LOWER BOUNDS on VOLUMES of HYPERBOLIC HAKEN 3-MANIFOLDS 1. Introduction in This Paper We Prove a Volume Inequality for 3-Manifol
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 20, Number 4, October 2007, Pages 1053–1077 S 0894-0347(07)00564-4 Article electronically published on May 31, 2007 LOWER BOUNDS ON VOLUMES OF HYPERBOLIC HAKEN 3-MANIFOLDS IAN AGOL, PETER A. STORM, AND WILLIAM P. THURSTON, WITH AN APPENDIX BY NATHAN DUNFIELD 1. Introduction In this paper we prove a volume inequality for 3-manifolds having C0 metrics “bent” along a surface satisfying certain curvature conditions. The method is a direct generalization of work of Bray [7] and Miao [28] on the Riemannian Penrose conjecture. We also make use of Perelman’s results on geometrization [34, 33]. Perelman’s montonicity formula for the Ricci flow with surgery (discovered by Hamilton in the case of the standard Ricci flow [18, Thm. 2.1]) implies that if (M,g) is a hyperbolic 3-manifold and (M,h) is a Riemannian metric such that the scalar curvature R(h) ≥−6=R(g), then Vol(M,h) ≥ Vol(M,g). More generally, if M is not hyperbolic, then Vol(M,h) ≥ V3M,whereV3M denotes the sim- 3 plicial volume of M (V3 is the volume of a regular ideal tetrahedron in H ,and M is the Gromov norm of the fundamental class of the 3-manifold M). This sort of curvature condition is much weaker than the conditions on Ricci curvature used in the work of Besson, Courtois, and Gallot. Their work implies a similar volume estimate if Ric(h) ≥−2h [6]. Theorem 7.2 is the main result of this paper, which states that if (M,g)isa compact hyperbolic 3-manifold with minimal surface boundary, then Vol(M,g) ≥ 1 2 V3 DM ,whereDM denotes the double of M along its boundary.
[Show full text]