Queueing-Theoretic End-To-End Latency Modeling of Future Wireless Networks Schulz
Total Page:16
File Type:pdf, Size:1020Kb
Queueing-Theoretic End-to-End Latency Modeling of Future Wireless Networks Schulz Technische Universität Dresden Queueing-Theoretic End-to-End Latency Modeling of Future Wireless Networks Philipp Schulz der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) genehmigte Dissertation Vorsitzender: Prof. Dr.-Ing. habil. Leon Urbas Gutachter: Prof. Dr.-Ing. Dr. h.c. Gerhard Fettweis Univ. Prof. Dr. techn. Markus Rupp Tag der Einreichung: 01. Oktober 2019 Tag der Verteidigung: 13. Januar 2020 Philipp Schulz Queueing-Theoretic End-to-End Latency Modeling of Future Wireless Networks Dissertation, 13. Januar 2020 Vodafone Chair Mobile Communications Systems Institut für Nachrichtentechnik Fakultät Elektrotechnik und Informationstechnik Technische Universität Dresden 01062 Dresden Abstract The fifth generation (5G) of mobile communication networks is envisioned to enable a variety of novel applications. These applications demand requirements from the network, which are diverse and challenging. Consequently, the mobile network has to be not only capable to meet the demands of one of these appli- cations, but also be flexible enough that it can be tailored to different needs of various services. Among these new applications, there are use cases that require low latency as well as an ultra-high reliability, e. g., to ensure unobstructed pro- duction in factory automation or road safety for (autonomous) transportation. In these domains, the requirements are crucial, since violating them may lead to financial or even human damage. Hence, an ultra-low probability of failure is necessary. Based on this, two major questions arise that are the motivation for this thesis. First, how can ultra-low failure probabilities be evaluated, since experiments or simulations would require a tremendous number of runs and, thus, turn out to be infeasible. Second, given a network that can be configured differently for different applications through the concept of network slicing, which perfor- mance can be expected by different parameters and what is their optimal choice, particularly in the presence of other applications. In this thesis, both questions shall be answered by appropriate mathematical modeling of the radio interface and the radio access network. Thereby the aim is to find the distribution of the (end-to-end) latency, allowing to extract stochas- tic measures such as the mean, the variance, but also ultra-high percentiles at the distribution tail. The percentile analysis eventually leads to the desired evaluation of worst-case scenarios at ultra-low probabilities. Therefore, the math- ematical tool of queuing theory is utilized to study video streaming performance and one or multiple (low-latency) applications. One of the key contributions is the development of a numeric algorithm to obtain the latency of general queuing systems for homogeneous as well as for prioritized heterogeneous traffic. This provides the foundation for analyzing and improving end-to-end latency for applications with known traffic distributions in arbitrary network topologies and consisting of one or multiple network slices. iii iv Kurzfassung Es wird erwartet, dass die fünfte Mobilfunkgeneration (5G) eine Reihe neuartiger Anwendungen ermöglichen wird. Allerdings stellen diese Anwendungen sowohl sehr unterschiedliche als auch überaus herausfordernde Anforderungen an das Netzwerk. Folglich muss das mobile Netz nicht nur die Voraussetzungen einer einzelnen Anwendungen erfüllen, sondern auch flexibel genug sein, um an die Vorgaben unterschiedlicher Dienste angepasst werden zu können. Ein Teil der neuen Anwendungen erfordert hochzuverlässige Kommunikation mit niedriger Latenz, um beispielsweise unterbrechungsfreie Produktion in der Fabrikautoma- tisierung oder Sicherheit im (autonomen) Straßenverkehr zu gewährleisten. In diesen Bereichen ist die Erfüllung der gestellten Anforderungen besonders kritisch, da eine Verletzung finanzielle oder sogar personelle Schäden nach sich ziehen könnte. Eine extrem niedrige Ausfallwahrscheinlichkeit ist daher von größter Wichtigkeit. Daraus ergeben sich zwei wesentliche Fragestellungen, welche diese Arbeit motivieren. Erstens, wie können extrem niedrige Ausfallwahrscheinlichkeiten evaluiert werden. Ihr Nachweis durch Experimente oder Simulationen würde eine extrem große Anzahl an Durchläufen benötigen und sich daher als nicht realisierbar herausstellen. Zweitens, welche Performanz ist für ein gegebenes Netzwerk durch unterschiedliche Konfigurationen zu erwarten und wie kann die optimale Konfiguration gewählt werden. Diese Frage ist insbesondere dann interessant, wenn mehrere Anwendungen gleichzeitig bedient werden und durch sogenanntes Slicing für jeden Dienst unterschiedliche Konfigurationen möglich sind. In dieser Arbeit werden beide Fragen durch geeignete mathematische Mod- ellierung der Funkschnittstelle sowie des Funkzugangsnetzes (Radio Access Network) adressiert. Mithilfe der Warteschlangentheorie soll die stochastische Verteilung der (Ende-zu-Ende-) Latenz bestimmt werden. Dies liefert unter- schiedliche stochastische Metriken, wie den Erwartungswert, die Varianz und insbesondere extrem hohe Perzentile am oberen Rand der Verteilung. Let- ztere geben schließlich Aufschluss über die gesuchten schlimmsten Fälle, die mit sehr geringer Wahrscheinlichkeit eintreten können. In der Arbeit werden v Videostreaming und ein oder mehrere niedriglatente Anwendungen untersucht. Zu den wichtigsten Beiträgen zählt dabei die Entwicklung einer numerischen Methode, um die Latenz in allgemeinen Warteschlangensystemen für homo- genen sowie für priorisierten heterogenen Datenverkehr zu bestimmen. Dies legt die Grundlage für die Analyse und Verbesserung von Ende-zu-Ende-Latenz für Anwendungen mit bekannten Verkehrsverteilungen in beliebigen Netzwerk- topologien mit ein oder mehreren Slices. vi Acknowledgement The research, which has lead to this thesis, has started around four years ago. During this time, I was accompanied by people without whom this thesis would not have been possible and whom I would like to thank. First and foremost, my deepest gratitude is dedicated to my advisor Gerhard Fettweis. He provided the opportunity for starting and pursuing this adventure. With his valuable feedback and support, he helped me to stay on the right track as well as to develop not only technical but also organizational skills. Second, I would like to thank Markus Rupp for assuring his willingness and time for being a second reviewer of this thesis. Furthermore, I appreciate the nice working atmosphere with former and current colleagues. Among them, I would like to highlight my gratitude for my group leaders Meryem and André for their guidance. In particular, I could always count on Meryem’s feedback, even when she had a new position nine time zones away from me, and I appreciate her engagement for my two research stays in Berkeley. In a non-exhaustive list, I owe special thanks to Albrecht, Behnam, David, Henrik, Jay, Jens, Lucas, Maciej, Norman, Sandra, Sascha, and Tom. They enriched my time at the chair not only on a professional but also on a private level. I have learned a lot, especially through bringing the engineering perspective of my colleagues and my mathematical background together. In this regard, I would like to stress my gratitude for Henrik, who brought me into this topic, and for André, Lucas, Meryem, and Tom, who helped polishing the manuscript thanks to their sharp eyes and invaluable comments. Moreover, Eva, Kathrin, Raffael, Rüdiger, Steffen, Sylvia, and Yaning deserve many thanks for keeping the chair running and helping us in all administrative matters. As my work also depended on high performance computing, I also thank the ZIH staff for providing their resources and taking care of taurus. My appreciation also goes to my partners in the project fast wireless. The collaboration was always fun and I received valuable feedback on my work. Exemplary, I would like to mention Andreas, Björn, Camilo, Dariush, Ines, Jens, Marco, Marcus, Markus, Sebastian, Tino, and Torsten. vii I warmly thank my family and friends for always supporting and motivating me. Among them, I would like to highlight my special appreciation for René, who supported me with fruitful discussions. My particular gratitude is also dedicated to Susi, who was always there, when I needed somebody to talk. Last but definitely not least, I would like to thank my girlfriend Marietta, especially for being endlessly patient and believing in me. Dresden, January 2020 Philipp Schulz viii Contents Abstract iii Kurzfassung v Acknowledgement vii Contents ix 1 Introduction 1 1.1 Motivation . 1 1.2 State of the Art . 7 1.3 Contribution . 9 2 Modeling Approaches for Communication Networks 11 2.1 Traffic Modeling . 12 2.2 Queuing Systems . 19 2.3 Queuing Networks . 22 2.4 Distribution Class . 28 2.5 Summary . 29 3 Modeling the Wireless Access 31 3.1 Wireless Downlink Access . 31 3.2 Application to Streaming Traffic . 38 3.3 Extension to the Uplink . 60 3.4 Modeling versus Simulation . 66 3.5 Summary and Conclusion . 70 4 Modeling the Access Network 71 4.1 Scenarios . 71 4.2 Queuing Network . 74 4.3 Homogeneous Traffic . 77 4.4 Heterogeneous Traffic . 84 ix 4.5 Open Questions . 90 4.6 Modeling versus Simulation . 93 4.7 Summary and Conclusion . 96 5 Latency Improvement in a Realistic Scenario 99 5.1 Problem Formulation . 100 5.2 Approach for Performance Improvement . 104 5.3 Summary and Conclusion . 108 6 Conclusions