Comparison of the Myotonic Dystrophy Associated CTG Repeat in European and Japanese Populations

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of the Myotonic Dystrophy Associated CTG Repeat in European and Japanese Populations 76676 Med Genet 1992; 29: 766-769 ORIGINAL ARTICLES Comparison of the myotonic dystrophy associated CTG repeat in European and Japanese populations June Davies, Hidehisa Yamagata, Peggy Shelbourne, Jessica Buxton, Toshio Ogihara, Pekka Nokelainen, Masanori Nakagawa, Robert Williamson, Keith Johnson, Tetsuro Miki Abstract repeat at the 3' end of a gene encoding a Gene amplification using polymerase member of the protein kinase family." chain reaction (PCR) was carried out on The repeat copy number has been found to DNA samples from a total of 92 normal be highly variable in the normal population, subjects and 52 subjects with myotonic with a reported size range between 5 and 30 dystrophy (DM) from European and copies."8 DM patients are found to have one Japanese populations, to determine the allele in the normal size range and a larger DM copy number of the CTG repeat associ- specific allele; mildly affected or presympto- Department of ated with DM for each group. In the two matic subjects have at least 50 copies of the Anatomy, Charing populations, the number of repeats on repeat and severely affected patients have Cross and normal chromosomes only were com- alleles containing up to several thousand Westminster Medical School, St Dunstan's pared, as CTG copy number on DM chro- copies of CTG. The extent of the expansion of Road, London W6 mosomes was difficult to determine by the CTG repeat correlates well with age of 8RP. PCR alone. In this study, normal chro- onset and increased severity of symptoms J Davies P Shelbourne mosomes were found which had as many within families: the larger the number of J Buxton* as 35 copies of the repeat, which is larger CTGs, the more severe the effects of the K Johnson than the normal range reported pre- disease, but at least 50 copies are necessary to Department of viously but still does not overlap with the produce detectable clinical symptoms.68 The Geriatric Medicine, repeat number associated with DM path- number of repeated sequences can change in Osaka University ology, which is at least 50 copies. Using succeeding generations, and an increase in Medical School, Japan. data from normal chromosomes from repeat number indicates why children born to H Yamagata unrelated subjects, the frequencies of minimally affected parents can show more T Ogihara five, 11, and 13 copies of the CTG repeat severe symptoms. This explains the phenome- T Miki were found to be significantly different non of genetic anticipation seen in myotonic 10 Laboratory of Medical between the two populations, with five dystrophy families.9 Genetics, National and 11 copies more commonly seen in the Polymerase chain reaction (PCR) using syn- Public Health European population and 13 copies in the thetic oligonucleotides flanking the CTG re- Institute, Helsinki, Finland. Japanese population. This difference may peat allows the specific amplification of the P Nokelainen be the result of natural divergence of the region containing the repeat. The copy normal chromosomes between the popu- number of the repeat is very variable, and has Third Department of Internal Medicine, lation groups. been shown to decrease as well as increase." It Faculty of Medicine, (J Med Genet 1992;29:766-9) is important for greater accuracy in diagnosis Kagoshima to establish the normal range of alleles. This University, Japan. M Nakagawa study directly compares the number of copies Myotonic dystrophy (DM) is the most com- of CTG on non-DM chromosomes in Euro- Department of mon form of adult muscular dystrophy, with pean and Japanese populations. Biochemistry and Molecular Genetics, an average incidence of 1 in 8000 in the Euro- St Mary's Hospital pean population and a lower incidence of 1 in Medical School, 20 000 in Japan.'2 DM is characterised by Methods Imperial College, London. myotonia with muscle wasting and a wide DNA was prepared from peripheral blood or R Williamson range of accompanying symptoms including immortalised lymphoblastoid cell lines.'2 A cataracts, intellectual impairment, and con- total of 144 unrelated subjects was studied, 37 *Present address: duction defects in the heart.' The age of onset normal and 32 DM subjects from Japan and 55 Mothercare Unit of and severity of the disease show extreme varia- normal and 20 DM subjects from Europe Paediatrics, Institute of Child Health, London tion both between and within families. including British, German, Belgian, Swedish, WC1N 1EH. The genetic defect underlying DM was and Finnish families. The largest subgroup in Correspondence to unknown until recently, when it was reported the European population originated from Fin- Dr Johnson. that a fragment of DNA is vastly expanded in land with 16 normal and 11 DM subjects. Received 17 June 1992. Revised version accepted DM patients." This expansion is the result of Statistical values were calculated using the X2 13 July 1992. an increased number of a trinucleotide CTG test in 2 x 2 tables with Yates's correction. The Comparison of the myotonic dystrophy associated CTG repeat in European and Japanese populations 767 50 formamide dye (USB Sequenase version 2-0 sequencing kit, Cambridge Bioscience) and * European run on a 6% denaturing polyacrylamide gel. The 40 Japanese polyacrylamide gel was dried and exposed to Hyperfilm-MP (Amersham) for one to two days. 0j) 01) Results 0 0) Heterozygote frequencies in the normal popu- .0 lation studied were 73% (European) and 81% E (Japanese). The CTG repeat is very informa- z tive and has a PIC value of 0-83 based on the frequency of 19 alleles seen in this study. The CTG repeat alleles showed mendelian inherit- ance through families, and in 146 meioses studied no new mutations were seen on normal 5 8 10 11 12 13 14 15 16 17 20 21 23 24 25 27 32 33 35 chromosomes but the mutation rate on the DM chromosomes was 100%. Copies of CTG The frequencies of the CTG repeat of nor- Figure 1 Frequency distribution of the DM associated CTG repeat in European and mal alleles from the European and Japanese Japanese populations. The European population contains families from Britain, Belgium, Germany, Sweden, and Finland, with the Finnish being the largest subgroup. populations are shown in fig 1. The distribu- No statistical difference in allele frequency was found between the Finnish subgroup tion of alleles is indicated, with a peak repeat and the rest of the European population. number of five, and then a second peak between 11 and 14. Very few repeats were found between five and 11; only a single ex- polymorphic content of the CTG repeat was ample of an eight copy allele (European) and calculated using PIC = 1 -ni=1 Pi2, where Pi is four of 10 copies (three European and one the frequency of allele i.13 Japanese) were found. PCR was carried out using 20 ng of DNA, The modal number of copies is five in the 50 pmol of each primer 101 and 102,6 European population but 13 in the Japanese. 200 gmol/l each of dATP, dTTP, dCTP, and The results of comparing the most common dGTP (Pharmacia), 1 unit of Tth polymerase alleles from unrelated subjects from the Euro- enzyme (Hybaid) in a final volume of 25 gl pean and Japanese populations, using the x2 overlaid with two drops of mineral oil (Sigma). test in 2 x 2 tables with Yates's correction, are Radiolabel was added to the PCR samples in shown in the table. Linkage disequilibrium two ways: (1) end labelling of primer 101 using between the CTG repeat size and flanking [_y-32P]ATP (Amersham); 50 pmol of primer markers on normal chromosomes was looked 101 was incubated at room temperature for 30 for: the sample size for the European popula- minutes with 2 units of T4 polynucleotide tion was too small to determine if disequili- kinase in a 20 gl reaction containing 2 gl of brium was present, but preliminary data from 10 x kinase buffer (final concentration 50 mmol/ the Japanese population indicate that disequi- 1 Tris-HCl pH 7-5, 10 mmol/l magnesium librium exists between 12 and 13 copies of chloride, 5 mmol/I dithiothreitol, 01 mmol/l CTG and the probe p37. 1. No disequilibrium spermidine), and 1 jl ['y-32P]ATP. 0 5 pmol of was found with D19S63. radiolabelled primer 101 was added to each In looking at the normal range of CTG PCR sample. (2) Direct incorporation of copies (including the non-DM chromosome [a- 32P]dCTP (Amersham) by addition of 20 to from affected subjects) four different persons 30 nCi [a-32P] dCTP to each PCR sample. were seen with more than 30 copies of CTG, PCR running conditions were as follows: 32 and 35 copies on two Japanese chromo- initial denaturation at 94°C for five minutes, somes and 33 and 35 on two European chro- then 35 cycles of 94°C for 1-5 minutes, 62°C mosomes (fig 2). In pedigree c in fig 2A, a 35 for one minute, and 72°C for two minutes. copy allele is inherited in a mendelian fashion Five microlitres of the PCR product was first by an affected child (lane 7) on the non-DM checked on a 2% agarose gel (containing equal chromosome as a normal allele from the unaf- amounts of Nusieve and regular agarose), run fected parent (lane 9). In pedigree b in fig 2A, for one hour in 1 x TBE buffer. Then 3 p1 of the reverse occurs where 33 copies of CTG are the PCR product was denatured with 2 gl inherited as a normal allele by an unaffected child from the affected parent. These results give a normal range of five to 35 copies for the x values for the most common CTG alleles found in the European and Japanese CTG repeat in these populations.
Recommended publications
  • Gene Amplification
    Europaisches Patentamt J) European Patent Office © Publication number: 0 319 206 Office europeen des brevets A2 EUROPEAN PATENT APPLICATION © C12N Application number: 88311183.3 © int. ci."; 15/00 , C12N 5/00 © Date of filing: 25.11.88 © Priority: 30.11.87 US 126436 © Applicant: CODON CORPORATION 213 East Grand Avenue © Date of publication of application: South San Francisco California 94025(CA) 07.06.89 Bulletin 89/23 © Inventor: Colby, Wendy W. © Designated Contracting States: 2018 Lyon Avenue AT BE CH DE FR GB IT LI LU NL SE Belmont California 94002(US) Inventor: Morser, Michael J. 3964 - 20th Street San Francisco California 94114(US) Inventor: Cashion, Linda M. 219 Kelton Avenue San Carlos California 94070(US) © Representative: Thomson, Paul Anthony et al Potts, Kerr & Co. 15, Hamilton Square Birkenhead Merseyside L41 6BR(GB) © Gene amplification. © Improved means are provided for obtaining enhanced production of proteins encoded by structural genes of interest in a host based on transfecting the host with an expression vector comprising a wild-type amplifiable gene and the predetermined structural gene. The host is typically not complemented by the amplifiable gene product. If desired, another selection marker may be utilized to select a desired population of cells prior to the amplification. CM < CO o CM G) i— CO o CL LLI <erox Copy Centre EP 0 319 206 A2 GENE AMPLIFICATION Field of the Invention This invention relates generally to improved recombinant DNA techniques and the increased expression 5 of mammalian polypeptides in genetically engineered eukaryotic cells. More specifically, the invention relates to improved methods of selecting transfected cells and further, to methods of gene amplification resulting in the expression of predetermined gene products at very high levels.
    [Show full text]
  • Prediction-Based Highly Sensitive CRISPR Off
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.31.889626; this version posted December 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Prediction-based highly sensitive CRISPR off- target validation using target-specific DNA enrichment Seung-Hun Kang1,6, Wi-jae Lee1,8, Ju-Hyun An1, Jong-Hee Lee2, Young-Hyun Kim2,3, Hanseop Kim1,7, Yeounsun Oh1,9, Young-Ho Park1, Yeung Bae Jin2, Bong-Hyun Jun8, Junho K Hur4,5,#, Sun-Uk Kim1,3,# and Seung Hwan Lee2,# 1Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea 2National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Korea 3Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea 4Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea 5Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea 6Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea 7School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea 8Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea 9Division of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea #Correspondence: [email protected], [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.31.889626; this version posted December 31, 2019.
    [Show full text]
  • Associated with Past Or Ongoing Infection with a Hepadnavirus (Hepatoceflular Carcinoma/N-Myc/Retroposon) CATHERINE TRANSY*, GENEVIEVE FOUREL*, WILLIAM S
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 3874-3878, May 1992 Biochemistry Frequent amplification of c-mnc in ground squirrel liver tumors associated with past or ongoing infection with a hepadnavirus (hepatoceflular carcinoma/N-myc/retroposon) CATHERINE TRANSY*, GENEVIEVE FOUREL*, WILLIAM S. ROBINSONt, PIERRE TIOLLAIS*, PATRICIA L. MARIONt, AND MARIE-ANNICK BUENDIA*t *Unit6 de Recombinaison et Expression Gdndtique, Institut National de la Santd et de la Recherche Mddicale U163, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, Cedex 15, France; and tDivision of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 Communicated by Andre Lwoff, January 23, 1992 (received for review November 5, 1991) ABSTRACT Persistent infection with hepatitis B virus HCC through distinct and perhaps cooperative mechanisms. (HBV) is a major cause of hepatoceliular carcinoma (HCC) in However, the cellular factors involved in virally induced humans. HCC has also been observed in animals chronically oncogenesis remain largely unknown. infected with two other hepadnaviruses: ground squirrel hep- In this regard, hepadnaviruses infecting lower animals, atitis virus (GSHV) and woodchuck hepatitis virus (WHV). A such as the woodchuck hepatitis virus (WHV) and the ground distinctive feature of WHV is the early onset of woodchuck squirrel hepatitis virus (GSHV), represent interesting mod- tumors, which may be correlated with a direct role of the virus els. Chronic infection with WHV has been found to be as an insertional mutagen of myc genes: c-myc, N-myc, and associated with a high incidence and a rapid onset of HCCs predominantly the woodchuck N-myc2 retroposon. In the in naturally infected woodchucks (11), and the oncogenic present study, we searched for integrated GSHV DNA and capacity of the virus has been further demonstrated in genetic alterations ofmyc genes in ground squirrel HCCs.
    [Show full text]
  • Quantitation of C-Myc Gene Amplification by a Competitive PCR Assay System
    Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Quantitation of c-myc Gene Amplification by a Competitive PCR Assay System Seth P. Harlow and Carleton C. Stewart Departments of Surgical Oncology and Flow Cytometry, Roswell Park Cancer Institute, Buffalo, New York 14263 Gene amplification is a common Gene amplification, particularly am- being possible. A number of variables, event in the progression of human plification of the growth-promoting however, must be accounted for to de- cancers. The detection and quantita- proto-oncogenes, is a common event in termine the true gene amplification level tion of certain amplified oncogenes the progression of many human can- in a population of cells. These include has been shown to have prognostic cers. (~ Detection and quantitation of cell number, cell cycle phase (cells in G 2 importance in certain human malig- certain specific amplified genes may or mitosis will have twice the gene cop- nancies. A method is described that have the potential for predicting patient ies as cells in G O or G1), and chromo- utilizes the principles of competitive outcome or response to therapy for a some ploidy (genes on aneuploid chro- PCR for quantitation of the c-mu number of different human tumor mosomes generally are not considered gene copy number in relation to the types. (2'3) Recently, a number of meth- amplified). To account for all of these copy number of a reference gene (tis- ods have been described to accomplish variables, quantitation of an internal sue plasminogen activator It-PAl this goal by a variety of techniques (4-6~ control or reference gene has been used gene) located on the same chromo- differing from the standard Southern routinely in Southern techniques.
    [Show full text]
  • Retrotransposon-Mediated Host Gene Capture, Complementation
    1 Cascade evolution in poxviruses: retrotransposon-mediated host gene capture, 2 complementation and recombination 3 4 M. Julhasur Rahman1, Sherry L. Haller2, Jie Li3, Greg Brennan1 and Stefan Rothenburg1* 5 6 1 School of Medicine, University of California Davis, Department of Medial Microbiology and 7 Immunology, Davis, CA 95616, USA 8 2 University of Texas Medical Branch at Galveston, Department of Microbiology and 9 Immunology, Galveston, TX 77555, USA 10 3 Genome Center, University of California Davis, Davis, CA 95616, USA 11 *correspondence: [email protected]. ORCID iD:0000-0002-2525-8230 12 13 14 Keywords: horizontal gene transfer; LINE-1; retrotransposons; poxvirus; evolution, PKR; E3L 15 1 16 Abstract 17 18 There is ample phylogenetic evidence that many critical virus functions, like immune evasion, 19 evolved by the acquisition of genes from their hosts by horizontal gene transfer (HGT). However, 20 the lack of an experimental system has prevented a mechanistic understanding of this process. We 21 developed a model to elucidate the mechanisms of HGT into poxviruses. All identified gene 22 capture events showed signatures of LINE-1-mediated retrotransposition. Integrations occurred 23 across the genome, in some cases knocking out essential viral genes. These essential gene 24 knockouts were rescued through a process of complementation by the parent virus followed by 25 non-homologous recombination to generate a single competent virus. This work links multiple 26 evolutionary mechanisms into one adaptive cascade and identifies host retrotransposons as major 27 drivers for virus evolution. 28 29 30 2 31 Introduction 32 33 Horizontal gene transfer (HGT) is the transmission of genetic material between different 34 organisms.
    [Show full text]
  • Modification of Topoisomerase Genes Copy Number in Newly Diagnosed
    Leukemia (2003) 17, 532–540 & 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu Modification of topoisomerase genes copy number in newly diagnosed childhood acute lymphoblastic leukemia E Gue´rin1,2, N Entz-Werle´3, D Eyer3, E Pencreac’h1, A Schneider1, A Falkenrodt4, F Uettwiller3, A Babin3, A-C Voegeli1,5, M Lessard4, M-P Gaub1,2, P Lutz3 and P Oudet1,5 1Laboratoire de Biochimie et de Biologie Mole´culaire Hoˆpital de Hautepierre, Strasbourg, France; 2INSERM U381, Strasbourg, France; 3Service d’Onco-He´matologie Pe´diatrique Hoˆpital de Hautepierre, Strasbourg, France; 4Laboratoire Hospitalier d’He´matologie Biologique Hoˆpital de Hautepierre, Strasbourg, France; and 5INSERM U184, Illkirch, France Topoisomerase genes were analyzed at both DNA and RNA segregation.4 These enzymes act by promoting transient DNA levels in 25 cases of newly diagnosed childhood acute breakage in order to allow strand-passage events and DNA lymphoblastic leukemia (ALL). The results of molecular analy- 5 sis were compared to risk group classification of children in relaxation to occur before rejoining the broken DNA ends. order to identify molecular characteristics associated with Two types of DNA topoisomerases have been described. Type response to therapy. At diagnosis, allelic imbalance at topo- I enzymes, encoded in humans by the TOP1, TOP3A and isomerase IIa (TOP2A) gene locus was found in 75% of TOP3B genes,6–8 cleave only one strand of the DNA helix informative cases whereas topoisomerase I and IIb gene loci whereas type II enzymes, encoded by the human TOP2A and are altered in none or only one case, respectively.
    [Show full text]
  • L1 Retrotransposition Is a Common Feature of Mammalian Hepatocarcinogenesis
    Downloaded from genome.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Research L1 retrotransposition is a common feature of mammalian hepatocarcinogenesis Stephanie N. Schauer,1,12 Patricia E. Carreira,1,12 Ruchi Shukla,2,12 Daniel J. Gerhardt,1,3 Patricia Gerdes,1 Francisco J. Sanchez-Luque,1,4 Paola Nicoli,5 Michaela Kindlova,1 Serena Ghisletti,6 Alexandre Dos Santos,7,8 Delphine Rapoud,7,8 Didier Samuel,7,8 Jamila Faivre,7,8,9 Adam D. Ewing,1 Sandra R. Richardson,1 and Geoffrey J. Faulkner1,10,11 1Mater Research Institute–University of Queensland, Woolloongabba, QLD 4102, Australia; 2Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; 3Invenra, Incorporated, Madison, Wisconsin 53719, USA; 4Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada- Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; 5Department of Experimental Oncology, European Institute of Oncology, 20146 Milan, Italy; 6Humanitas Clinical and Research Center, 20089 Milan, Italy; 7INSERM, U1193, Paul- Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France; 8Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France; 9Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif 94800, France; 10School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia; 11Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) is a continuing source of germline and somatic mutagenesis in mammals. Deregulated L1 activity is a hallmark of cancer, and L1 mutagenesis has been described in numerous human malignancies.
    [Show full text]
  • A Mechanism of Gene Amplification Driven by Small DNA Fragments
    A Mechanism of Gene Amplification Driven by Small DNA Fragments Kuntal Mukherjee, Francesca Storici* School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America Abstract DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s). Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA) occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB) external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region.
    [Show full text]
  • RNA-Dependent Control of Gene Amplification
    RNA-dependent control of gene amplification Gero Heysea, Franziska Jönssona, Wei-Jen Changb, and Hans J. Lippsa,1 aCenter for Biomedical Education and Research, Institute of Cell Biology, University of Witten/Herdecke, 58453 Witten, Germany; and bDepartment of Biology, Hamilton College, Clinton, NY 13323 Edited* by Mark T. Groudine, The Fred Hutchinson Cancer Research Center, Seattle, WA, and approved October 1, 2010 (received for review June 30, 2010) We exploit the unusual genome organization of the ciliate cell to reproduction (conjugation) (11). After conjugation, a new mac- analyze the control of specific gene amplification during a nuclear ronucleus arises from a micronuclear derivative, and the old differentiation process. Ciliates contain two types of nuclei within macronucleus degenerates (12). During this differentiation pro- one cell, the macronucleus and the micronucleus; and after sexual cess, extensive DNA reorganization, DNA fragmentation, and reproduction a new macronucleus is formed from a micronuclear DNA elimination events occur in the developing macronucleus derivative. During macronuclear differentiation, most extensive (macronuclear anlage), which are most extreme in spirotrichous DNA reorganization, elimination, and fragmentation processes ciliates, such as Oxytricha, Stylonychia, or Euplotes. In these or- occur, resulting in a macronucleus containing short DNA molecules ganisms, up to 90% of micronucleus-specific DNA sequences are (nanochromosomes) representing individual genetic units and each eliminated, resulting in a macronucleus with greatly reduced ki- being present in high copy number. It is believed that these pro- netic complexity (13) and fragmented DNA molecules (nano- cesses are controlled by small nuclear RNAs but also by a template chromosomes). More precisely: the micronuclear genome is rich derived from the old macronucleus.
    [Show full text]
  • CRISPR-Based Engineering of Gene Knockout Cells by Homology-Directed Insertion in Polyploid Drosophila S2R+ Cells
    PROTOCOL https://doi.org/10.1038/s41596-020-0383-8 CRISPR-based engineering of gene knockout cells by homology-directed insertion in polyploid Drosophila S2R+ cells 1 1,2 1 1,2 Baolong Xia , Gabriel Amador , Raghuvir Viswanatha✉ , Jonathan Zirin , Stephanie E. Mohr 1,2 and Norbert Perrimon 1,2,3 Precise and efficient genome modifications provide powerful tools for biological studies. Previous CRISPR gene knockout methods in cell lines have relied on frameshifts caused by stochastic insertion/deletion in all alleles. However, this method is inefficient for genes with high copy number due to polyploidy or gene amplification because frameshifts in all alleles can be difficult to generate and detect. Here we describe a homology-directed insertion method to knockout genes in the polyploid Drosophila S2R+ cell line. This protocol allows generation of homozygous mutant cell lines using an insertion cassette which autocatalytically generates insertion mutations in all alleles. Knockout cells generated using this method can be directly identified by PCR without a need for DNA sequencing. This protocol takes 2–3 months and can be applied to other polyploid cell lines or high-copy-number genes. 1234567890():,; 1234567890():,; Introduction The CRISPR/Cas system can introduce DNA double-strand breaks at specific genomic sites targeted – by guide RNAs (sgRNAs)1 3. Following the generation of double-strand breaks, the DNA repair machinery mediates repair by either the error-prone non-homologous end-joining (NHEJ) pathway or the high-fidelity homology-directed repair (HDR) pathway4. Previous gene knockout methods harnessed NHEJ to stochastically introduce insertions/deletions (indels) at the cleavage site in the coding region, a subset of which cause frameshifts, followed by identification of modified cells in – which all alleles contain frameshift mutations in the target site5 7.
    [Show full text]
  • Nuclear Pseudogenes of Mitochondrial DNA As a Variable Part of the Human Genome
    Cell Research (1999), 9, 281-290 Nuclear pseudogenes of mitochondrial DNA as a variable part of the human genome Y UAN JIN DUO1,2 , JIN XIU SHI1 , GUANG XUN MENG1,2, LI GUO AN2, GENG XI HU1 1. Shanghai Institute of Cell Biology and the Shanghai Life Science Center, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China 2. Department of Biology, Shandong Normal University, Jinan 250014, China ABSTRACT Novel pseudogenes homologous to the mitochondrial (mt) 16S rRNA gene were detected via different approaches. Eight pseudogenes were sequenced. Copy number polymorphism of the mtDNA pseudogenes was observed among randomly cho- sen individuals, and even among siblings. A mtDNA pseudogene in the Y-chromosome was observed in a YAC clone carrying only repetitive sequence tag site (STS). PCR screening of hu- man yeast artificial chromosome (YAC) libraries showed that there were at least 5.7 105 bp of the mtDNA pseudo-genes in each haploid nuclear genome. Possible involvement of the mtDNA pseudogenes in the variable part of the human nuclear genome is discussed. Key words: Gene amplification, genome instability, mitochon- drial, pseudogene. INTRODUCTION Nuclear pseudogenes of mitochondrial (mt) DNA were initially discovered in the early 80 s[1-6]. However, mechanisms for the generation of mtDNA pseudogenes are still not clear and may vary in different cases. Both RNA-[7-8] and DNA mediated[9-11] processes * Corresponding author: Shanghai Institute of Cell Biology, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Tel: 86-21-64378218 Fax: 86-21-64718563 E-mail: [email protected] Polymorphism of hum-mtDNA pseudogenes have been suggested.
    [Show full text]
  • Gene Duplication and Gene Fusion Are Important Drivers of Tumourigenesis During Cancer Evolution
    G C A T T A C G G C A T genes Review Gene Duplication and Gene Fusion Are Important Drivers of Tumourigenesis during Cancer Evolution Cian Glenfield and Hideki Innan * Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawar 240-0193, Japan; glenfi[email protected] * Correspondence: [email protected] Abstract: Chromosomal rearrangement and genome instability are common features of cancer cells in human. Consequently, gene duplication and gene fusion events are frequently observed in human malignancies and many of the products of these events are pathogenic, representing significant drivers of tumourigenesis and cancer evolution. In certain subsets of cancers duplicated and fused genes appear to be essential for initiation of tumour formation, and some even have the capability of transforming normal cells, highlighting the importance of understanding the events that result in their formation. The mechanisms that drive gene duplication and fusion are unregulated in cancer and they facilitate rapid evolution by selective forces akin to Darwinian survival of the fittest on a cellular level. In this review, we examine current knowledge of the landscape and prevalence of gene duplication and gene fusion in human cancers. Keywords: tumour evolution; gene duplication; gene amplification; gene fusion; cancer genome; genome rearrangement Citation: Glenfield, C.; Innan, H. Gene Duplication and Gene Fusion Are Important Drivers of 1. Introduction Tumourigenesis during Cancer Gene duplication is thought to be one of the predominant processes by which new Evolution. Genes 2021, 12, 1376. genes and genetic novelty arise throughout evolution [1–5], and much of the same hallmark https://doi.org/10.3390/ structural variation that facilitates genomic evolution over long periods of time, including genes12091376 gene duplication and gene fusion, can also be observed occurring rapidly in cancer during tumour formation.
    [Show full text]