Severe Anemia in the Nan Mutant Mouse Caused by Sequence-Selective Disruption of Erythroid Krüppel-Like Factor

Total Page:16

File Type:pdf, Size:1020Kb

Severe Anemia in the Nan Mutant Mouse Caused by Sequence-Selective Disruption of Erythroid Krüppel-Like Factor Severe anemia in the Nan mutant mouse caused by sequence-selective disruption of erythroid Krüppel-like factor Miroslawa Siateckaa, Kenneth E. Sahrb, Sabra G. Andersenb, Mihaly Mezeic, James J. Biekera,d,e,1, and Luanne L. Petersb,1 aDepartment of Developmental and Regenerative Biology, cDepartment of Structural and Chemical Biology, dBlack Family Stem Cell Institute, and eTisch Cancer Institute, Mount Sinai School of Medicine, New York, NY 10029; and bThe Jackson Laboratory, Bar Harbor, ME 04609 Edited by Mark T. Groudine, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved July 13, 2010 (received for review April 13, 2010) Studies of mouse models of anemia have long provided funda- directly influence this bipotential lineage decision by repressing mental insights into red blood cell formation and function. Here megakaryopoiesis while accentuating erythropoiesis (10–12). we show that the semidominant mouse mutation Nan (“neonatal The activation function of EKLF has been analyzed most ex- anemia”) carries a single amino acid change (E339D) within the tensively at the β-globin locus, where its plays critical roles in ge- second zinc finger of the erythroid Krüppel-like factor (EKLF), a crit- netic regulation of the adult β-globin promoter (13, 14). First, ical erythroid regulatory transcription factor. The mutation alters specific amino acids within its three C2H2 zinc fingers interact with the DNA-binding specificity of EKLF so that it no longer binds pro- guanosine residues at its cognate DNA binding site, leading to moters of a subset of its DNA targets. Remarkably, even when mu- precise and high-affinity binding (5, 15). Second, it integrates tant Nan and wild-type EKLF alleles are expressed at equivalent chromatin remodeling and transcriptional activities via critical levels, the mutant form selectively interferes with expression of protein–protein interactions (16–19). Consequently, EKLF plays EKLF target genes whose promoter elements it no longer binds. This a central role in establishing the precise 3D looping of the distant interference yields a distorted genetic output and selective protein locus control region with the proximal β-globin promoter in adult deficiencies that differ from those seen in EKLF-heterozygous and erythroid cells (20), resulting in formation of an active chromatin EKLF-null red blood cells and presents a unique and unexpected hub. Third, EKLF is a regulator of β-like globin switching (21). mechanism of inherited disease. Although EKLF heterozygotes are phenotypically normal, in the total absence of EKLF the active chromatin hub is not properly mouse model | neonatal anemia | red blood cells | zinc finger mutation formed (20), and adult β-globin is not expressed, leading to em- bryonic lethality by E14.5 caused by profound β-thalassemia (22, ereditary spherocytosis (HS) is the most common cause of 23). At the same time, murine embryonic ßh1-globin and (trans- Hinherited hemolytic anemia in Northern Europeans, with an genic) human fetal γ-globin genes are not switched off properly estimated frequency of ∼1/5,000 (1). Defects in the structural and remain expressed at higher levels and for a longer time during components of the red blood cell membrane skeleton comprising development (24–26). In humans, point mutations in the EKLF vertical interactions with the overlying lipid bilayer (spectrin, cognate binding site lead to β-thalassemia (15) with markedly el- ankyrin, protein 4.2, band 3) underlie HS, which follows from evated fetal hemoglobin levels (27). mechanically weakened red blood cells that lose membrane sur- We have identified a single amino acid substitution (E339D) in face area, become increasingly spheroidal, and are removed by the the second zinc finger of EKLF in Nan mutants. The earlier em- spleen (1). bryonic lethality of Nan homozygotes and severe anemia in Nan Spontaneous and targeted mutations in membrane skeleton heterozygotes distinguish Nan mutants from targeted EKLF genes in mice have been instrumental in defining the components, knockout strains and led us to investigate the molecular nature of GENETICS interactions, and functions of membrane skeleton proteins (2). The the EKLF mutation in detail. We find that the E339D change in mouse mutation Nan (for “neonatal anemia”) is an ethylnitrosourea EKLF results in failure to bind and transactivate a subset of fi (ENU)-induced semidominant hemolytic anemia rst described by downstream targets in Nan erythroid cells in a manner dependent Nan Mary Lyon more than 25 y ago (3). homozygotes die at em- on the cognate EKLF DNA binding sequence, in which a single – “ ” bryonic day (E)10 11 from a severe lack of haemopoiesis; with no nucleotide makes the difference between recognition by both WT Nan overt, nonerythroid defects evident. Heterozygotes ( /+) survive and Nan-EKLF versus recognition by WT EKLF alone. An EKLF- with a life-long, severe hemolytic anemia that displays many features DNA interaction model provides a structural basis for the failure of HS including increased osmotic fragility, splenomegaly, and iron of Nan-EKLF to bind selective recognition sites. Moreover, the Nan deposition in the kidney, liver, and spleen (12). is transferable Nan-EKLF variant distorts the expression pattern of EKLF target through hematopoietic stem cells and localizes to mouse chromo- genes even in the presence of WT EKLF. Quite unexpectedly, the some (Chr) 8 (4). Here, we describe positional cloning of Nan. fi Nan Nan genes de cient in expression in heterozygotes are those whose Unlike other models of HS, does not carry a primary defect in EKLF binding elements are not recognized by Nan-EKLF. Such a membrane skeleton gene. Rather, Nan is caused by a mutation in Klf1 target-selective effects lead to a distorted genetic readout and the Krüppel-like factor 1 ( ) gene encoding erythroid Krüppel- account for the severe anemia in Nan/+ mice. Our findings have like factor (EKLF) (14). The mutation causes HS by a mechanism that is unique not only to HS but to genetic disease in general. EKLF, the founding member of the KLF family of transcription fi Author contributions: M.S., J.J.B., and L.L.P. designed research; M.S., K.E.S., S.G.A., and factors (5, 6), is a hematopoietic C2H2 zinc nger transcriptional M.M. performed research; M.S., J.J.B., and L.L.P. analyzed data; and M.S., J.J.B., and L.L.P. factor that plays a global role in erythroid gene expression by wrote the paper. regulating expression of heme biosynthetic, red blood cell mem- The authors declare no conflict of interest. – brane, globin stabilizing, and cell-cycle proteins (7 9). During This article is a PNAS Direct Submission. fi hematopoiesis, EKLF rst is expressed at low levels in common 1To whom correspondence may be addressed. E-mail: [email protected] or luanne. myeloid progenitors but achieves a high level of expression solely [email protected]. within the megakaryocyte-erythroid progenitor, remaining ele- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. vated selectively in its red blood cell progeny (10). EKLF levels 1073/pnas.1004996107/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1004996107 PNAS | August 24, 2010 | vol. 107 | no. 34 | 15151–15156 Downloaded by guest on October 2, 2021 general implications for the structural parameters involved in We fine-mapped Nan to a 1.3-megabase interval between DNA recognition by KLF proteins and the unanticipated selective D8Mit78 and D8Mit79 on Chr 8 (Ensemble, http://www.ensembl. effects on target gene regulation that can arise after mutation. org) containing 46 known or predicted genes (Mouse Genome Informatics, http://www.informatics.jax.org). More than 600 kb of Results sequence were obtained, including all exons and intron–exon Phenotyping and Mapping of Nan. In agreement with original reports boundaries. Only Klf1 showed a sequence change in Nan: an A-to- (3, 4), we find that Nan homozygotes die in utero at ∼E10–11. T transversion at base pair 1064 (reference sequence NM_010635) Heterozygotes are severely anemic at birth and throughout life. Loss changes glutamic acid to aspartic acid in exon 3 (E339D) within the of heterozygotes in utero occurs also; reciprocal Nan/+ × WT second zinc finger required for DNA binding (14). The change matings produce only 34% affected offspring. The red blood cell creates an MboI site that segregates 100% with the Nan mutation. count, hemoglobin, and hematocrit are decreased significantly in Sequencing of Klf1 in E9.5 WT, Nan/+, and Nan/Nan DNA Nan/+ adults as compared with WT (Table S1). Circulating retic- showed the expected sequence change (Fig. 1G). ulocytes and spleen weights are increased dramatically (Table S2) Peripheral blood smears (Fig. 1A) reveal extensive anisocytosis with E339D Selectively Alters Target Gene Binding. Each EKLF zinc fin- many microcytes, spherocytes, and hypochromic cells, consistent ger interacts primarily with the G-rich strand of its DNA target via with the increased red blood cell distribution width and hemoglobin critical basic amino acid–guanosine interactions that yield a highly distribution width. Platelet levels are slightly but significantly in- specific consensus interaction sequence (5) (Fig. 2A). Mutations in creased (Table S1). this sequence lead to β-thalassemia in humans (HbVar: http:// Nan/+ bilirubin and iron levels do not differ significantly from globin.bx.psu.edu/cgi-bin/hbvar/query_vars3). The E339D muta- controls, but zinc protoporphyrin is dramatically increased (Table tion is located in the second zinc finger of EKLF in position +3 of S2), suggesting that a heme biosynthesis defect is unlikely (28). its α-helix, within the structural motif of the C2H2-type finger that Consistent with severe hemolysis, iron accumulates in Nan/+ fits into the DNA major groove (15). Based on structural data from kidney (Fig. 1B), liver (Fig. 1C), and spleen (Fig. 1D). Erythro- other C2H2 zinc finger proteins (31, 32), this position is involved in poietic foci are observed in the mutant liver (Fig.
Recommended publications
  • Calcium-Induced Calcium Release in Noradrenergic Neurons of the Locus Coeruleus
    bioRxiv preprint doi: https://doi.org/10.1101/853283; this version posted November 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Calcium-induced calcium release in noradrenergic neurons of the locus coeruleus Hiroyuki Kawano1, Sara B. Mitchell1, Jin-Young Koh1,2,3, Kirsty M. Goodman1,4, and N. Charles Harata1,* 1 Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA 2 Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology-Head and Neck Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA 3 Department of Biomedical Engineering, University of Iowa College of Engineering, Iowa City, IA, USA 4 Department of Biology & Biochemistry, University of Bath, Bath, UK * Correspondence to: N. Charles Harata, MD, PhD Department of Molecular Physiology & Biophysics University of Iowa Carver College of Medicine 51 Newton Road, Iowa City, IA 52242, USA Phone: 1-319-335-7820 Fax: 1-319-335-7330 E-mail: [email protected] Number of words: 8620; Number of figures: 12. 1 bioRxiv preprint doi: https://doi.org/10.1101/853283; this version posted November 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Molecular Basis of Spectrin Deficiency in Beta Spectrin Durham. a Deletion
    Molecular basis of spectrin deficiency in beta spectrin Durham. A deletion within beta spectrin adjacent to the ankyrin-binding site precludes spectrin attachment to the membrane in hereditary spherocytosis. H Hassoun, … , S S Chiou, J Palek J Clin Invest. 1995;96(6):2623-2629. https://doi.org/10.1172/JCI118327. Research Article We describe a spectrin variant characterized by a truncated beta chain and associated with hereditary spherocytosis. The clinical phenotype consists of a moderate hemolytic anemia with striking spherocytosis and mild spiculation of the red cells. We describe the biochemical characteristics of this truncated protein which constitutes only 10% of the total beta spectrin present on the membrane, resulting in spectrin deficiency. Analysis of reticulocyte cDNA revealed the deletion of exons 22 and 23. We show, using Southern blot analysis, that this truncation results from a 4.6-kb genomic deletion. To elucidate the basis for the decreased amount of the truncated protein on the membrane and the overall spectrin deficiency, we show that (a) the mutated gene is efficiently transcribed and its mRNA abundant in reticulocytes, (b) the mutant protein is normally synthesized in erythroid progenitor cells, (c) the stability of the mutant protein in the cytoplasm of erythroblasts parallels that of the normal beta spectrin, and (d) the abnormal protein is inefficiently incorporated into the membrane of erythroblasts. We conclude that the truncation within the beta spectrin leads to inefficient incorporation of the mutant protein into the skeleton despite its normal synthesis and stability. We postulate that this misincorporation results from conformational changes of the beta spectrin subunit affecting the binding of the abnormal heterodimer to ankyrin, and we provide evidence […] Find the latest version: https://jci.me/118327/pdf Molecular Basis of Spectrin Deficiency in p8 Spectrin Durham A Deletion within .3 Spectrin Adjacent to the Ankyrin-binding Site Precludes Spectrin Attachment to the Membrane in Hereditary Spherocytosis Hani Hassoun,* John N.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Enhanced Ca2+ Influx in Mechanically Distorted Erythrocytes Measured with 19F Nuclear Magnetic Resonance Spectroscopy
    www.nature.com/scientificreports OPEN Enhanced Ca2+ infux in mechanically distorted erythrocytes measured with 19F nuclear magnetic resonance spectroscopy Philip W. Kuchel1*, Konstantin Romanenko1, Dmitry Shishmarev2, Petrik Galvosas3 & Charles D. Cox4,5 We present the frst direct nuclear magnetic resonance (NMR) evidence of enhanced entry of Ca2+ ions into human erythrocytes (red blood cells; RBCs), when these cells are mechanically distorted. For this we loaded the RBCs with the fuorinated Ca2+ chelator, 1,2-bis(2-amino-5-fuorophenoxy)ethane- N,N,N′,N′-tetraacetic acid (5FBAPTA), and recorded 19F NMR spectra. The RBCs were suspended in gelatin gel in a special stretching/compression apparatus. The 5FBAPTA was loaded into the cells as the tetraacetoxymethyl ester; and 13C NMR spectroscopy with [1,6-13C]d-glucose as substrate showed active glycolysis albeit at a reduced rate in cell suspensions and gels. The enhancement of Ca2+ infux is concluded to be via the mechanosensitive cation channel Piezo1. The increased rate of infux brought about by the activator of Piezo1, 2-[5-[[(2,6-dichlorophenyl)methyl]thio]-1,3,4-thiadiazol-2-yl]- pyrazine (Yoda1) supported this conclusion; while the specifcity of the cation-sensing by 5FBAPTA was confrmed by using the Ca2+ ionophore, A23187. Abbreviations 5FBAPTA 1,2-Bis(2-amino-5-fuorophenoxy)ethane-N,N,N′,N′-tetraacetic acid 5FBAPTA-AM Tetraacetoxymethyl ester of 1,2-bis(2-amino-5-fuorophenoxy)ethane-N,N,N′,N′-tetraacetic acid ATP Adenosine triphosphate CEST Chemical exchange saturation transfer DMSO Dimethylsulfoxide DTE Dithioerythritol FID Free induction decay Ht Haematocrit NMR Nuclear magnetic resonance PMCA Plasma membrane calcium ATPase RBC Red blood cell S/N Signal-to-noise ratio Yoda1 2-[5-[[(2,6-Dichlorophenyl)methyl]thio]-1,3,4-thiadiazol-2-yl]-pyrazine Ca2+ dependent enhanced glycolysis.
    [Show full text]
  • Erythrocytes: Overview, Morphology, Quantity by AH Rebar Et
    In: A Guide to Hematology in Dogs and Cats, Rebar A.H., MacWilliams P.S., Feldman B.F., Metzger F.L., Pollock R.V.H. and Roche J. (Eds.). Publisher: Teton NewMedia, Jackson WY (www.veterinarywire.com). Internet Publisher: International Veterinary Information Service, Ithaca NY (www.ivis.org), 8-Feb-2005; A3304.0205 Erythrocytes: Overview, Morphology, Quantity A.H. Rebar1, P.S. MacWilliams2, B.F. Feldman 3, F.L. Metzger 4, R.V.H. Pollock 5 and J. Roche 6 1Dept of Veterinary Pathobiology, School of Veterinary Medicine, Purdue University, IN,USA. 2Dept of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, WI, USA. 3Dept of Biomedical Sciences & Pathobiology, VA-MD - Regional College of Veterinary Medicine, Virginia Tech, VA, USA. 4Metzger Animal Hospital,State College,PA, USA. 5Fort Hill Company, Montchanin, DE, USA. 6 Hematology Systems, IDEXX Laboratories, Westbrook, ME, USA. Overview Production Red blood cells (RBC) are produced in the bone marrow. Numbers of circulating RBCs are affected by changes in plasma volume, rate of RBC destruction or loss, splenic contraction, erythropoietin (EPO) secretion, and the rate of bone marrow production. A normal PCV is maintained by an endocrine loop that involves generation and release of erythropoietin (EPO) from the kidney in response to renal hypoxia. Erythropoietin stimulates platelet production as well as red cell production. However, erythropoietin does not stimulate white blood cell (WBC) production. Erythropoiesis and RBC numbers are also affected by hormones from the adrenal cortex, thyroid, ovary, testis, and anterior pituitary. Destruction Red cells have a finite circulating lifespan. In dogs, the average normal red cell circulates approximately 100 days.
    [Show full text]
  • Hereditary Spherocytosis: Clinical Features
    Title Overview: Hereditary Hematological Disorders of red cell shape. Disorders Red cell Enzyme disorders Disorders of Hemoglobin Inherited bleeding disorders- platelet disorders, coagulation factor Anthea Greenway MBBS FRACP FRCPA Visiting Associate deficiencies Division of Pediatric Hematology-Oncology Duke University Health Service Inherited Thrombophilia Hereditary Disorders of red cell Disorders of red cell shape (cytoskeleton): cytoskeleton: • Mutations of 5 proteins connect cytoskeleton of red cell to red cell membrane • Hereditary Spherocytosis- sphere – Spectrin (composed of alpha, beta heterodimers) –Ankyrin • Hereditary Elliptocytosis-ellipse, elongated forms – Pallidin (band 4.2) – Band 4.1 (protein 4.1) • Hereditary Pyropoikilocytosis-bizarre red cell forms – Band 3 protein (the anion exchanger, AE1) – RhAG (the Rh-associated glycoprotein) Normal red blood cell- discoid, with membrane flexibility Hereditary Spherocytosis: Clinical features: • Most common hereditary hemolytic disorder (red cell • Neonatal jaundice- severe (phototherapy), +/- anaemia membrane) • Hemolytic anemia- moderate in 60-75% cases • Mutations of one of 5 genes (chromosome 8) for • Severe hemolytic anaemia in 5% (AR, parents ASx) cytoskeletal proteins, overall effect is spectrin • fatigue, jaundice, dark urine deficiency, severity dependant on spectrin deficiency • SplenomegalSplenomegaly • 200-300:million births, most common in Northern • Chronic complications- growth impairment, gallstones European countries • Often follows clinical course of affected
    [Show full text]
  • (EGF) in the Regulation of Ion Channels in the Calu-3 Submucosal Cell Line
    The Novel Role of Epidermal Growth Factor (EGF) in the regulation of ion channels in the Calu-3 submucosal cell line Craig S. Clements BSc MSc A Thesis Presented to Faculty of Medicine and Health Sciences, Norwich Medical School University of East Anglia In Fulfilment of the Requirements of the University of East Anglia for the Degree of Doctor of Philosophy September 2012 © This copy of thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any information derived from it, may be published without the author’s prior written consent. Declaration I hereby declare that the work in this thesis is my own work and effort and that it has not been submitted anywhere for any award. Where other sources of information have been used, they have been acknowledged. Signature: Date: 6th September, 2012 2 Abstract Cystic fibrosis transmembrane conductance regulator (CFTR) is a cell membrane bound chloride ion channel regulated by cyclic AMP-dependent phosphorylation and levels of intracellular ATP. Mutations in this channel, such as the common deletion of phenylalanine at residue 508 (CFTRΔF508), leads to a decrease in chloride transport seen in the disease condition cystic fibrosis (CF). The mutant CFTR is not processed in the normal way and consequently not delivered to the cell membrane. Currently, the effect of growth factors such as epidermal growth factor (EGF) on ion transport in the airway has not been previously researched and is consequently unknown. Therefore the aim of this thesis is to determine (i) if EGF has an effect on ion transport in the submucosal cell line Calu-3, (ii) what the mechanisms are behind this, and (iii) if the effect of EGF was due to induction of gelatinase activity or a transactivation process.
    [Show full text]
  • Inhibition of Radiation and Temozolomide-Induced Glioblastoma Invadopodia Activity Using Ion Channel Drugs
    cancers Article Inhibition of Radiation and Temozolomide-Induced Glioblastoma Invadopodia Activity Using Ion Channel Drugs Marija Dinevska 1 , Natalia Gazibegovic 2 , Andrew P. Morokoff 1,3, Andrew H. Kaye 1,4, Katharine J. Drummond 1,3, Theo Mantamadiotis 1,5 and Stanley S. Stylli 1,3,* 1 Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia; [email protected] (M.D.); morokoff@unimelb.edu.au (A.P.M.); [email protected] (A.H.K.); [email protected] (K.J.D.); [email protected] (T.M.) 2 Victoria University, St. Albans 3021, Victoria, Australia; [email protected] 3 Department of Neurosurgery, The Royal Melbourne Hospital, Parkville 3050, Victoria, Australia 4 Hadassah University Medical Centre, Jerusalem 91120, Israel 5 Department of Microbiology & Immunology, School of Biomedical Sciences, The University of Melbourne, Parkville 3010, Victoria, Australia * Correspondence: [email protected] or [email protected] Received: 8 September 2020; Accepted: 30 September 2020; Published: 8 October 2020 Simple Summary: Glioblastoma accounts for approximately 40–50% of all primary brain cancers and is a highly aggressive cancer that rapidly disseminates within the surrounding normal brain. Dynamic actin-rich protrusions known as invadopodia facilitate this invasive process. Ion channels have also been linked to a pro-invasive phenotype and may contribute to facilitating invadopodia activity in cancer cells. The aim of our study was to screen ion channel-targeting drugs for their cytotoxic efficacy and potential anti-invadopodia properties in glioblastoma cells. We demonstrated that the targeting of ion channels in glioblastoma cells can lead to a reduction in invadopodia activity and protease secretion.
    [Show full text]
  • Hereditary Spherocytosis
    Hereditary Spherocytosis o RBC band 3 protein testing is a very sensitive and Indications for Ordering specific test for the diagnosis of hereditary Use to confirm diagnosis of hereditary spherocytosis when spherocytosis hemolytic anemia and spherocytes are present Physiology • RBC band 3 protein is a major structural protein of RBCs Test Description o Reduction in the amount of band 3 fluorescence after Test Methodology binding with EMA correlates with spherocytosis • Red blood cell (RBC) surface protein band 3 staining with Genetics eosin-5-maleimide (EMA) analyzed by flow cytometry Clinical Validation Genes: ANK1, EPB42, SLC4A1, SPTA1, SPTB • Validated against the clinical diagnosis of hereditary Inheritance spherocytosis supported by osmotic fragility and/or • Autosomal dominant: 75% molecular testing • Autosomal recessive: 25% Tests to Consider Penetrance: variable Structure/Function Primary Test • Chromosomal location: 17q21.31 RBC Band 3 Protein Reduction in Hereditary Spherocytosis • Provides structure for the red cell cytoskeleton 2008460 • Use to confirm diagnosis of hereditary spherocytosis Test Interpretation when hemolytic anemia and spherocytes are present Sensitivity/Specificity Related Test • Clinical sensitivity: 93% Osmotic Fragility, Erythrocyte 2002257 • Analytical sensitivity/specificity: unknown • Functional testing of RBC sensitivity to osmotic stress Results Disease Overview • Normal o Normal staining of band 3 protein with EMA does not Prevalence: 1/2,000 in northern Europeans suggest hereditary spherocytosis
    [Show full text]
  • Spatial Distribution of Leading Pacemaker Sites in the Normal, Intact Rat Sinoa
    Supplementary Material Supplementary Figure 1: Spatial distribution of leading pacemaker sites in the normal, intact rat sinoatrial 5 nodes (SAN) plotted along a normalized y-axis between the superior vena cava (SVC) and inferior vena 6 cava (IVC) and a scaled x-axis in millimeters (n = 8). Colors correspond to treatment condition (black: 7 baseline, blue: 100 µM Acetylcholine (ACh), red: 500 nM Isoproterenol (ISO)). 1 Supplementary Figure 2: Spatial distribution of leading pacemaker sites before and after surgical 3 separation of the rat SAN (n = 5). Top: Intact SAN preparations with leading pacemaker sites plotted during 4 baseline conditions. Bottom: Surgically cut SAN preparations with leading pacemaker sites plotted during 5 baseline conditions (black) and exposure to pharmacological stimulation (blue: 100 µM ACh, red: 500 nM 6 ISO). 2 a &DUGLDFIoQChDQQHOV .FQM FOXVWHU &DFQDG &DFQDK *MD &DFQJ .FQLS .FQG .FQK .FQM &DFQDF &DFQE .FQM í $WSD .FQD .FQM í .FQN &DVT 5\U .FQM &DFQJ &DFQDG ,WSU 6FQD &DFQDG .FQQ &DFQDJ &DFQDG .FQD .FQT 6FQD 3OQ 6FQD +FQ *MD ,WSU 6FQE +FQ *MG .FQN .FQQ .FQN .FQD .FQE .FQQ +FQ &DFQDD &DFQE &DOP .FQM .FQD .FQN .FQG .FQN &DOP 6FQD .FQD 6FQE 6FQD 6FQD ,WSU +FQ 6FQD 5\U 6FQD 6FQE 6FQD .FQQ .FQH 6FQD &DFQE 6FQE .FQM FOXVWHU V6$1 L6$1 5$ /$ 3 b &DUGLDFReFHSWRUV $GUDF FOXVWHU $GUDD &DY &KUQE &KUP &KJD 0\O 3GHG &KUQD $GUE $GUDG &KUQE 5JV í 9LS $GUDE 7SP í 5JV 7QQF 3GHE 0\K $GUE *QDL $QN $GUDD $QN $QN &KUP $GUDE $NDS $WSE 5DPS &KUP 0\O &KUQD 6UF &KUQH $GUE &KUQD FOXVWHU V6$1 L6$1 5$ /$ 4 c 1HXURQDOPURWHLQV
    [Show full text]
  • Hereditary Spherocytosis (HS)
    Hereditary Spherocytosis (HS) Hereditary spherocytosis (HS) is a medical term for a condition What are the symptoms of HS? which affects the red blood cells. Symptoms of HS are due to 2 processes: hemolysis and anemia. What are red blood cells? When red blood cells break down (hemolysis), they release biliruin Blood contains 3 types of cells: red blood cells (RBC), white blood into the bloodstream, which causes yellowing of the skin (jaundice) cells (WBC), and platelets. Red blood cells are the most common and eyes. Hemolysis causes different problems depending on the type of blood cell, and are responsible for delivering oxygen to all age: parts of the body. • Newborns – may need light therapy or further measures Red blood cells, like white cells and platelets, are continuously made • Children – increasing size of the spleen in the bone marrow. When released into the bloodstream, the average lifespan of a red cell is 120 days. • Teens/adults – gallstones that may require surgery Under the microscope, normal red cells are shaped like discs or If enough red cells are destroyed, the red cell count will be low donuts with the centers partially scooped out. This shape makes (anemia). Symptoms of anemia include looking pale, being tired or them very soft and flexible, so they can easily squeeze through even weak, headaches, poor concentration, and challenges with behavior very small blood vessels. and school. Sometimes there is a problem with the wall of the red cell, and they How is HS treated? change shape to look like spheres or balls. These cells are called ‘spherocytes’.
    [Show full text]
  • Hemolytic Anemia (Aiha) Clinical Hemolysis Indicators
    October 15, 2013 GME Morning report Harmesh Naik, MD. AUTO IMMUNE HEMOLYTIC ANEMIA (AIHA) CLINICAL HEMOLYSIS INDICATORS Anemia High reticulocyte counts Elevated LDH level Unconjugated (indirect) hyper bilirubinemia Reduced haptoglobin level Hemoglobinuria COMPARISON Autoimmune hemolytic anemia Hereditary spherocytosis Hemolysis Hemolysis Spherocytes Spherocytes Splenomegaly Splenomegaly DAT positive DAT negative No Family history Family history TYPE OF ANTIBODY Auto antibody – generally seen in AIHA- detected generally by DAT Allo antibody – generally seen after transfusion of donor RBCs containing antigen – detected generally by IAT ANTI GLOBULIN TEST (COOMB’S TEST) Developed by Coombs in 1945 THE DIRECT ANTIGLOBULIN TEST (DAT) AND INDIRECT ANTIGLOBULIN TEST (IAT). Zarandona J M , and Yazer M H CMAJ 2006;174:305-307 DIRECT COOMB’S TEST (DAT) Detects IgG or complement coating on surface of circulating RBCs Detects In Vivo sensitization of RBCs Useful in differentiating immune mediated hemolysis Generally detects auto-antibodies in AIHA DIRECT COOMB’S TEST (DAT) Auto antibodies in AIHA are generally IgG antibodies with high affinity for human RBCs at 37*C 9body temperature) As a result most of antibody is bound to RBCs and very little is free in plasma So DAT can find RBC bound antibody effectively INDIRECT COOMB’S TEST (IAT OR ANTIBODY SCREENING) Detects antibodies in serum (IgG antibodies in serum) Detects in vitro sensitization of RBCs COLD AUTO ANTIBODY Spontaneous agglutination after incubation of patient serum
    [Show full text]