Essential Matrix” • Two Uncalibrated Cameras “Fundamental Matrix” • Gives Epipolar Lines

Total Page:16

File Type:pdf, Size:1020Kb

Essential Matrix” • Two Uncalibrated Cameras “Fundamental Matrix” • Gives Epipolar Lines Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices CS 4495 Computer Vision N-Views (2) – Essential and Fundamental Matrices Aaron Bobick School of Interactive Computing Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Administrivia • Today: Second half of N-Views (n = 2) • PS 3: Will hopefully be out by Thursday • Will be due October 6th. • Will be based upon last week and today’s material • We may revisit the logistics – suggestions? Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Two views…and two lectures • Projective transforms from image to image • Some more projective geometry • Points and lines and planes • Two arbitrary views of the same scene • Calibrated – “Essential Matrix” • Two uncalibrated cameras “Fundamental Matrix” • Gives epipolar lines Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Last time • Projective Transforms: Matrices that provide transformations including translations, rotations, similarity, affine and finally general (or perspective) projection. • When 2D matrices are 3x3; for 3D they are 4x4. Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Last time: Homographies • Provide mapping between images (image planes) taken from same center of projection; also mapping between any images of a planar surface. PP2 PP1 Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Last time: Projective geometry • A line is a plane of rays through origin – all rays (x,y,z) satisfying: ax + by + cz = 0 x in vector notation : 0 = [a b c]y z l p • A line is also represented as a homogeneous 3-vector l Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Projective Geometry: lines and points p 2D Lines: ax+ by += c 0 1 p x 2 [abcy] = 0 p1 = [x1 y1 1] = × 1 l p1 p2 Eq of line p2 = [x2 y2 1] T = lx 0 x12 = ⇒ l[ abc] nxy n d (nx, ny) d l1 = [a1 b1 c1] x12 = l1 × l2 l2 = [a2 b2 c2] Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Motivating the problem: stereo • Given two views of a scene (the two cameras not necessarily having optical axes) what is the relationship between the location of a scene point in one image and its location in the other? Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Stereo correspondence • Determine Pixel Correspondence • Pairs of points that correspond to same scene point P epipolar line epipolar plane epipolar line CP 1 CP2 Epipolar Constraint • Reduces correspondence problem to 1D search along conjugate epipolar lines Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Example: converging cameras Figure from Hartley & Zisserman Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Epipolar geometry: terms • Baseline: line joining the camera centers • Epipole: point of intersection of baseline with image plane • Epipolar plane: plane containing baseline and world point • Epipolar line: intersection of epipolar plane with the image plane • All epipolar lines intersect at the epipole • An epipolar plane intersects the left and right image planes in corresponding epipolar lines Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices From Geometry to Algebra • So far, we have the explanation in terms of geometry. • Now, how to express the epipolar constraints algebraically? Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Stereo geometry, with calibrated cameras Main idea Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Stereo geometry, with calibrated cameras If the stereo rig is calibrated, we know : how to rotate and translate camera reference frame 1 to get to camera reference frame 2. Rotation: 3 x 3 matrix R; translation: 3 vector T. Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Stereo geometry, with calibrated cameras If the stereo rig is calibrated, we know : how to rotate and translate camera reference frame 1 to get to camera reference frame 2. X' = RX + T c c Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices An aside: cross product ab×= c Vector cross product takes two vectors and returns a third vector that’s perpendicular to both inputs. So here, c is perpendicular to both a and b, which means the dot product = 0. ac⋅=0 bc⋅=0 Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices From geometry to algebra X'= RX + T X′⋅(T× X′) = X′⋅(T× RX) T× X′ = T× RX + T×T Normal to the plane 0 =⋅×X′ ( T RX) = T× RX Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Another aside: Matrix form of cross product 0 − a a b 3 2 1 × = − = a b a3 0 a1 b2 c − a2 a1 0 b3 Can be expressed as a matrix multiplication!!! 0 − a3 a2 Notation: [a ]= a 0 − a x 3 1 ab×=[ ab× ] − a2 a1 0 Has rank 2! Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices From geometry to algebra X'= RX + T X′⋅(T× X′) = X′⋅(T× RX) T× X′ = T× RX + T×T Normal to the plane 0 =⋅×X′ ( T RX) = T× RX Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Essential matrix X′⋅(T× RX) = 0 X′⋅([Tx ]RX) = 0 Let E = [T x]R X′T EX = 0 E is called the essential matrix, and it relates corresponding image points between both cameras, given the rotation and translation. Note: these points are in each camera coordinate systems. We know if we observe a point in one image, its position in other image is constrained to lie on line defined by above. Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Essential matrix example: parallel cameras Z P p = [,Zx Zy ,] RI= f Τ Z x p' = [Zx ', Zy ', ] xr T =[ −B ,0,0] l Z 0 0 0 f E= [T x ]R = 0 0 B p p f l r 0 –B 0 B COPL COPR 000 x Τ [x' y '10] 0 By= 0 p′ Ep = 0 Given a known 0−B 01 point (x,y) in the original 0 image, this is a [xy' '1] B= 0 line in the For the parallel cameras, (x’,y’) image. image of any point must lie −By on same horizontal line in each image plane. By' = By ⇒ y' = y Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Weak calibration • Want to estimate world geometry without requiring calibrated cameras • Archival videos (already have the pictures) • Photos from multiple unrelated users • Dynamic camera system • Main idea: • Estimate epipolar geometry from a (redundant) set of point correspondences between two uncalibrated cameras Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices From before: Projection matrix X w • This can be rewritten as a wxim Yw matrix product using wy = K Φ homogeneous coordinates: im int ext Zw w where: 1 Τ rrr11 12 13 −RT1 Τ Φ = rrr−RT ext 21 22 23 2 − Τ rrr31 32 33 RT3 − fs/0xx o Note: Invertible, scale x Kint =0/ − fsyy o and y, assumes no skew 0 01 Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices From before: Projection matrix X • This can be rewritten as a w matrix product using wxim Yw homogeneous coordinates: = wyimK intΦ ext Zw w 1 pKim= intΦP ext w pc pim= Kp int c Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Uncalibrated case For a given p= Kp camera: im int c So, for two cameras (left and right): = −1 pc,, left Kp int,left im left −1 pc,, right= Kp int,right im right Internal calibration matrices, one per camera Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Uncalibrated case −1 −1 pc,, right= Kp int,right im right pc,, left= Kp int,left im left From before, the essential Τ pc,right Epc,left = 0 matrix E. Τ −−11 (Kint,right p im,, right ) EK( int,left p im left ) = 0 Τ−11T − pim,, right(() K int,right EK int,left) p im left = 0 “Fundamental matrix” F Τ T pim,rightFpim,left = 0 or p Fp'0= Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Properties of the Fundamental Matrix pT Fp '0= T • l = F p ′ is the epipolar line associated with p’ T • l ′ = F p is the epipolar line associated with p T • Epipoles found by Fp’ = 0 and F p = 0 • You’ll see more one these on the problem set to explain • F is singular (mapping from 2-D point to 1-D family so rank 2 – more later) Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Fundamental matrix • Relates pixel coordinates in the two views • More general form than essential matrix: we remove need to know intrinsic parameters • If we estimate fundamental matrix from correspondences in pixel coordinates, can reconstruct epipolar geometry without intrinsic or extrinsic parameters. Two Views Part 2: Essential CS 4495 Computer Vision – A. Bobick and Fundamental Matrices Different Example: forward motion e’ e courtesy of Andrew Zisserman Two Views Part 2: Essential CS 4495 Computer Vision – A.
Recommended publications
  • Lecture 6: Camera Computation and the Essential Matrix
    Computer Vision Lecture 6 2020-02-05 Lecture 6: Camera Computation and the Essential Matrix 1 Computing Cameras From the Fundamental Matrix In Lecture 5 we considered the two-view structure from motion problem, that is, given a number of measured points in two images we want to compute both camera matrices and 3D points such that they project to the measurements. We showed that the 3D points can be eliminated from the problem by considering the fundamental matrix F . If x is an image point belonging to the fist image and x¯ belongs to the second then there is a 3D point that projects to to these if and only if the epipolar constraint x¯T F x = 0 (1) is fulfilled. Using the projections of 8-scene points we can compute the fundamental matrix by solving a homo- geneous least squares problem (the 8-point algorithm). What remains in order to find a solution to the two-view structure from motion camera is to compute cameras from F and finally compute the 3D-points. In general we may assume (see Lecture 5) that the cameras are of the form P1 = [I 0] and P2 = [A e2] where T e2 is the epipole in the second image. Since we know that F e2 = 0 we can find e2 by computing the null space T of F . In what follows we will show that A = [e2]×F gives the correct epipolar geometry and therefore solution for the second camera is given by P2 = [[e2]×F e2] : (2) The Fundamental matrix of the camera pair P1 and P2 is according to Lecture 5 given by [t]×A = [e2]×[e2]×F we need to show that this expression reduces to F .
    [Show full text]
  • Table of Contents Stereopsis
    CS-9645 Introduction to Computer Vision Techniques Winter 2020 Table of Contents Stereopsis................................................................................................................................................... 1 The Correspondence Problem............................................................................................................... 1 Epipolar Geometry................................................................................................................................ 2 Estimating the Essential and Fundamental Matrices.............................................................................5 Algorithm.............................................................................................................................................. 5 Locating Epipoles..................................................................................................................................6 Rectification.......................................................................................................................................... 7 3D Reconstruction.................................................................................................................................8 Stereopsis In stereopsis, two visual sensors are used in order to obtain the depth of scene points, as an attempt the reconstruct the observed scene. Image features from one image must correlate with the features observed in the other image. This is commonly known as the correspondence problem. Once
    [Show full text]
  • Monitoring Mountain Cryosphere Dynamics by Time Lapse Stereo Photogrammetry
    ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 XXIV ISPRS Congress (2020 edition) MONITORING MOUNTAIN CRYOSPHERE DYNAMICS BY TIME LAPSE STEREO PHOTOGRAMMETRY ∗ G. Marsy1,2,3,, F. Vernier1, X. Bodin2, D. Cusicanqui2,4, W. Castaings3, E. Trouve´1 1 Univ. Savoie Mont Blanc, LISTIC, 74000 Annecy, France 2 CNRS, EDYTEM, Univ. Savoie Mont Blanc, 73000 Chambery,´ France 3 TENEVIA 38240 Meylan, France 4 Universite´ Grenoble Alpes, Institut de Geosciences´ de l’Environement (IGE, UMR 5001), 38000, Grenoble France Commission II, WG II/4,5 KEY WORDS: Photogrammetry, Cryosphere monitoring, Stereo time lapse, Image registration ABSTRACT: In this paper, we propose a method to monitor surface dynamics in mountain cryosphere environments, based on a device with two fixed cameras at two different locations and with a convergent angle. Computer vision methods are used to derive pixel displace- ments between images taken at different times and to reconstruct the 3D geometry of the scene to convert pixel displacements into meter displacements. The proposed methods overcome the drawbacks of traditional methods such as lack of time repeatability or lack of spatial resolution. We present the results on two study sites instrumented with the device located in the French Alps: a temperate glacier and a rock glacier. We propose different ways to assess the accuracy of each processing steps solely based on stereo images. The method is validated using traditional measurements (GPS and LiDAR) and shows results comparable or even more robust than these traditional methods. 1. INTRODUCTION Rasmussen, 1986). Nowadays, the increase in sensor resol- ution and the digital nature of the images, coupled with new The methods to monitor mountain cryosphere, such as glaciers algorithms, allow movements of a few centimeters to be detec- and rock glaciers dynamics rely on two classical approaches: ted (Roncella et al., 2014).
    [Show full text]
  • Essential' Matrix
    Recovering Baseline and Orientation from ‘Essential’ Matrix Berthold K.P. Horn January 1990 Abstract: Certain approaches to the problem of relative orientation in binocular stereo (as well as long-range motion vision) lead to an encoding of the baseline (translation) and orientation (rotation) in a single 3 × 3 matrix called the “essential” matrix. The essential matrix is defined by E = BR, where B is the skew-symmetric matrix that satisfies Bv = b × v for any vector v, with b being the baseline and R the orientation. Shown here is a simple method for recovering the two solutions for the baseline and the orientation from a given essential matrix using elementary matrix op- erations. The two solutions for the baseline b can be obtained from the equality 1 bbT = Trace(EET )I − EET , 2 where I is the 3 × 3 identity matrix. The two solutions for the orientation can be found using (b · b) R = Cofactors(E)T − BE, where Cofactors(E) is the matrix of cofactors of E. There is no need to perform a singular value decomposition, to transform coordinates, or to use circular functions, and it is easy to see that there are exactly two solutions given a particular essential matrix. If the sign of E is reversed, an additional pair of solutions is obtained that are related the two already found in a simple fashion. This helps shed some light on the question of how many solutions a given relative orientation problem can have. 1. Coplanarity Condition in Relative Orientation Relative orientation is the well-known photogrammetric problem of recov- ering the position and orientation of one camera relative to another from five or more pairs of corresponding ray directions [Zeller 52] [Ghosh 72] [Slama et al.
    [Show full text]
  • Generalized Essential Matrix: Properties of the Singular Value Decomposition
    Generalized Essential Matrix: Properties of the Singular Value Decomposition Pedro Miraldo1,2, Helder Araujo2 Abstract When considering non-central imaging devices, the computation of the relative pose requires the estimation of the rotation and translation that transform the 3D lines from one coordinate system to the second. In most of the state-of- the-art methods, this transformation is estimated by the computing a 6 × 6 matrix, known as the Generalized Essential Matrix. To allow a better understanding of this matrix, we derive some properties associated with its singular value decomposition. Keywords: Generalized epipolar geometry, relative pose, singular value decomposition, rigid transformation of lines. 1 1. Introduction 2 Relative pose estimation is one of the main problems in computer vision, which has been studied for more than a 3 century [1]. The goal is to estimate the rigid transformation between two cameras (or the same camera in two different 4 positions) using matching between pixels that are images of the same 3D point in the world. The cameras (or camera) 5 are considered calibrated. As a result, for each image pixel, we know the corresponding 3D projection line in the 6 world. Thus, by computing the 3D projection lines associated to each match of pixels, the problem can be seen as 7 finding the rotation and translation that align the 3D projection lines to ensure that they intersect in the world, as 8 shown in Fig. 1. One of the most important applications is its use in robotics navigation, in methods such as visual 9 odometry [2]. 10 When considering conventional perspective cameras there are several solutions for the relative pose.
    [Show full text]
  • Mathematical Methods for Camera Self-Calibration in Photogrammetry and Computer Vision
    Mathematical Methods for Camera Self-Calibration in Photogrammetry and Computer Vision A thesis accepted by the Faculty of Aerospace Engineering and Geodesy of the Universität Stuttgart in partial fulfillment of the requirements for the degree of Doctor of Engineering Sciences (Dr.-Ing.) by Rongfu Tang born in Guangdong, China P. R. Committee Chair: Prof. Dr.-Ing habil. Dieter Fritsch Committee member: Prof. Dr.-Ing habil. Christian Heipke Date of defence: 28.05.2013 Institute of Photogrammetry University of Stuttgart 2013 Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften Reihe C Dissertationen Heft Nr. 703 Rongfu Tang Mathematical Methods for Camera Self-Calibration in Photogrammetry and Computer Vision München 2013 Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C. H. Beck ISSN 0065-5325 ISBN 978-3-7696-5115-7 Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften Reihe C Dissertationen Heft Nr. 703 Mathematical Methods for Camera Self-Calibration in Photogrammetry and Computer Vision Von der Fakultät Luft- und Raumfahrttechnik und Geodäsie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Abhandlung Vorgelegt von M.Sc. Rongfu Tang München 2013 Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C. H. Beck ISSN 0065-5325 ISBN 978-3-7696-5115-7 Adresse der Deutschen Geodätischen Kommission: Deutsche Geodätische Kommission Alfons-Goppel-Straße 11 ! D – 80 539 München Telefon +49 – 89 – 23 031 1113 ! Telefax +49 – 89 – 23 031 - 1283 / - 1100 e-mail [email protected] ! http://www.dgk.badw.de Hauptberichter: Prof. Dr.-Ing. habil. Dieter Fritsch Mitberichter: Prof.
    [Show full text]
  • Basic Stereo & Epipolar Geometry
    Basic Stereo & Epipolar Geometry EECS 598-08 Fall 2014! Instructor: Jason Corso (jjcorso)! Foundations of Computer Vision! web.eecs.umich.edu/~jjcorso/t/598F14! ! ! Readings: FP 7; SZ 11.1; TV 7! Date: 10/22/14! ! Materials on these slides have come from many sources in addition to myself; individual slides reference specific sources.! 2 Plan •" Basic Stereo! –" Why is more than one view useful?! –" Triangulation! •" Epipolar Geometry! On to Shape •" What cues help us to perceive 3d shape and depth? Shading [Figure from Prados & Faugeras 2006] Focus/Defocus [Figure from H. Jin and P. Favaro, 2002] Texture [From A.M. Loh. The recovery of 3-D structure using visual texture patterns. PhD thesis] Perspective effects Image credit: S. Seitz Motion Figures from L. Zhang http://www.brainconnection.com/teasers/?main=illusion/motion-shape Estimating scene shape •" Shape from X: Shading, Texture, Focus, Motion… •" Stereo: –" shape from “motion” between two views –" infer 3d shape of scene from two (multiple) images from different viewpoints 10 Can Structure Be Recovered from a Single View? P! p! Ow! Scene! C! Calibration rig! Camera K! From calibration rig! → location/pose of the rig, K! From points and lines at infinity ! + orthogonal lines and planes! → structure of the scene, K! Knowledge about scene (point correspondences, geometry of lines & planes, etc…! Slide source: S. Savarese.! 11 Can Structure Be Recovered from a Single View? Pinhole perspective projection! P! p! Ow! Scene! C! Calibration rig! Camera K! Why is it so difficult?! Intrinsic ambiguity of the mapping from 3D to image (2D)! Slide source: S. Savarese.! 12 Can Structure Be Recovered from a Single View? Intrinsic ambiguity of the mapping from 3D to image (2D)! Courtesy slide S.
    [Show full text]
  • Epipolar Geometry and the Essential Matrix
    Epipolar Geometry and the Essential Matrix Carlo Tomasi The epipolar geometry of a pair of cameras expresses the fundamental relationship between any two corresponding points in the two image planes, and leads to a key constraint between the coordinates of these points that underlies visual reconstruction. The first Section below describes the epipolar geometry. The Section thereafter expresses its key constraint algebraically. 1 The Epipolar Geometry of a Pair of Cameras Figure 1 shows the main elements of the epipolar geometry for a pair of cameras. P projection ray projection ray epipolar plane epipolar line of q J p I center of projection q epipole e baseline epipolar line of p camera C camera D center of epipole f projection Figure 1: Essential elements of the epipolar geometry of a camera pair. The world point P and the centers of projection of the two cameras identify a plane in space, the epipolar plane of point P. The Figure shows a triangle of this plane, delimited by the two projection rays and by the baseline of the camera pair, that is, the line segment that connects the two centers of projection.1 If the image planes are thought of extending indefinitely, the baseline intersects the two image planes at two points called the epipoles of the two images. In particular, if the cameras are arranged so that the baseline is parallel to an image plane, then the corresponding epipole is a point at infinity. The epipoles are fixed points for a given camera pair configuration. With cameras somewhat tilted towards each other, and with a sufficiently wide field of view, the epipoles would be image points.
    [Show full text]
  • Variational 3D Reconstruction from Stereo Image Pairs and Stereo Sequences
    Variationelle 3D-Rekonstruktion aus Stereobildpaaren und Stereobildfolgen Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes vorgelegt von Levi Valgaerts Saarbrücken, 2011 R S V E I T I A N S U S S A I R S A V I E N Mathematische Bildverarbeitungsgruppe, Fakultät für Mathematik und Informatik, Universität des Saarlandes, 66041 Saarbrücken Vision and Image Processing Group, Cluster of Excellence MMCI, Universität des Saarlandes, 66041 Saarbrücken ii Tag des Kolloquiums 29.09.2011 Dekan Prof. Dr. Holger Hermanns Prüfungsausschuss Prof. Dr. Bernt Schiele (Vorsitz) Universität des Saarlandes Prof. Dr. Joachim Weickert (1. Gutachter) Universität des Saarlandes Prof. Dr. Thomas Brox (2. Gutachter) Universität Freiburg Dr. Andrés Bruhn Universität des Saarlandes Kurzzusammenfassung – Short Abstract Kurzzusammenfassung – Deutsch Diese Arbeit befasst sich mit der 3D Rekonstruktion und der 3D Bewegungsschätzung aus Stereodaten unter Verwendung von Variationsansätzen, die auf dichten Verfahren zur Berechnung des optischen Flusses beruhen. Im ersten Teil der Arbeit untersuchen wir ein neues Anwendungsgebiet von dichtem optischen Fluss, nämlich die Bestimmung der Fun- damentalmatrix aus Stereobildpaaren. Indem wir die Abhängigkeit zwischen der geschätzten Stereogeometrie in Form der Fundamentalmatrix und den berechneten Bildkorresponden- zen geeignet ausnutzen, sind wir in der Lage, im zweiten Teil der Arbeit eine gekop- pelte Bestimmung der Fundamentalmatrix und des optischen Flusses vorzuschlagen, die zur einer Erhöhung der Genauigkeit beider Schätzungen führt. Im Gegensatz zu vielen existierenden Verfahren berechnet unser gekoppelter Ansatz dabei die Lage der Kameras und die 3D Szenenstruktur nicht einzeln, sonderen bestimmt sie in einem einzigen gemein- samen Optimierungsschritt. Dem Prinzip der gemeinsamen Schätzung weiter folgend kop- peln wir im letzten Teil der Arbeit die dichte 3D Rekonstruktion der Szene zusätzlich mit der Bestimmung der zugehörigen 3D Bewegung.
    [Show full text]
  • Lecture 9: Epipolar Geometry
    Lecture 9: Epipolar Geometry Professor Fei‐Fei Li Stanford Vision Lab Fei-Fei Li Lecture 9 - 1 21‐Oct‐11 What we will learn today? •Why is stereo useful? • Epipolar constraints • Essential and fundamental matrix •Estimating F (Problem Set 2 (Q2)) • Rectification Reading: [HZ] Chapters: 4, 9, 11 [FP] Chapters: 10 Fei-Fei Li Lecture 9 - 2 21‐Oct‐11 Recovering structure from a single view Pinhole perspective projection P p Ow Scene C Calibration rig Camera K Why is it so difficult? Intrinsic ambiguity of the mapping from 3D to image (2D) Fei-Fei Li Lecture 9 - 3 21‐Oct‐11 Recovering structure from a single view Pinhole perspective projection Lazebnik S. slide Courtesy Intrinsic ambiguity of the mapping from 3D to image (2D) Fei-Fei Li Lecture 9 - 4 21‐Oct‐11 Two eyes help! Fei-Fei Li Lecture 9 - 5 21‐Oct‐11 Two eyes help! ? x1 x2 K =known K =known R, T O2 O1 This is called triangulation Fei-Fei Li Lecture 9 - 6 21‐Oct‐11 Triangulation 2 2 • Find X that minimizes d ( x1 , P1 X ) d ( x 2 , P2 X ) X x2 x1 O1 O2 Fei-Fei Li Lecture 9 - 7 21‐Oct‐11 Stereo‐view geometry • Correspondence: Given a point in one image, how can I find the corresponding point x’ in another one? • Camera geometry: Given corresponding points in two images, find camera matrices, position and pose. • Scene geometry: Find coordinates of 3D point from its projection into 2 or multiple images. This lecture (#9) Fei-Fei Li Lecture 9 - 8 21‐Oct‐11 Stereo‐view geometry Next lecture (#10) • Correspondence: Given a point in one image, how can I find the corresponding point x’ in another one? • Camera geometry: Given corresponding points in two images, find camera matrices, position and pose.
    [Show full text]
  • Inaugural-Dissertation
    Inaugural-Dissertation zur Erlangung der Doktorw¨urde der Naturwissenschaftlich-Mathematischen Gesamtfakult¨at der Ruprecht–Karls–Universit¨at Heidelberg vorgelegt von Master of Mathematics and Computer Science Andreas Neufeld aus Ramenskoje (Russland) Tag der m¨undlichen Pr¨ufung: Variational Approaches for Motion and Structure from Monocular Video Betreuer: Prof. Dr. Christoph Schn¨orr Prof. Dr. Bj¨orn Ommer Zusammenfassung Das Sch¨atzen von Bewegung und r¨aumlicher Struktur aus Bildfol- gen sind grundlegende Probleme in der Bildverarbeitung. Diese Prob- lemstellungen sind noch aktuell, obwohl die ersten Methoden bereits vor mehreren Jahrzehnten ver¨offentlicht wurden. Wir pr¨asentieren neue Verfahren zur Bewegungs- und Struktursch¨atzung f¨ur das au- tonome Fahren. Ein autonomes Auto braucht genaue Kenntnis ¨uber seine Umgebung, da eine Fehleinsch¨atzung gravierende Konsequenzen haben kann. Speziell behandeln wir monokulare Verfahren, bei denen nur eine Kamera auf dem Fahrzeug verf¨ugbar ist. Bildfolgen aus dem Straßenverkehr sind f¨ur das Sch¨atzen von Be- wegung besonders herausfordernd. Durch die hohe Geschwindigkeit ist die Bewegung sehr groß, die Lichtverh¨altnisse sind nicht stabil und es kann Verf¨alschungen geben durch Reflektionen und wetterbedingte St¨orungen. Wir stellen neue diskrete Verfahren zur Berechnung des optischen Flusses vor, welche probabilistische graphische Modelle f¨ur den optischen Fluss definieren. In dem ersten Ansatz w¨ahlen wir einige Stellen im Referenzbild aus, und vergleichen diese mit dem zweiten Bild. Die besten Korresponden- zen, welche auch zu einer monokularen Bewegung passen, werden als Kandidaten f¨ur ein graphisches Modell ausgew¨ahlt. In einem weit- eren Verfahren, vergleichen wir alle Stellen im Referenzbild, l¨osen das graphische Modell jedoch nicht direkt, sondern approximieren es mit einer Sequenz von kleineren Modellen.
    [Show full text]
  • Camera Array Image Rectification and Calibration for Stereoscopic and Autostereoscopic Displays Vincent Nozick
    Camera array image rectification and calibration for stereoscopic and autostereoscopic displays Vincent Nozick To cite this version: Vincent Nozick. Camera array image rectification and calibration for stereoscopic and autostereoscopic displays. Annals of Telecommunications - annales des télécommunications, Springer, 2013, 68 (11), pp.581-596. hal-00908586 HAL Id: hal-00908586 https://hal-upec-upem.archives-ouvertes.fr/hal-00908586 Submitted on 25 Nov 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Noname manuscript No. (will be inserted by the editor) Camera array image rectification and calibration for stereoscopic and autostereoscopic displays Vincent Nozick Received: date / Accepted: date Abstract This paper presents an image rectification ically, this paper presents an extension of an image rec- method for an arbitrary number of views with aligned tification method [26] to perform a camera calibration camera center. This paper also describes how to extend for an arbitrary number of views with aligned camera this method to easily perform a robust camera cali- center. This technique can be used for stereoscopic ren- bration. These two techniques can be used for stereo- dering to enhance the perception comfort or for depth scopic rendering to enhance the perception comfort or from stereo.
    [Show full text]