defoliation by larvae of the pine processionary moth, Thaumetopoea pityocampa, is negligible in stands of Pinus pinaster colonized by the Argentine ant Line- pithema humile which preys ®ercely on the young moth larvae. In contrast, such damage is widespread where pine plantations are colonized by native ants, pre- dominantly Tapinoma nigerrimum and Lasius niger, which seemingly disregard the larvae. 2 Where L. humile- and native ant-occupied sectors adjoin, there is a 20±50 m overlap in the transition area between L. humile- and native ant-occupied pines. This was most evident in a > 500 ha plantation where there was severe or very severe T. pityocampa attack in native ant sectors contrasting with none in adjoin- ing L. humile sectors. 3 Predation by L. humile is no doubt enhanced by its existence as super-colonies over very large areas, by its foraging activity and recruitment on trees throughout the time when T. pityocampa and other prey are present, and by honeydew- producing Homoptera which help retain foraging L. humile workers in pine tree crowns. 4 The role of L. humile could be enhanced by cultivations that disturb the soil and restrain ground vegetation.
    [Show full text]
  • Università Degli Studi Di Padova
    UNIVERSITÀ DEGLI STUDI DI PADOVA DEPARTMENT OF LAND, ENVIRONMENT AGRICULTURE AND FORESTRY DEPARTMENT OF AGRONOMY, FOOD, NATURAL RESOURCES, ANIMALS AND ENVIRONMENT MASTER THESIS IN FOREST AND ENVIRONMENTAL SCIENCES PROTEINS ASSOCIATED WITH THE URTICATING SETAE OF THE PINE PROCESSIONARY MOTH Thaumetopoea pityocampa (Denis & Schiffermüller 1775) Supervisor: Prof. Andrea Battisti Co-supervisor: Dr. Laura Berardi Candidate: Ettore Mitali Enrollment n. 1060875 Academic Year 2014 – 2015 2 To my mother Vanda who, alone, has raised two children thanks to her infinite love. Despite some difficulties, she has demonstrated that the affection in all its expression, is the winning key to the achievement of many objectives, including this work. A mia madre Vanda che, da sola, ha cresciuto due figli grazie al suo amore infinito. Nonostante alcune difficoltà, ha dimostrato che l'affetto, in ogni sua espressione, è la chiave vincente per il raggiungimento di molti obiettivi, incluso il presente lavoro. 3 4 Contents Abstract……………………………………………………………………………………… 07 Riassunto…………………………………………………………………………………… 08 1. Introduction…………………………………………………………………………….... 09 1.1 The processionary moths………………………………………………………… 09 1.2 The urticating setae of the processionary moths............................................. 09 1.2.1 True setae description............................................................................ 11 1.2.2 Ecological role of true setae................................................................... 13 1.2.3 Size and dispersion dynamics of true setae........................................... 13 1.2.4 Medical and veterinary impact of urticating setae.................................. 16 1.3 Proteins associated with the urticating setae of the pine processionary moth 17 1.3.1 Thaumetopoein protein (Lamy et al. 1985)............................................. 17 1.3.2 Tha p 1 (Moneo et al. 2003)................................................................... 17 1.3.3 Tha p 2 (Rodriguez-Mahillo et al. 2012)…………………………………...17 1.3.4 Tha p 3 (Moneo et al.
    [Show full text]
  • Thaumetopoea Pityocampa
    O R E ST E ST PE C IE S R O FIL E F P S P November 2007 Thaumetopoea pityocampa (Denis & Schiffermüller, 1775) Other scientific names: Bombyx pityocampa Denis & Schiffermüller; Cnethocampa pityocampa; Thaumetopoea wilkinsoni Tams Order and Family: Lepidoptera: Thaumetopoeidae Common names: pine processionary caterpillar; forest tent caterpillar The pine processionary caterpillar is considered the most destructive forest insect pest throughout the Mediterranean Basin. It is a tent-making caterpillar that feeds gregariously and defoliates various species of pine and cedar. Note the taxonomic status of this pest is in question. In Cyprus for example, Thaumetopoea wilkinsoni is the preferred scientific name though it is considered an eastern Mediterranean form (race) of Thaumetopoea pityocampa. Pine processionary caterpillar (Photos: Bugwood.org – J.H. Ghent, USDA Forest Service; W . Ciesla, Forest Health M anagement International) DISTRIBUTION Native: southern Europe, Near East, North Africa. This pest is found in almost all the countries around the Mediterranean Sea with the exception of Egypt and Libya. Introduced: No records to date. IDENTIFICATION Eggs are laid in cylindrical egg masses that range in length from 4 to 5 cm and are covered in pale buff scales which conceal them and mimic the pine shoots (Dajoz, 2000). The larvae develop through five instars, recognized by differences in head capsule size. First instar larvae have dull green bodies. After the second moult, the caterpillar assumes its definitive appearance and the paired reddish dorsal hair patches on each body segment are evident (EPPO/CABI, 1997). Typically, they are darker in colder areas varying from dull bluish-grey to black.
    [Show full text]
  • Why Do Pine Processionary Caterpillars Thaumetopoea Pityocampa (Lepidoptera, Thaumetopoeidae) Live in Large Groups? an Experimental Study
    Ann. Zool. Fennici 40: 505–515 ISSN 0003-455X Helsinki 15 December 2003 © Finnish Zoological and Botanical Publishing Board 2003 Why do pine processionary caterpillars Thaumetopoea pityocampa (Lepidoptera, Thaumetopoeidae) live in large groups? An experimental study Tomás Pérez-Contreras1*, Juan J. Soler1 & Manuel Soler2 1) Estación Experimental de Zonas Áridas (CSIC), General Segura 1, 04001-Almería, Spain (*e-mail: [email protected]) 2) Departamento de Biología Animal y Ecología, Campus Universitario de Fuentenueva, Facultad de Ciencias, 18071-Granada, Spain Received 10 Mar. 2003, revised version received 31 July 2003, accepted 6 Aug. 2003 Pérez-Contreras, T., Soler, J. J. & Soler, M. 2003: Why do pine processionary caterpillars Thaume- topoea pityocampa (Lepidoptera, Thaumetopoeidae) live in large groups? An experimental study. — Ann. Zool. Fennici 40: 505–515. Optimal group size of gregarious larvae is the result of a trade-off between the costs and benefi ts undergone by individuals living in groups of different sizes. Thus, females should adjust their clutch size to an optimal-minimum group size. In this study, we experimentally manipulated the size of colonies of pine processionary caterpillars, a capital breeder species, to test the hypothesis that a large group size enhances larval growth and survival. We also explored whether this relationship fi ts a quadratic or an asymptotic curve and estimated an optimum or a minimal-optimum group size. The results showed signifi cant differences in the fi nal larval sizes in the various treatments, being greater in the larger groups. In addition, according to the existence of a mini- mal-optimum group size, we found that a Piecewise Linear Regression fi ts the above relationship better than does a linear regression.
    [Show full text]
  • Viruses 2015, 7, 456-479; Doi:10.3390/V7020456 OPEN ACCESS
    Viruses 2015, 7, 456-479; doi:10.3390/v7020456 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Article In Search of Pathogens: Transcriptome-Based Identification of Viral Sequences from the Pine Processionary Moth (Thaumetopoea pityocampa) Agata K. Jakubowska 1, Remziye Nalcacioglu 2, Anabel Millán-Leiva 3, Alejandro Sanz-Carbonell 1, Hacer Muratoglu 4, Salvador Herrero 1,* and Zihni Demirbag 2,* 1 Department of Genetics, Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain; E-Mails: [email protected] (A.K.J.); [email protected] (A.S.-C.) 2 Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey; E-Mail: [email protected] 3 Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental “La Mayora”, Algarrobo-Costa, 29750 Málaga, Spain; E-Mail: [email protected] 4 Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (S.H.); [email protected] (Z.D.); Tel.: +34-96-354-3006 (S.H.); +90-462-377-3320 (Z.D.); Fax: +34-96-354-3029 (S.H.); +90-462-325-3195 (Z.D.). Academic Editors: John Burand and Madoka Nakai Received: 29 November 2014 / Accepted: 13 January 2015 / Published: 23 January 2015 Abstract: Thaumetopoea pityocampa (pine processionary moth) is one of the most important pine pests in the forests of Mediterranean countries, Central Europe, the Middle East and North Africa. Apart from causing significant damage to pinewoods, T.
    [Show full text]
  • Eliminating the Devastating Effects of Pine Processionary Moths (PPM) Project
    Eliminating The Devastating Effects of Pine Processionary Moths (PPM) Project Kusadasi and Kulturpark Rotary Clubs are located nearby the ancient city of Ephesus and the House of Virgin Mary. This area gets millions of visitors from all over the world throughout the year. We have observed increasing numbers of deteriorated pine trees in the recent years in this area. As a result of our contacts with the Ministry of Agriculture and Forest local authority, we were informed that this was another devastating local result of global warming, caused by the overgrowth of pine processionary moth (PPM). You may have noticed this moth with its cotton-like white caterpillar bags on pine trees in your area as well. The height increments of the trees are damaged by this pest and a loss in volume occurs, eventually resulting in a burnt like appearances. The damage continues intensively for a few years, weakening the tree and making it vulnerable for other secondary pests. Contact with the hair of the caterpillar causes skin rashes, eye irritations and allergic reactions in human. These cause serious problems in such a holy and historical site not only as an environmental and visual catastrophe but also for human health. Approximately 80.000 acres of forest is affected annually in Turkey. The local authority can only focus on the 2 % of this area. The implementation area of our project is app. 9000 acres. The duration of the effect is expected to be at least 10 years. We prepared our Project to control PPM via natural and biological precautions and prevent its potential danger for the environment by three means: 1.
    [Show full text]
  • Great Tits (Parus Major) Foraging for Caterpillars Contribute to Biological Control in Apple Orchards
    Great tits (Parus major) foraging for caterpillars contribute to biological control in apple orchards Mols, Christine Michaela Maria Great tits (Parus major) foraging for caterpillars contribute to biological control in apple orchards/ Mols, Christine Michaela Maria .- Utrecht: Universiteit van Utrecht, Faculteit Biologie. Thesis Utrecht University. – with ref.- with a summary in Dutch. ISBN 90-393-3273-8 © 2003 C.M.M. Mols Keywords: biological pest control / apple orchards / caterpillars / birds / Parus major / damage reduction Printed by Ponsen & Looijen BV, Wageningen, The Netherlands Great tits (Parus major) foraging for caterpillars contribute to biological control in apple orchards Koolmezen dragen bij aan biologische bestrijding van rupsen in appelboomgaarden (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Utrecht op gezag van de Rector Magnificus, Prof. Dr. W.H. Gispen, ingevolge het besluit van het College van Promoties in het openbaar te verdedigen op maandag 24 februari 2003 des middags te 16:15 uur door Christine Michaela Maria Mols geboren op 15 april 1971 te Tilburg Promotor: Prof. dr. A.J. van Noordwijk Nederlands Instituut voor Ecologie (KNAW), Heteren Faculteit Biologie, Universiteit Utrecht Copromotor: Dr. M.E. Visser Nederlands Instituut voor Ecologie (KNAW), Heteren The research presented in this thesis was carried out at the centre of Terrestrial Ecology of the Netherlands Instituut of Ecology (KNAW), Heteren in cooperation with Plant Research International,
    [Show full text]
  • Bats from Different Foraging Guilds Prey Upon the Pine Processionary Moth
    Bats from different foraging guilds prey upon the pine processionary moth Inazio Garin1, Joxerra Aihartza1, Urtzi Goiti1, Aitor Arrizabalaga-Escudero1, Jesús Nogueras2 and Carlos Ibáñez2 1 Zoologia eta Animali Zelulen Biologia Saila, UPV/EHU, Leioa, The Basque Country 2 Evolutionary Ecology Department, Estación Biológica de Doñana, CSIC, Seville, Spain ABSTRACT Outbreaks of the processionary moth Thaumetopoea pityocampa (Denis & Schiffer- müller, 1775), a forest pest from the Palearctic, are thought to induce a behavioral response of bats, but up to now the moth has been seldom identified as bats' prey. Studies on bat diets suggest moths with cyclical outbreaks attract a wide array of bat species from different foraging guilds. We test whether bats feed upon T. pityocampa in the Iberian Peninsula irrespective of the predator's ecological and morphological features. We found that seven out of ten bat species belonging to different foraging guilds contained T. pityocampa DNA in their faeces and no difference was found in the foraging frequency among foraging guilds. A different size of the typical prey or the lack of fondness for moths can explain the absence of the pest in some bat species. Moreover, the intraspecific foraging frequency of T. pityocampa also changed with the sampling site likely representing differential availability of the moth. Lack of information on flight and dispersal behavior or the tympanate nature of the adult moth complicates understanding how different foraging guilds of bats prey upon the same prey. Our data suggests that T. pityocampa is a remarkable food source for many thousands of individual bats in the study area and we anticipate that more bats besides the species studied here are consuming this moth.
    [Show full text]
  • Behaviour Patterns of the Pine Processionary Moth (Thaumetopoea Wilkinsoni Tams; Lepidoptera: Thaumetopoeidae)
    American Journal of Agricultural and Biological Sciences 1 (1): 01-05, 2006 ISSN 1557-4989 © 2006 Science Publications Behaviour Patterns of the Pine Processionary Moth (Thaumetopoea wilkinsoni Tams; Lepidoptera: Thaumetopoeidae) Ahmad Houri and Dany Doughan Natural Science Division, Lebanese American University, P.O. Box:13-5053 Chouran, Beirut 1102-2801, Lebanon Abstract: Thaumetopoea wilkinsoni is a serious pest of pine trees, especially the wide-spread Pinus brutia. This infestation has a significant economic impact both in the loss of forest wood growth and in medical expenses for treating related human diseases. This paper presents a detailed study of the behaviour patterns of the moth stage in an attempt to identify best control methods. Several key observations are made towards the moth emergence timing and period of nocturnal activity. Specifically, 92% of the moths were found to be most active between midnight and 6:00 a.m. Effects of light traps vs. pheromone traps are analyzed and light traps were found to be 15 times more efficient. In addition, 84% of the captured moths were males and only 16% were females. Several attempts were made to lure females into traps but were mostly unsuccessful. Finally, moth emergence in relevance to various weather conditions was analyzed and a clear relationship was established where rain appeared to motivate moth emergence. This work has been done over the span of two consecutive years. A clear mode of action is deduced for the best methods of moth control. Key words: Pinus brutia, pheromone, light traps, rain INTRODUCTION Life cycle: T. wilkinsoni passes through several stages in its life.
    [Show full text]