Mechanics-Guided Embryonic Patterning of Neuroectoderm Tissue from Human Pluripotent Stem Cells

Total Page:16

File Type:pdf, Size:1020Kb

Mechanics-Guided Embryonic Patterning of Neuroectoderm Tissue from Human Pluripotent Stem Cells ARTICLES https://doi.org/10.1038/s41563-018-0082-9 Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells Xufeng Xue1,9, Yubing Sun1,2,9*, Agnes M. Resto-Irizarry1, Ye Yuan3, Koh Meng Aw Yong1, Yi Zheng1, Shinuo Weng 1, Yue Shao 1, Yimin Chai4, Lorenz Studer5,6 and Jianping Fu 1,7,8* Classic embryological studies have successfully applied genetics and cell biology principles to understand embryonic develop- ment. However, it remains unresolved how mechanics, as an integral driver of development, is involved in controlling tissue-scale cell fate patterning. Here we report a micropatterned human pluripotent stem (hPS)-cell-based neuroectoderm developmental model, in which pre-patterned geometrical confinement induces emergent patterning of neuroepithelial and neural plate border cells, mimicking neuroectoderm regionalization during early neurulation in vivo. In this hPS-cell-based neuroectoderm pattern- ing model, two tissue-scale morphogenetic signals—cell shape and cytoskeletal contractile force—instruct neuroepithelial/ neural plate border patterning via BMP-SMAD signalling. We further show that ectopic mechanical activation and exogenous BMP signalling modulation are sufficient to perturb neuroepithelial/neural plate border patterning. This study provides a use- ful microengineered, hPS-cell-based model with which to understand the biomechanical principles that guide neuroectoderm patterning and hence to study neural development and disease. ne of the enduring mysteries of biology is tissue morpho- on glass coverslips (Fig. 1a and Supplementary Fig. 1). H1 human genesis and patterning, where embryonic cells act in a embryonic stem (hES) cells were plated as single cells at 20,000 coordinated fashion to shape the body plan of multicellu- cells cm−2 on adhesive islands to establish micropatterned colonies O 1–5 lar animals . As a highly conserved developmental event crucial with a defined circular shape and size. A differentiation medium for the nervous system formation, neural induction, for example, supplemented with the dual SMAD inhibitors, SB 431542 (SB, leads to differentiation of the ectoderm into a patterned tissue, con- TGF-β inhibitor; 10 µ M) and LDN 193189 (LDN, BMP4 inhibitor; taining the neuroectoderm (neural plate, or NP) and the epidermal 500 nM), was applied for neural induction22 (Supplementary Fig. 1; ectoderm separated by the neural plate border (NPB) (Fig. 1a)6,7. see Methods). The β -catenin stabilizer CHIR 99021 (CHIR, 3 µ M), Classic embryological studies of neural induction have unravelled a WNT activator, was also supplemented in culture (Supplementary the importance of graded developmental signalling mediated by Fig. 1). CHIR promotes NPB cell specification under the neural diffusible signals such as bone morphogenetic proteins (BMPs) induction condition established by the dual SMAD inhibitors23,24. (Fig. 1a)8–10. However, neural induction, like any tissue-scale mor- Although cells distributed uniformly on adhesive islands 24 h phogenetic event, occurs within the milieu of biophysical determi- after initial cell plating, neural induction resulted in differentiat- nants, including changes in shape, number, position and force of ing cells gradually accumulating in the colony central area, lead- cells7,11. Yet it remains undetermined how these tissue-scale mor- ing to a significantly greater cell density at the colony centre than phogenetic changes work in concert with classic developmental at the periphery (Fig. 1b and Supplementary Fig. 1). Cell density signaling events mediated by diffusible signals for proper cell fate was further analysed using DAPI fluorescence intensity. The full patterning during neural induction. width at half maximum (FWHM) for spatial distributions of DAPI hPS cells, which reside in a developmental state similar to the intensity decreased continuously from 336 µ m at day 1 to 240 µ m pluripotent epiblast12,13, have been successfully used for the devel- at day 9 (Supplementary Fig. 1). Confocal images further showed opment of self-organized models of human embryonic develop- that micropatterned colonies at day 7 remained as a monolayer. ment14–21. To date, however, no neural induction models exist Strikingly, quantitation of colony thickness and nucleus shape that leverage hPS cells and their innate self-organizing properties revealed that at this point, cells exhibited a gradual change of cell to study neuroectoderm patterning. Here, we sought to develop shape from a columnar phenotype with columnar nuclei at the col- micropatterned hPS-cell colonies on two-dimensional substrates to ony centre to a cuboidal morphology with rounded nuclei at the model neural induction. Microcontact printing was utilized to gen- colony periphery (Supplementary Fig. 1), consistent with character- erate vitronectin-coated, circular adhesive islands with a diameter istic neuroectoderm thickening during neural induction in vivo6,11. of 400 µ m on flat poly-dimethylsiloxane (PDMS) surfaces coated Importantly, Pax6+ neuroepithelial (NE) cells, the neural progenitor 1Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. 2Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA. 3School of the Gifted Young, University of Science and Technology of China, Hefei, China. 4Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China. 5Developmental Biology Program, Memorial Sloan- Kettering Institute, New York, NY, USA. 6Center of Stem Cell Biology, Memorial Sloan-Kettering Institute, New York, NY, USA. 7Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. 8Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA. 9These authors contributed equally: Xufeng Xue, Yubing Sun *e-mail: [email protected]; [email protected] NATURE MATERIALS | VOL 17 | JULY 2018 | 633–641 | www.nature.com/naturematerials 633 © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. ARTICLES NATURE MATERIALS a b Day: 136 9 In vivo In vitro hPS cells Phase Ectoderm Mesoderm PDMS Endoderm Cover slip Neural induction Neural plate (neuroectoderm) Neural plate DAPI NPB NPB Epidermal ectoderm BMP activity Micropatterned High Low High cell colony Intensity map ncolony = 24 ncolony = 35 ncolony = 20 ncolony = 59 0–1 (arbitrary units) c PAX6 PAX3 ZIC1 MSX1 d Day: 4 678 Phase Staining image GFP Intensity map p p Intensity ma ncolony = 132 ncolony = 30 ncolony = 49 ncolony = 53 ncolony = 60 ncolony = 60 ncolony = 60 ncolony = 60 Relative intensity ma 0–1 (arbitrary units) 0–1 (arbitrary units) Fig. 1 | Self-organized neuroectoderm patterning in circular hPS cell colonies. a, Schematic of neural induction in vivo and in vitro. During neural induction in vivo, embryonic cells in the ectoderm form the neural plate (neuroectoderm). Embryonic cells at the neural plate border (NPB) separate the neuroectoderm from the epidermal ectoderm. Neural induction of circular hPS cell colonies leads to autonomously patterned neuroectoderm tissues, with neural plate cells in the colony central region and NPB cells at the colony periphery. b, Representative phase contrast and fluorescence images showing cell morphology and nuclei (stained by DAPI), respectively, on different days. White dashed lines mark the colony periphery. Experiments were repeated three times with similar results. Bottom average intensity maps show spatial distributions of DAPI intensity. The number of colonies analysed was pooled from n = 3 independent experiments. Data plotted are mean values. c, Representative immunofluorescence micrographs and average intensity maps showing colonies at day 9 stained for neuroectoderm marker Pax6 and NPB markers Pax3, Zic1 and Msx1. White dashed lines mark the colony periphery. Experiments were repeated three times with similar results. Relative intensity maps were normalized to DAPI signals. The number of colonies analysed was pooled from n = 3 independent experiments. Data plotted are mean values. d, Representative phase contrast and fluorescence images and average intensity maps from live cell assays using Sox10-EGFP hES cells. White dashed lines mark the colony periphery. White arrowheads mark GFP+ cells at the colony border. Experiments were repeated three times with similar results. The number of colonies analysed was pooled from n = 3 independent experiments. Data plotted are mean values. Scale bars in b–d, 100 µ m. in the NP, were found preferentially localized at the colony central tion is consistent with in vivo findings that ZIC1+ cells also exist in region on day 9, whereas Pax3+, Zic1+ and Msx1+ NPB cells were con- the neurogenic placode region25. Immunostaining and immunob- centrated at the colony periphery, forming a concentric ring-shaped lotting of E-cadherin and N-cadherin at day 2 and day 7 further tissue sheet consistent with neuroectoderm patterning, with proper confirmed successful neural conversion (Supplementary Fig. 2). To regionalization of NE and NPB cells (Fig. 1c and Supplementary confirm differentiation potentials of neuroectoderm tissues after Fig. 1). Interestingly, the concentric zone of Pax3+ cells at the neural induction, they were continuously cultured under a motor colony periphery exhibited a smaller zone width, as character- neuron differentiation medium26 or a neural crest differentiation ized by FWHM for spatial distribution of Pax3 intensity (92 µ
Recommended publications
  • CSF Protein Contents and Their Roles in Brain Development
    Zahedan J Res Med Sci. 2015 September; 17(9):e1042. DOI: 10.17795/zjrms-1042 Review Article Published online 2015 September 26. CSF Protein Contents and Their Roles in Brain Development 1,* 1 1 Mohammad Nabiuni, Rozmehr Shokohi, and Parisa Moghaddam 1Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, IR Iran *Corresponding author : Mohammad Nabiuni, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, IR Iran. E-mail: [email protected] Received: ; Accepted: January 6, 2014 March 18, 2014 Abstract: In early stages of development, the laminated structure of cerebral cortex is organized by proliferative, morphogenetic, and migratory processes. In these stages, cells within the ependymal lining of neural tube are thought to secrete embryonic cerebrospinal fluid (eCSF). As the neural tube closes, the choroid plexuses (CPs) secrete proteins such as growth factors, cytokines and morphogenes into the eCSF. The apical neuroepithelium is bathed with this fluid which plays regulatory roles in cortical cell proliferation, differentiation, and maintenance. Because of the eCSF protein contents and their impacts on neurogenesis, we focused on the effect of eCSF growth factors and their changes during brain development. Bibliographic databases including PubMed, Scopus and Google Scholar were searched between years 1990 to 2013 for the keywords “Cerebrospinal fluid” and “Neurogenesis”. In the first step, 200 articles were found, after elimination of duplicates or irrelevant papers 49 papers were selected and reviewed. Keywords: Cerebrospinal fluid; Cytokine; Neurogenesis; Choroid plexus; Cell differentiation 1. Context The central nervous system (CNS) develops from the bryogenesis. The CP diferentiates from the ependymal neural tube, a hollow structure filled with embryonic ce- cells lining the ventricular walls and, in fact, is frequent- rebrospinal fluid (eCSF) and surrounded by neuroepithe- ly considered to be a specialized cuboidal epithelium lial cells.
    [Show full text]
  • Notch Signaling Regulates the Differentiation of Neural Crest From
    ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 2083–2094 doi:10.1242/jcs.145755 RESEARCH ARTICLE Notch signaling regulates the differentiation of neural crest from human pluripotent stem cells Parinya Noisa1,2, Carina Lund2, Kartiek Kanduri3, Riikka Lund3, Harri La¨hdesma¨ki3, Riitta Lahesmaa3, Karolina Lundin2, Hataiwan Chokechuwattanalert2, Timo Otonkoski4,5, Timo Tuuri5,6,* and Taneli Raivio2,4,*,` ABSTRACT Kokta et al., 2013). Neural crest cells originate from neuroectoderm at the border between the neural plate and the Neural crest cells are specified at the border between the neural epiderm (Meulemans and Bronner-Fraser, 2004), and they are plate and the epiderm. They are capable of differentiating into marked by the expression of genes that are specific for the neural- various somatic cell types, including craniofacial and peripheral plate border, such as DLX5, MSX1, MSX2 and ZIC1. Later, during nerve tissues. Notch signaling plays important roles during the neural-tube folding process, neural crest cells remain within neurogenesis; however, its function during human neural crest the neural folds and subsequently localize inside the dorsal development is poorly understood. Here, we generated self- portion of the neural tube. These premigratory neural crest cells renewing premigratory neural-crest-like cells (pNCCs) from human express specifier genes, such as SNAIL (also known as SNAI1), pluripotent stem cells (hPSCs) and investigated the roles of Notch SLUG (also known as SNAI2), SOX10 and TWIST1 (LaBonne and signaling during neural crest differentiation. pNCCs expressed Bronner-Fraser, 2000; Mancilla and Mayor, 1996). Following the various neural-crest-specifier genes, including SLUG (also known formation of the neural tube, premigratory neural crest cells as SNAI2), SOX10 and TWIST1, and were able to differentiate into undergo an epithelial-to-mesenchymal transition (EMT) and most neural crest derivatives.
    [Show full text]
  • The Migration of Neural Crest Cells and the Growth of Motor Axons Through the Rostral Half of the Chick Somite
    /. Embryol. exp. Morph. 90, 437-455 (1985) 437 Printed in Great Britain © The Company of Biologists Limited 1985 The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite M. RICKMANN, J. W. FAWCETT The Salk Institute and The Clayton Foundation for Research, California division, P.O. Box 85800, San Diego, CA 92138, U.S.A. AND R. J. KEYNES Department of Anatomy, University of Cambridge, Downing St, Cambridge, CB2 3DY, U.K. SUMMARY We have studied the pathway of migration of neural crest cells through the somites of the developing chick embryo, using the monoclonal antibodies NC-1 and HNK-1 to stain them. Crest cells, as they migrate ventrally from the dorsal aspect of the neural tube, pass through the lateral part of the sclerotome, but only through that part of the sclerotome which lies in the rostral half of each somite. This migration pathway is almost identical to the path which pre- sumptive motor axons take when they grow out from the neural tube shortly after the onset of neural crest migration. In order to see whether the ventral root axons are guided along this pathway by neural crest cells, we surgically excised the neural crest from a series of embryos, and examined the pattern of axon outgrowth approximately 24 h later. In somites which contained no neural crest cells, ventral root axons were still found only in the rostral half of the somite, although axonal growth was slightly delayed. These axons were surrounded by sheath cells, which had presumably migrated out of the neural tube, to a point about 50 jan proximal to the growth cones.
    [Show full text]
  • From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions During Embryonic Development
    International Journal of Molecular Sciences Review From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development Nitza Kahane and Chaya Kalcheim * Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 9112102, Israel; [email protected] * Correspondence: [email protected] Abstract: To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a pop- ulation of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogen- esis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex Citation: Kahane, N.; Kalcheim, C. developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal neural-mesodermal axis.
    [Show full text]
  • Works Neuroembryology
    Swarthmore College Works Biology Faculty Works Biology 1-1-2017 Neuroembryology D. Darnell Scott F. Gilbert Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-biology Part of the Biology Commons Let us know how access to these works benefits ouy Recommended Citation D. Darnell and Scott F. Gilbert. (2017). "Neuroembryology". Wiley Interdisciplinary Reviews: Developmental Biology. Volume 6, Issue 1. DOI: 10.1002/wdev.215 https://works.swarthmore.edu/fac-biology/493 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Biology Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Wiley Interdiscip Manuscript Author Rev Dev Manuscript Author Biol. Author manuscript; available in PMC 2018 January 01. Published in final edited form as: Wiley Interdiscip Rev Dev Biol. 2017 January ; 6(1): . doi:10.1002/wdev.215. Neuroembryology Diana Darnell1 and Scott F. Gilbert2 1University of Arizona College of Medicine 2Swarthmore College and University of Helsinki Abstract How is it that some cells become neurons? And how is it that neurons become organized in the spinal cord and brain to allow us to walk and talk, to see, recall events in our lives, feel pain, keep our balance, and think? The cells that are specified to form the brain and spinal cord are originally located on the outside surface of the embryo. They loop inward to form the neural tube in a process called neurulation.
    [Show full text]
  • Gastrulation
    Embryology of the spine and spinal cord Andrea Rossi, MD Neuroradiology Unit Istituto Giannina Gaslini Hospital Genoa, Italy [email protected] LEARNING OBJECTIVES: LEARNING OBJECTIVES: 1) To understand the basics of spinal 1) To understand the basics of spinal cord development cord development 2) To understand the general rules of the 2) To understand the general rules of the development of the spine development of the spine 3) To understand the peculiar variations 3) To understand the peculiar variations to the normal spine plan that occur at to the normal spine plan that occur at the CVJ the CVJ Summary of week 1 Week 2-3 GASTRULATION "It is not birth, marriage, or death, but gastrulation, which is truly the most important time in your life." Lewis Wolpert (1986) Gastrulation Conversion of the embryonic disk from a bilaminar to a trilaminar arrangement and establishment of the notochord The three primary germ layers are established The basic body plan is established, including the physical construction of the rudimentary primary body axes As a result of the movements of gastrulation, cells are brought into new positions, allowing them to interact with cells that were initially not near them. This paves the way for inductive interactions, which are the hallmark of neurulation and organogenesis Day 16 H E Day 15 Dorsal view of a 0.4 mm embryo BILAMINAR DISK CRANIAL Epiblast faces the amniotic sac node Hypoblast Primitive pit (primitive endoderm) faces the yolk sac Primitive streak CAUDAL Prospective notochordal cells Dias Dias During
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • The Genetic Basis of Mammalian Neurulation
    REVIEWS THE GENETIC BASIS OF MAMMALIAN NEURULATION Andrew J. Copp*, Nicholas D. E. Greene* and Jennifer N. Murdoch‡ More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects. 6 ECTODERM Neurulation is a fundamental event of embryogenesis distinct locations in the brain and spinal cord .By The outer of the three that culminates in the formation of the neural tube, contrast, the mechanisms that underlie the forma- embryonic (germ) layers that which is the precursor of the brain and spinal cord. A tion, elevation and fusion of the neural folds have gives rise to the entire central region of specialized dorsal ECTODERM, the neural plate, remained elusive. nervous system, plus other organs and embryonic develops bilateral neural folds at its junction with sur- An opportunity has now arisen for an incisive analy- structures. face (non-neural) ectoderm. These folds elevate, come sis of neurulation mechanisms using the growing battery into contact (appose) in the midline and fuse to create of genetically targeted and other mutant mouse strains NEURAL CREST the neural tube, which, thereafter, becomes covered by in which NTDs form part of the mutant phenotype7.At A migratory cell population that future epidermal ectoderm.
    [Show full text]
  • Clonal Dispersion During Neural Tube Formation 4097 of Neuromeres
    Development 126, 4095-4106 (1999) 4095 Printed in Great Britain © The Company of Biologists Limited 1999 DEV2458 Successive patterns of clonal cell dispersion in relation to neuromeric subdivision in the mouse neuroepithelium Luc Mathis1,*, Johan Sieur1, Octavian Voiculescu2, Patrick Charnay2 and Jean-François Nicolas1,‡ 1Unité de Biologie moléculaire du Développement, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France 2Unité INSERM 368, Ecole Normale Supérieure, 46 rue d’Ulm, 75230 Paris Cedex 05, France *Present address: Beckman Institute (139-74), California Institute of Technology, Pasadena, CA, 91125, USA ‡Author for correspondence (e-mail: [email protected]) Accepted 5 July; published on WWW 23 August 1999 SUMMARY We made use of the laacz procedure of single-cell labelling the AP and DV axis of the neural tube. A similar sequence to visualize clones labelled before neuromere formation, in of AP cell dispersion followed by an arrest of AP cell 12.5-day mouse embryos. This allowed us to deduce two dispersion, a preferential DV cell dispersion and then by a successive phases of cell dispersion in the formation of the coherent neuroepithelial growth, is also observed in the rhombencephalon: an initial anterior-posterior (AP) cell spinal cord and mesencephalon. This demonstrates that a dispersion, followed by an asymmetrical dorsoventral (DV) similar cascade of cell events occurs in these different cell distribution during which AP cell dispersion occurs in domains of the CNS. In the prosencephalon, differences in territories smaller than one rhombomere. We conclude that spatial constraints may explain the variability in the the general arrest of AP cell dispersion precedes the onset orientation of cell clusters.
    [Show full text]
  • The GATA2 Transcription Factor Negatively Regulates the Proliferation of Neuronal Progenitors
    RESEARCH ARTICLE 2155 Development 133, 2155-2165 (2006) doi:10.1242/dev.02377 The GATA2 transcription factor negatively regulates the proliferation of neuronal progenitors Abeer El Wakil*, Cédric Francius*,†, Annie Wolff, Jocelyne Pleau-Varet† and Jeannette Nardelli†,§ Postmitotic neurons are produced from a pool of cycling progenitors in an orderly fashion that requires proper spatial and temporal coordination of proliferation, fate determination, differentiation and morphogenesis. This probably relies on complex interplay between mechanisms that control cell cycle, specification and differentiation. In this respect, we have studied the possible implication of GATA2, a transcription factor that is involved in several neuronal specification pathways, in the control of the proliferation of neural progenitors in the embryonic spinal cord. Using gain- and loss-of-function manipulations, we have shown that Gata2 can drive neural progenitors out of the cycle and, to some extent, into differentiation. This correlates with the control of cyclin D1 transcription and of the expression of the p27/Kip1 protein. Interestingly, this functional aspect is not only associated with silencing of the Notch pathway but also appears to be independent of proneural function. Consistently, GATA2 also controls the proliferation capacity of mouse embryonic neuroepithelial cells in culture. Indeed, Gata2 inactivation enhances the proliferation rate in these cells. By contrast, GATA2 overexpression is sufficient to force such cells and neuroblastoma cells to stop dividing but not to drive either type of cell into differentiation. Furthermore, a non-cell autonomous effect of Gata2 expression was observed in vivo as well as in vitro. Hence, our data have provided evidence for the ability of Gata2 to inhibit the proliferation of neural progenitors, and they further suggest that, in this regard, Gata2 can operate independently of neuronal differentiation.
    [Show full text]
  • Stem Cells and Neurological Disease the Transplant Site
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.5.553 on 1 May 2003. Downloaded from EDITORIAL 553 Stem cells shown to survive and ameliorate behav- ................................................................................... ioural deficits in an animal mode of Par- kinson’s disease,3 although in this study 20% of rats still developed teratomas at Stem cells and neurological disease the transplant site. In contrast, Kim et al, using a different approach that relies on R A Barker, M Jain,RJEArmstrong, M A Caldwell transfection with Nurr1 (a transcription ................................................................................... factor involved in the differentiation of dopaminergic cells), have demonstrated The therapeutic implications and application of stem cells for functional efficacy without tumour formation.4 the nervous system Human embryonic stem cells have now been isolated5 and grown in culture with enrichment for neuronal lineages, here has recently been a great deal of (c) ability to migrate and disseminate possible through exposure to a combina- interest in stem cells and the nerv- following implantation within the adult tion of growth factors and mitogens.6 Tous system, in terms of their poten- CNS; These cells, when placed in the develop- tial for deciphering developmental issues (d) possible tropism for areas of path- ing rat brain, can migrate widely and as well as their therapeutic potential. In ology; differentiate in a site specific fashion this editorial we will critically appraise without the formation of teratomas.7 the different types of stem cells, their (e) ease of manipulation using viral and non-viral gene transfer methods; However, the safety of these cells needs therapeutic implications, and the appli- further investigation before they can be (f) ability to better integrate into normal cations to which they have been put, considered for clinical use.
    [Show full text]
  • Fate of the Mammalian Cardiac Neural Crest
    Development 127, 1607-1616 (2000) 1607 Printed in Great Britain © The Company of Biologists Limited 2000 DEV4300 Fate of the mammalian cardiac neural crest Xiaobing Jiang1,3, David H. Rowitch4,*, Philippe Soriano5, Andrew P. McMahon4 and Henry M. Sucov2,3,‡ Departments of 1Biological Sciences and 2Cell & Neurobiology, 3Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar St., IGM 240, Los Angeles, CA 90033, USA 4Department of Molecular and Cell Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA 5Program in Developmental Biology, Division of Basic Sciences, A2-025, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Seattle, WA 98109, USA *Present address: Department of Pediatric Oncology, Dana Farber Cancer Institute, 44 Binney St., Boston, MA 02115, USA ‡Author for correspondence (e-mail: [email protected]) Accepted 26 January; published on WWW 21 March 2000 SUMMARY A subpopulation of neural crest termed the cardiac neural of these vessels. Labeled cells populate the crest is required in avian embryos to initiate reorganization aorticopulmonary septum and conotruncal cushions prior of the outflow tract of the developing cardiovascular to and during overt septation of the outflow tract, and system. In mammalian embryos, it has not been previously surround the thymus and thyroid as these organs form. experimentally possible to study the long-term fate of this Neural-crest-derived mesenchymal cells are abundantly population, although there is strong inference that a similar distributed in midgestation (E9.5-12.5), and adult population exists and is perturbed in a number of genetic derivatives of the third, fourth and sixth pharyngeal arch and teratogenic contexts.
    [Show full text]