A Primer on Winter, Ice, and Fish

Total Page:16

File Type:pdf, Size:1020Kb

A Primer on Winter, Ice, and Fish VOL 36 NO 1 JANUARY 2011 Fish News Legislative Update Fisheries Journal Highlights FisheriesAmerican Fisheries Society • www.fi sheries.org Calendar Job Center AA PrimerPrimer onon Winter,Winter, Ice,Ice, andand Fish:Fish: WhatWhat FisheriesFisheries BiologistsBiologists ShouldShould KnowKnow aboutabout WinterWinter IceIce ProcessesProcesses andand Stream-dwellingStream-dwelling FishFish Human Population Increase, Economic Growth, and Fish Conservation: Collision Course or Savvy Stewardship Fisheries • v o l 36 n o 1 • j a n u a r y 2011 • w w w .f i s h e r i e s .o r g 1 Visible Tags for Batch A and Individual ID Internal tags can have significant advantages over external tags in terms of retention and reduced effects on the host. However, most internal tags lack the advantage of being visible. Northwest Marine Technology offers two types of tags that are implanted under clear or transparent tissue so that they remain externally visible. Visible Implant Elastomer Tags (VIE) are injected as a liquid that cures to a pliable solid. VIE is available in ten colors (6 fluorescent and 4 non- fluorescent). While VIE is most commonly used for batch B C identification, many codes can be generated by combining tag colors and locations. Our new VI Alpha Tags are used for individual identification. They are 1.2 mm x 2.7 mm and are available with black lettering on fluorescent red, yellow, orange, or green © J. Losos backgrounds. Hundreds of species are successfully tagged with D VIE and VI Alpha Tags. Readability and detection of both tags are enhanced by fluorescing them with the VI Light. Please contact NMT Biological Services to learn more. Photos: (A) VI Alpha Tags provide individual identification and remain visible through the clear adipose eye tissue of this trout. (B) Combining tag colors and locations produces a coding scheme using VIE, as in this burbot, which is fluoresced with the VI Light. (C) Reptiles and amphibians are commonly identified with VIE and VI Alpha. (D) VIE identifies families for shrimp broodstock development. Northwest Marine Technology, Inc. Northwest Marine Technology, Inc. www.nmt.us Shaw Island, Washington, USA Corporate Office Biological Services 360.468.3375 [email protected] 360.596.9400 [email protected] 2 Fisheries • v o l 36 n o 1 • j a n u a r y 2011 • w w w .f i s h e r i e s .o r g VOL 36 NO 1 FisheriesJANUARY 2011 AMERICAN FISHERIES SOCIETY • WWW.FISHERIES.ORG EDITORIAL / SUBSCRIPTION / CIRCULATION OFFICES 5410 Grosvenor Lane, Suite 110 • Bethesda, MD 20814-2199 301/897-8616 • fax 301/897-8096 • main@fi sheries.org The American Fisheries Society (AFS), founded in 1870, is the oldest and largest professional society representing fi sheries scientists. The AFS promotes scientifi c research and enlightened management of aquatic resources for optimum use and enjoyment by the public. It also encourages comprehensive education of fi sheries scientists and continuing on-the-job training. AFS OFFICERS FISHERIES STAFF EDITORS PRESIDENT SENIOR EDITOR SCIENCE EDITORS Wayne A. Hubert Ghassan “Gus” N. Madeleine Hall-Arber Rassam Ken Ashley Contents PRESIDENT ELECT Doug Beard William L. Fisher DIRECTOR OF PUBLICATIONS Ken Currens COLUMN: Karin E. Limburg, Robert M. Hughes, FIRST Aaron Lerner Steven Cooke VICE PRESIDENT Deirdre M. Kimball 4 PRESIDENT’S HOOK Donald C. Jackson, and Brian Czech MANAGING EDITOR Dennis Lassuy SECOND New Frontiers in Fisheries Sarah Gilbert Fox Allen Rutherford VICE PRESIDENT Management and Ecology: Robert Hughes ABSTRACT Jack Williams COLUMN: TRANSLATION BOOK REVIEW Leadership in Collaboration and PAST PRESIDENT Pablo del Monte Luna 36 STUDENTS’ ANGLE Donald C. Jackson EDITORS Coalition Francis Juanes The Gulf Oil Spill: What it means to EXECUTIVE DIRECTOR Ben Letcher AFS leadership in collaboration Ghassan “Gus” N. Rassam Keith Nislow and coalition is exemplifi ed by our the Gulf and the future of fi sheries biology students Dues and fees for 2011 are: involvement in the Coalition of Natural $80 in North America ($95 elsewhere) for regular members, Resource Societies. C. Nate Cathcart and Elliot M. Broder $20 in North America ($30 elsewhere) for student members, and $40 ($50) retired members. Wayne Hubert Fees include $19 for Fisheries subscription. INTERVIEW: Nonmember and library subscription rates are $157. Price per copy: $3.50 member; $6 nonmember. COLUMN: 38 FELIPE AMEZCUA 5 DIRECTOR’S LINE Fisheries (ISSN 0363-2415) is published monthly by the President of the International American Fisheries Society; 5410 Grosvenor Lane, Plus ça change …. Fisheries Section and President-Elect Suite 110; Bethesda, MD 20814-2199 ©copyright 2011. Gus Rassam Periodicals postage paid at Bethesda, Maryland, and at of the AFS Mexican Chapter an additional mailing offi ce. A copy of Fisheries Guide for Authors is available from the editor or the AFS website, JOURNAL HIGHLIGHTS: www.fi sheries.org. If requesting from the managing editor, COLUMN: 6 NORTH AMERICAN JOURNAL OF please enclose a stamped, self-addressed envelope with 40 FISHERIES CURRENTS your request. Republication or systematic or multiple AQUACULTURE reproduction of material in this publication is permitted only under consent or license from the American Fisheries Society. JOURNAL OF AQUATIC ANIMAL Postmaster: Send address changes to Fisheries, American HEALTH CALENDAR: Fisheries Society; 5410 Grosvenor Lane, Suite 110; Bethesda, 41 FISHERIES EVENTS MD 20814-2199. UPDATE: Fisheries is printed on 10% post-consumer 7 LEGISLATION AND POLICY GUIDELINES: recycled paper with soy-based printing inks. Elden Hawkes, Jr. 42 Fisheries 2011 GUIDE FOR AUTHORS FEATURE: 8 FISHERIES SCIENCE CALL FOR AWARD NOMINATIONS: A Primer on Winter, Ice, and Fish: 44 2011 AMERICAN FISHERIES What Fisheries Biologists Should Know Advertising Index about Winter Ice Processes and Stream- SOCIETY AWARDS Advanced Telemetry Systems . 51 dwelling Fish. An in depth description of the interactions NEWS: American Public University . 39 between complex environmental 47 UNITS conditions and the behavior of stream- Floy Tag . 35 dwelling salmonids during winter. CALENDAR: Halltech . 35 Richard S. Brown, Wayne A. Hubert, and 48 2011 AFS CHAPTER AND Steven F. Daly DIVISION MEETINGS Hydroacoustic Technology, Inc. 52 OPINION: ANNOUNCEMENTS: Lotek . 38 27 SOCIOECONOMICS 49 AFS 2011 SEATTLE: Northwest Marine Technology, Inc. 2 Human Population Increase, Economic Growth, and Fish Conservation: AN EXTRAORDINARY MEETING IN Oregon RFID . 7 Collision Course or Savvy Stewardship? AN EXTRAORDINARY PLACE Refl ections on the confl ict between human O.S. Sysstems, Inc. 39 activities and fi sh conservation, and an ANNOUNCEMENTS: appeal for a new way. 50 JOB CENTER Sonotronics . 40 Tell advertisers you found them through COVER: An ice dam on the Grand River, Ontario. The water level is elevated upstream of the dam. Fisheries! CREDIT: R. S. Brown. Fisheries • v o l 36 n o 1 • j a n u a r y 2011 • w w w .f i s h e r i e s .o r g 3 COLUMN: Wayne Hubert AFS President Hubert PRESIDENT’S HOOK may be contacted at: [email protected]. New Frontiers in Fisheries Management and Ecology: Leadership in Collaboration and Coalition The notion of working with others to cerns, and collaborations, especially at the Consequently, it just makes sense that the achieve common goals, otherwise termed levels of local chapters. Local chapters have four sister societies form a coalition. collaboration or coalition, has become frequently invited members of the other All of the societies in the CNRS perform widely accepted as means of enhancing the societies to present talks, sit on panels, a similar suite of functions. They dissemi- quality of scientific research and manage- and participate in a variety of ways at their nate credible scientific information through ment of natural resources. The AFS is defi- meetings. Chapters from two or more of publications and meetings. They provide nitely a leader among professional societies the societies have held joint meetings over continuing education and professional in the implementation of collaboration and the years to share scientific information, development for their members. They do coalition. and they have formed partnerships when public outreach and inform government Recall that the mission The four societies share in their visions of on natural resource issues. By of the American Fisheries collaboration, the societies Society (AFS) is to advance science, goals for professional development, of the CNRS enhance their sound science, promote and use of science-based information to attain individual abilities to carry professional development, conservation and sustainability of natural out these functions, and they and disseminate science- resources. The combined membership of the have already begun to work based fisheries information four societies is about 35,000 professionals. together. for the global protection, Here are three examples conservation, and sustainabil- Think about what can be accomplished of how the CNRS is contrib- ity of fishery resources and by this number of dedicated people! uting to our joint interests: aquatic ecosystems. How can 1. The recent economic downturn in the our relatively-small professional society of addressing local or regional environmental U.S. has had drastic effect on state about 9,000 members enhance its ability issues. It is not at all unusual for individual natural resource agencies resulting in to achieve the stated mission? A workable professionals to be members of two or furloughs, layoffs, hiring freezes, and strategy is to
Recommended publications
  • Benthic Community Response to Iceberg Scouring at an Intensely Disturbed Shallow Water Site at Adelaide Island, Antarctica
    Vol. 355: 85–94, 2008 MARINE ECOLOGY PROGRESS SERIES Published February 26 doi: 10.3354/meps07311 Mar Ecol Prog Ser Benthic community response to iceberg scouring at an intensely disturbed shallow water site at Adelaide Island, Antarctica Dan A. Smale*, David K. A. Barnes, Keiron P. P. Fraser, Lloyd S. Peck British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK ABSTRACT: Disturbance is a key structuring force influencing shallow water communities at all latitudes. Polar nearshore communities are intensely disturbed by ice, yet little is known about benthic recovery following iceberg groundings. Understanding patterns of recovery following ice scour may be particularly important in the West Antarctic Peninsula region, one of the most rapidly changing marine systems on Earth. Here we present the first observations from within the Antarc- tic Circle of community recovery following iceberg scouring. Three grounded icebergs were marked at a highly disturbed site at Adelaide Island (~67° S) and the resultant scours were sampled at <1, 3, 6, 12, 18 and 30 to 32 mo following formation. Each iceberg impact was catastrophic in that it resulted in a 92 to 96% decrease in abundance compared with reference zones, but all post- scoured communities increased in similarity towards ‘undisturbed’ assemblages over time. Taxa recovered at differing rates, probably due to varying mechanisms of return to scoured areas. By the end of the study, we found no differences in abundance between scoured and reference samples for 6 out of 9 major taxonomic groups. Five pioneer species had consistently elevated abundances in scours compared with reference zones.
    [Show full text]
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • River Ice Management in North America
    RIVER ICE MANAGEMENT IN NORTH AMERICA REPORT 2015:202 HYDRO POWER River ice management in North America MARCEL PAUL RAYMOND ENERGIE SYLVAIN ROBERT ISBN 978-91-7673-202-1 | © 2015 ENERGIFORSK Energiforsk AB | Phone: 08-677 25 30 | E-mail: [email protected] | www.energiforsk.se RIVER ICE MANAGEMENT IN NORTH AMERICA Foreword This report describes the most used ice control practices applied to hydroelectric generation in North America, with a special emphasis on practical considerations. The subjects covered include the control of ice cover formation and decay, ice jamming, frazil ice at the water intakes, and their impact on the optimization of power generation and on the riparians. This report was prepared by Marcel Paul Raymond Energie for the benefit of HUVA - Energiforsk’s working group for hydrological development. HUVA incorporates R&D- projects, surveys, education, seminars and standardization. The following are delegates in the HUVA-group: Peter Calla, Vattenregleringsföretagen (ordf.) Björn Norell, Vattenregleringsföretagen Stefan Busse, E.ON Vattenkraft Johan E. Andersson, Fortum Emma Wikner, Statkraft Knut Sand, Statkraft Susanne Nyström, Vattenfall Mikael Sundby, Vattenfall Lars Pettersson, Skellefteälvens vattenregleringsföretag Cristian Andersson, Energiforsk E.ON Vattenkraft Sverige AB, Fortum Generation AB, Holmen Energi AB, Jämtkraft AB, Karlstads Energi AB, Skellefteå Kraft AB, Sollefteåforsens AB, Statkraft Sverige AB, Umeå Energi AB and Vattenfall Vattenkraft AB partivipates in HUVA. Stockholm, November 2015 Cristian
    [Show full text]
  • Spawning and Early Life History of Mountain Whitefish in The
    SPAWNING AND EARLY LIFE HISTORY OF MOUNTAIN WHITEFISH IN THE MADISON RIVER, MONTANA by Jan Katherine Boyer A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Fish and Wildlife Management MONTANA STATE UNIVERSITY Bozeman, Montana January 2016 © COPYRIGHT by Jan Katherine Boyer 2016 All Rights Reserved ii ACKNOWLEDGMENTS First, I thank my advisor, Dr. Christopher Guy, for challenging me and providing advice throughout every stage of this project. I also thank my committee members, Dr. Molly Webb and Dr. Tom McMahon, for guidance and suggestions which greatly improved this research. My field technicians Jordan Rowe, Greg Hill, and Patrick Luckenbill worked hard through fair weather and snowstorms to help me collect the data presented here. I also thank Travis Horton, Pat Clancey, Travis Lohrenz, Tim Weiss, Kevin Hughes, Rick Smaniatto, and Nick Pederson of Montana Fish, Wildlife and Parks for field assistance and advice. Mariah Talbott, Leif Halvorson, and Eli Cureton of the U. S. Fish and Wildlife Service assisted with field and lab work. Richard Lessner and Dave Brickner at the Madison River Foundation helped to secure funding for this project and conduct outreach in the Madison Valley. The Channels Ranch, Valley Garden Ranch, Sun West Ranch, and Galloup’s Slide Inn provided crucial land and river access. I also thank my fellow graduate students both for advice on project and class work and for being excellent people to spend time with. Ann Marie Reinhold, Mariah Mayfield, David Ritter, and Peter Brown were especially helpful during the early stages of this project.
    [Show full text]
  • Snow and Ice Control Around Structures - George D
    COLD REGIONS SCIENCE AND MARINE TECHNOLOGY - Snow and Ice Control Around Structures - George D. Ashton SNOW AND ICE CONTROL AROUND STRUCTURES George D. Ashton Consultant, Lebanon, NH 03766 Keywords: ice jams, ice control, flooding, snow drifting, snow loads, river ice Contents 1. Introduction 2. Nature of ice jams 2.1. Frazil Ice 2.1.1. Hanging Dams 2.1.2. Blockage of Intakes 2.2. Breakup Ice Jams 3. Control of ice jams 3.1. Frazil Ice Jams 3.2. Breakup Ice Jams 3.2.1. Ice Suppression 3.2.2. Dikes 3.2.3. Ice Booms 3.2.4. Ice Control Structures 3.2.5. Ice Removal 3.2.6. Ice Breaking 3.2.7. Ice Weakening 3.2.8. Blasting 4. Other Ice Control Techniques 4.1. Air Bubbler Systems 4.1.1. Requirements 4.1.2. Limitations 4.1.3. Operation 4.2. Other Ice Control Techniques 5. Snow control around structures 5.1. Buildings 5.1.1. Snow UNESCOLoads on Roofs – EOLSS 5.1.2. Blowing Snow 5.2. Roads 5.2.1 Snow Fences 6. Conclusion SAMPLE CHAPTERS Glossary Bibliography Biographical Sketch Summary Two main topics are treated here: control of ice jams including mitigation measures, and control of snow accumulations around structures. The nature of ice jams is described and the difference between jams formed of frazil ice and jams formed of broken ice is ©Encyclopedia of Life Support Systems (EOLSS) COLD REGIONS SCIENCE AND MARINE TECHNOLOGY - Snow and Ice Control Around Structures - George D. Ashton discussed. Also discussed are various ice control techniques used for specific problems.
    [Show full text]
  • The Effects of Ice on Stream Flow
    LIBRARY COPY DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTI8 SMITH, DIKECTOK WATER-SUPPLY PAPER 337 THE EFFECTS OF ICE ON STREAM FLOW BY WILLIAM GLENN HOYT WASHINGTON GOVERNMENT PRINTING OFFICE 1913 CONTENTS. Page. Introduction____________________________________ 7 Factors that modify winter run-off_______________________ 9 Classification_________________________________ 9 Climatic factors_______________________________ 9 Precipitation and temperature____________________ 9 Barometric pressure__________________________ 17 Chinook winds________________________________ 18 Geologic factors________________________________ 19 Topographic factors______________________________ 20 Natural storage_____________________________ 20 Location, size, and trend of drainage basins____________ 22 Character of streams_________________________ 22 Vegetational factors_____________________________. 23 Artificial control _________________________________ 23 Formation of ice______________________________^____ 24 General conditions ________________________________ 24 Surface ice __ __ __ ___________________ 24 Method of formation____________________________. 24 Length and severity of cold period__________________ 25 Temperature of affluents________________________'__ 26 Velocity of water and. character of bed_______________ 27 Fluctuations in stage__________________________ 27 Frazil______________________________________ 28 Anchor ice_____________________ __________ 29 Effect of ice on relation of stage to discharge_________ ______ 30 The
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Summary Report No
    Canadian Manuscript Report of Fisheries and Aquatic Sciences 2614 2002 Life History Characteristics Of Freshwater Fishes Occurring in the Northwest Territories and Nunavut, With Major Emphasis on Riverine Habitat Requirements by C.L. Evans1, J.D. Reist1 and C.K. Minns2 1. Department of Fisheries and Oceans, Arctic Fish Ecology and Assessment Research, Central and Arctic Division, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 Canada 2. Department of Fisheries and Oceans, Great Lakes Laboratory of Fisheries and Aquatic Sciences, Bayfield Institute, 867 Lakeshore Road, P.O. Box 5050, Burlington, Ontario, L7R 4A6 Canada. Her Majesty the Queen in Right of Canada, 2002 Cat. No. Fs 97-4/2614E ISSN 0706-6473 Correct citation of this publication: Evans, C.E., J.D. Reist and C.K. Minns. 2002. Life history characteristics of freshwater fishes occurring in the Northwest Territories and Nunavut, with major emphasis on riverine habitat requirements. Can. MS Rep. Fish. Aquat. Sci. 2614: xiii + 169 p. ii TABLE OF CONTENTS LIST OF FIGURES .......................................................................................................... v LIST OF TABLES............................................................................................................ v ABSTRACT ...................................................................................................................viii RÉSUMÉ ........................................................................................................................viii INTRODUCTION............................................................................................................
    [Show full text]
  • Arctic Grayling
    Arctic Grayling For most anglers in America, the Arctic grayling (Thymallus arcticus (Pallus)) is a rare freshwater game fish symbolic of the clear, cold streams of the northern wilderness. Grayling occur throughout the arctic as far west as the Kara River in Russia and east to the western shores of Hudson Bay in Canada. Once as common as far south as Michigan and Montana, the Arctic grayling has almost disappeared from the northern United States because of overfishing, competition from introduced species, and habitat loss. General description: The Arctic grayling is an elegantly formed cousin of the trout. With its sail-like dorsal fin dotted with large iridescent red or purple spots, the grayling is one of the most unusual and beautiful fish of Alaska. Grayling are generally dark on the back and have iridescent gray sides. They have varying numbers of black spots scattered along the anterior portion of both sides. The adipose, caudal (tail), pectoral, and anal fins are gray and the pelvic fins are often marked with pink to orange stripes. Life history: Grayling have evolved many strategies to meet the needs of life in what are often harsh and uncertain environments. Grayling can be highly migratory, using different streams for spawning, juvenile rearing, summer feeding, and overwintering. Or, in other areas, they can complete their entire life without leaving a short section of stream or lake. Winter generally finds grayling in lakes or the deeper pools of medium-sized rivers such as the Chena and Gulkana, or in large glacial rivers like the Tanana, Susitna, and Yukon.
    [Show full text]
  • Diving Ducks
    Avian Models for 3D Applications Characters and Texture Mapping by Ken Gilliland 1 Songbird ReMix Waterfowl: Sea & Diving Ducks Contents Introduction 3 Overview 3 Poser and DAZ Studio Use 3 Physical-based Renderers 4 Where to find your birds 4 Morphs and their Use 5 Field Guide List of Species 10 Diving Ducks Red-crested Pochard 11 Pink-headed Duck (extinct) 13 Redhead 16 Tufted Duck 18 Lesser Scaup 21 Greater Scaup 25 Hardhead 28 Ferruginous Duck 30 Sea Ducks King Eider 32 Harlequin Duck 34 Black Scoter 36 Smew 38 Common Goldeneye 40 Bufflehead 42 Hooded Merganser 44 Chinese Merganser 46 Ruddy Duck 49 Resources, Credits and Thanks 51 Appendix 52 Copyrighted 2014-18 by Ken Gilliland www.songbirdremix.com Opinions expressed on this booklet are solely that of the author, Ken Gilliland, and may or may not reflect the opinions of the publisher. 2 Songbird ReMix Waterfowl: Sea & Diving Ducks Introduction There are two distinct groups of Ducks; Dabbling Ducks and Sea/Diving Ducks. They are divided into the two groups mostly by behavior. Diving ducks and sea ducks forage deep underwater. To be able to submerge more easily, the diving ducks are heavier than dabbling ducks, and therefore have more difficulty taking off to fly. Diving ducks are commonly called pochards or scaups, while Sea ducks have a much larger family of species including eiders, scoters, mergansers, goldeneyes and other species. Most of these ducks occupy habitats in the northern latitudes. Overview The set is located within the Animals : Songbird ReMix folder. Here is where you will find a number of folders, such as Bird Library, Manuals and Resources .
    [Show full text]
  • Snowterm: a Thesaurus on Snow and Ice Hierarchical and Alphabetical Listings
    Quaderno tematico SNOWTERM: A THESAURUS ON SNOW AND ICE HIERARCHICAL AND ALPHABETICAL LISTINGS Paolo Plini , Rosamaria Salvatori , Mauro Valt , Valentina De Santis, Sabina Di Franco Version: November 2008 Quaderno tematico EKOLab n° 2 SnowTerm: a thesaurus on snow and ice hierarchical and alphabetical listings Version: November 2008 Paolo Plini1, Rosamaria Salvatori2, Mauro Valt3, Valentina De Santis1, Sabina Di Franco1 Abstract SnowTerm is the result of an ongoing work on a structured reference multilingual scientific and technical vocabulary covering the terminology of a specific knowledge domain like the polar and the mountain environment. The terminological system contains around 3.700 terms and it is arranged according to the EARTh thesaurus semantic model. It is foreseen an updated and expanded version of this system. 1. Introduction The use, management and diffusion of information is changing very quickly in the environmental domain, due also to the increased use of Internet, which has resulted in people having at their disposition a large sphere of information and has subsequently increased the need for multilingualism. To exploit the interchange of data, it is necessary to overcome problems of interoperability that exist at both the semantic and technological level and by improving our understanding of the semantics of the data. This can be achieved only by using a controlled and shared language. After a research on the internet, several glossaries related to polar and mountain environment were found, written mainly in English. Typically these glossaries -with a few exceptions- are not structured and are presented as flat lists containing one or more definitions. The occurrence of multiple definitions might contribute to increase the semantic ambiguity, leaving up to the user the decision about the preferred meaning of a term.
    [Show full text]
  • Circular 213. Bibliography of the Arctic Grayling, Thymallus Arcticus, Of
    UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, SECRETARY Stanley A. Cain, Assistant Secretary for Fish and WiZdZife Fish and Wildlife Service, Clarence F. Pautzke, Commissioner Bureau of Sport Fisheries and Wildlife, JohnS. Gottschalk, Director BIBLIOGRAPHY Of THE ARCTIC GRAYLING, THY MALL US ARCTICUS, Of NORTH AMERICA By Robert E. Vincent Colorado Cooperative Fishery Unit Colorado State University Fort Collins, Colorado BUREAU CIRCULAR 213 Washington April 1965 BIBLIOGRAPHY OF THE ARCTIC GRAYLING, THYMALLUS ARCTICUS , OF NORTH AMERICA by Robert E. Vincent Colorado Cooperative Fishery Unit Bureau of Sport Fisheries and Wildlife Fish and Wildlife Service U. S. Department of the Interior Bibliographies of individual species become more convenient and more necessary as the amount of fishery literature increases. For a declining species such as the Arctic grayling, the bulk of the literature is in older works. Bibliographic references to these articles are widely scattered and many are difficult to locate; few are listed in modern fishery bibliographic sources. The bibliography includes only a few major European and Asian references. Many of the early American articles are what would now be considered semipopular. In the past, the works of many competent and outstanding ichthyologists were published in such periodicals and books; these have therefore been included. Ainsworth, S. H. 1874. The grayling in Michigan. American Sportsman, val. 4, p. 283. Babbitt, A. C. 1900. Michigan grayling, (Thymallus tricolor). Transactions of the American Fisheries Society, val. 29 (for 1900), p. 106-108. Back, Howard. 1938. The waters of Yellowstone with rod and fly. Dodd, Mead and Co., New York. 149 p.
    [Show full text]