Poisons, Drugs and Medicine: on the Use of Atropine and Scopolamine in Medicine and Ophthalmology: an Historical Review of Their Applications

Total Page:16

File Type:pdf, Size:1020Kb

Poisons, Drugs and Medicine: on the Use of Atropine and Scopolamine in Medicine and Ophthalmology: an Historical Review of Their Applications Journal of Eye Study and Treatment ISSN: 2652-5046 10.33513/JEST/1901-13 OCIMUM Scholtz S et al. J Eye Stud Treat 2019(01): 51-58. Historical Review Poisons, Drugs and Medicine: On the Use of Atropine and Scopolamine in Medicine and Ophthalmology: An Historical Review of their Applications Sibylle Scholtz1*, Lee MacMorris1, Frank Abstract Krogmann1,2 and Gerd U Auffarth1 Purpose: For thousands of years all kinds of ingredients of plants were 1International Vision Correction Research Centre used to treat diseases. Among other highly active ingredients, plants like (IVCRC), Department of Ophthalmology, University belladonna, datura, henbane and mandrake contain alkaloids and even highly of Heidelberg, Heidelberg, Germany toxic alkaloids like atropine and scopolamine. Our article will show major 2General Manager and Member of Board of historical facts about the mentioned two drugs and the origin of their names. Directors, Julius-Hirschberg-Society, Vienna, The history of the discovery of atropine and scopolamine, Austria Methods: two highly poisonous alkaloids, was analysed and interpreted based on a selective literature research of books and journal articles via PubMed, Received: 13 June 2019 Google Scholar and Google. Accepted: 26 July 2019 Version of Record Online: 31 July 2019 Results: Both alkaloids, used in antiquity, are essential drugs in modern medicine. Atropine is an extremely potent poison and, as a medicine, was widely used in ancient times. Today it is still an essential drug in today’s Citation medicine and in ophthalmology. The name has its source in the legends of Scholtz S, MacMorris L, Krogmann F, Auffarth Greek mythology and refers to the Greek goddess, Atropos. Scopolamine is GU (2019) Poisons, Drugs and Medicine: On the named after its discoverer, Giovanni Antonio Scopoli, a Tyrolean physician Use of Atropine and Scopolamine in Medicine and and naturalist of the 18th century, who was the first to describe the plant Ophthalmology: An Historical Review of their from which the alkaloid “Scopolamine” was isolated: Scopolia carniolica. Applications. J Eye Stud Treat 2019(1): 51-58. The substance Scopolamine is used in ophthalmology and general medicine. Correspondence should be addressed to Discussion: Plants of the nightshade family, Solanaceae are true masters Sibylle Scholtz, Germany of chemical warfare. Even today alkaloids in medicine are indispensable E-mail: [email protected] drugs in medicine, also in ophthalmology. The name “atropine” has a long mythological history. Apart from its immense importance as a poison and a drug, even a kingdom was named after Atropos: Atropatene, which was Copyright located in the region of today’s Azerbaijan. Giovanni Antonio Scopoli, Copyright © 2019 Sibylle Scholtz et al. This is an as name giver for scopolamine was one of the most respected scholars of open-access article distributed under the Creative the 18th century. His interdisciplinary research has profited the fields of Commons Attribution License which permits ophthalmology, general medicine as well as botany. unrestricted use, distribution, and reproduction in any medium, provided the original author and Keywords work is properly cited. Alkaloids; Atropine; History of Ophthalmology; Ophthalmology; Scopolamine Journal of Eye Study and Treatment [ISSN: 2652-5046] Submit Manuscript .01. Citation: Scholtz S, MacMorris L, Krogmann F, Auffarth GU (2019) Poisons, Drugs and Medicine: On the Use of Atropine and Scopolamine in Medicine and Ophthalmology: An Historical Review of their Applications. J Eye Stud Treat 2019(1): 51-58. DOI: 10.33513/JEST/1901-13 Introduction The dark side of “belladonna” - Antique Greek Mythology meets biology, chemistry - and Using the ingredients of plants to treat diseases has been known for thousands of years. Time and again, young people especially, medicine who are in search of legal drugs, tend to use plants containing In Greek mythology she was the oldest of the three Moirai, the psychoactive ingredients, including angel’s trumpets, datura, personification of the “inevitable”. She chose the mechanism of belladonna and other representatives of the nightshade family the death of each mortal, by cutting the thread of life, which Solanaceae. The alkaloids of these plants, like atropine and her sister Clotho has spun and Lachesis had measured (Figure scopolamine, lead to drowsiness, intoxication and hallucinations 1) [1-9]. She lent her name to an ancient kingdom, a poisonous of flying. They can be obtained quite easily. While these plants plant and a hawk moth. Atropos, the daughter of Zeus, one of grow wild by the roadside, they are popular as ornamental the three Moirai, the goddesses of fate and destiny, from whom plants. What nature offers, however, is by no means, harmless. the legendary poison has its name: Atropine, an alkaloid of Solanaceae are considered as highly toxic - as well as they can the deadly nightshade, Atropa belladonna (Figures 2,3) [1-3]. be essential drugs in medicine. Scopolamine also acts as a Atropine is an extremely potent poison and still an essential parasympatholytic, but in comparison to atropine, rather drug in today’s medicine [10-13]. The name has its source in calming and muffling. It provides a state of lack of will and the legends of Greek mythology [1-3,14,15]. apathy, similar to hypnosis. It was once used as a truth drug [1-5]. Figure 1: The Triumph of Death, or The Three Fates [16]. Submit Manuscript Journal of Eye Study and Treatment [ISSN: 2652-5046] .02. Citation: Scholtz S, MacMorris L, Krogmann F, Auffarth GU (2019) Poisons, Drugs and Medicine: On the Use of Atropine and Scopolamine in Medicine and Ophthalmology: An Historical Review of their Applications. J Eye Stud Treat 2019(1): 51-58. DOI: 10.33513/JEST/1901-13 Figure 2: Chemical structure of (S)- and (L)-Hyoscyamine [17]. Figure 3: Atropa belladonna, fruits [17]. Journal of Eye Study and Treatment [ISSN: 2652-5046] Submit Manuscript .03. Citation: Scholtz S, MacMorris L, Krogmann F, Auffarth GU (2019) Poisons, Drugs and Medicine: On the Use of Atropine and Scopolamine in Medicine and Ophthalmology: An Historical Review of their Applications. J Eye Stud Treat 2019(1): 51-58. DOI: 10.33513/JEST/1901-13 With the pattern of a skull on its back, the Latin name of The physiological effect of atropine was scientifically proved the death’s head hawk moth (Acherontia atropos) reminds in 1819 when the German chemist F. Runge described the one of the deadly effects of Atropos [18]. The Latin name of pupil-dilating effect of extracts of the deadly nightshade in deadly nightshade, Atropa belladonna and its poison atropine his dissertation. In 1831, the pharmacist Mein succeeded remind one of Zeus’ daughter. The byname “belladonna” in preparing atropine in pure crystalline form. Geiger and means “beautiful lady”, since in the Middle Ages the juice Hesse isolated in 1833 hyoscyamine from the plants and in of the berries was used cosmetically to enlarge women’s the same year Merck (Darmstadt) started the production of pupils to make them more beautiful [1-5]. The chemistry is atropine by processing the roots of deadly nightshade [11- confusing: atropine is a mixture of two isomeric varieties of 13,19-25,29,31-34]. the hyoscyamine molecule (right- and left-turning) (Figure 2). In nature, only l-hyoscyamine occurs in Solanaceae, which In 1863, the chemical structure of the alkaloid was defined is the pharmacologically active substance. After isolation it and 1866 Bernstein described its mydriatic effect. Since becomes a racemic mixture of d- and l-hyoscyamine, which 1867, extracts of deadly nightshade have been administered is called atropine. Birds can consume the berries of the deadly with Parkinson (“Bulgarische Kur” [35] [“Bulgarian Cure”, nightshade without being harmed, humans cannot do so. translation by authors]). 1872 it was found that atropine Generally, 3 to 4 berries with children, 10 to 12 berries with could inhibit salivation and 1878 its effect on the intestines adults are considered to be lethal [12,13,19-23]. was discovered. In 1901, Richard Willstätter first synthesized atropine. The production of atropine-sulfate made clinical In ancient times, atropine was widely used in medicine, e.g. as application possible [11-13,19-23,25,31-34]. analgesic for hepatitis, edema, scarlet fever and mental diseases as well as a poison. The poisonous effect on the parasympathetic Today ingredients of deadly nightshades are no longer used nervous system has been known for a long time. Attalos III. in popular medicine. As atropine binds to muscarine type of (171-133 B. C.) grew Solanaceae and proved its effect with receptors in the iris it is used in uveitis or iritis treatment to animals and with persons condemned to death. dilate the pupil which relieves the pain. The sympatholytic function can cause, especially in small children in hot countries Atropine is part of the “belladonna” extract that young overheating leading to death. Nevertheless, there is an increase women in ancient Venice applied to their eyes in order to of intoxication incidents caused by abuse of hallucinogenic have “beautiful” dilated pupils. In antiquity the berry of the drugs [36]. For certain clinical pictures atropine is still a deadly nightshade traditionally was used as analgetic and in the widely used, indispensable drug, especially in emergency Eastern world it was added to beer and wine. Theophrastus of medicine. It can serve as treatment of insecticide poisoning Eresos knew “Atropa” as poison and mydriatic. Atropine was and as an antidote for nerve gases. In the preparation for an also responsible for the outcome of a war. The Scottish king operation, atropine lowers the activity of glands, reduces Duncan I. used “Atropa” as toxic agent against the Norwegian the seizures of the smooth muscles and, is generally used in enemies by poisoning their food and thus winning the battle. ophthalmology to dilate the pupil and inhibit accommodation Both in the works of Hildegard von Bingen in the 12th century [11-13,37].
Recommended publications
  • A Phylogenetic Framework for Evolutionary Study of the Nightshades
    Särkinen et al. BMC Evolutionary Biology 2013, 13:214 http://www.biomedcentral.com/1471-2148/13/214 RESEARCH ARTICLE Open Access A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree Tiina Särkinen1,2*, Lynn Bohs3, Richard G Olmstead4 and Sandra Knapp1 Abstract Background: The Solanaceae is a plant family of great economic importance. Despite a wealth of phylogenetic work on individual clades and a deep knowledge of particular cultivated species such as tomato and potato, a robust evolutionary framework with a dated molecular phylogeny for the family is still lacking. Here we investigate molecular divergence times for Solanaceae using a densely-sampled species-level phylogeny. We also review the fossil record of the family to derive robust calibration points, and estimate a chronogram using an uncorrelated relaxed molecular clock. Results: Our densely-sampled phylogeny shows strong support for all previously identified clades of Solanaceae and strongly supported relationships between the major clades, particularly within Solanum. The Tomato clade is shown to be sister to section Petota, and the Regmandra clade is the first branching member of the Potato clade. The minimum age estimates for major splits within the family provided here correspond well with results from previous studies, indicating splits between tomato & potato around 8 Million years ago (Ma) with a 95% highest posterior density (HPD) 7–10 Ma, Solanum & Capsicum c. 19 Ma (95% HPD 17–21), and Solanum & Nicotiana c. 24 Ma (95% HPD 23–26). Conclusions: Our large time-calibrated phylogeny provides a significant step towards completing a fully sampled species-level phylogeny for Solanaceae, and provides age estimates for the whole family.
    [Show full text]
  • FDA OTC Reviews Summary of Back Issues
    Number 23 The Journal of the AMERICAN BOTANI CAL COUNCIL and the HERB RESEARCH FOUNDATION Chinese Medicinals -A Comprehensive Review of Chinese Materia Medica Legal and Regulatory- FDA OTC Reviews Summary of Back Issues Ongoing Market Report, Research Reviews (glimpses of studies published in over a dozen scientific and technical journals), Access, Book Reviews, Calendar, Legal and Regulatory, Herb Blurbs and Potpourri columns. #1 -Summer 83 (4 pp.) Eucalyptus Repels Reas, Stones Koalas; FDA OTC tiveness; Fungal Studies; More Polysaccharides; Recent Research on Ginseng; Heart Panel Reviews Menstrual & Aphrodisiac Herbs; Tabasco Toxicity?; Garlic Odor Peppers; Yew Continues to Amaze; Licorice O.D. Prevention; Ginseng in Perspec­ Repels Deer; and more. tive; Poisonous Plants Update; Medicinal Plant Conservation Project; 1989 Oberly #2- Fall/Winter 83-84 (8 pp.) Appeals Court Overrules FDA on Food Safety; Award Nominations; Trends in Self-Care Conference; License Plates to Fund Native FDA Magazine Pans Herbs; Beware of Bay Leaves; Tiny Tree: Cancer Cure?; Plant Manual; and more. Comfrey Tea Recall; plus. #17-Summer 88. (24 pp.) Sarsaparilla, A Literature Review by Christopher #3-Spring 84 (8 pp.) Celestial Sells to Kraft; Rowers and Dinosaurs Demise?; Hobbs; Hops May Help Metabolize Toxins; Herbal Roach Killer; Epazote Getting Citrus Peels for Kitty Litter; Saffron; Antibacterial Sassafras; WHO Studies Anti· More Popular, Aloe Market Levels Off; Herbal Tick Repellent?; Chinese Herb fertility Plants; Chinese Herbal Drugs; Feverfew Migraines;
    [Show full text]
  • Rivalry and Revenge Costantinopoli 1786: La Congiura E La Beffa (Constantinople 1786: the Conspiracy and the Hoax) by Paolo Mazzarello Bollati Boringhieri: 2004
    books and arts in writing. With its clear and accessible style, the book could be shared with young readers, who might be less susceptible than earlier generations to narratives of romantic INDEX, FIRENZE self-sacrifice, and more intrigued by the psychological portrait of a complicated and accomplished woman scientist. ■ Susan Lindee is in the Department of History and Sociology of Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6304, USA. Rivalry and revenge Costantinopoli 1786: la congiura e la beffa (Constantinople 1786: The Conspiracy and the Hoax) by Paolo Mazzarello Bollati Boringhieri: 2004. 327 pp. €24. In Italian. http://www.bollatiboringhieri.it/ Nicola Nosengo The second half of the eighteenth century was a time of spectacular advances in the life sciences. Fundamental problems such as the generation of life were addressed for the first time using modern experimental tools. But these issues were the source of great controversy, and also great rivalries among Lazzaro Spallanzani poured scorn on rivals whose experiments failed to meet his own high standards. biologists — or philosophers, as they still preferred to call themselves. was a genuine scientific mission.Spallanzani known. Using a pen name, he wrote a At a time when many scientists were still left Pavia equipped with scientific instru- pamphlet, full of scorn and cruel irony, convinced that life can be generated sponta- ments, such as barometers, thermometers, condemning Scopoli’s ability as a scientist. neously from decomposition, the Italian lenses and a microscope. He spent most of Scopoli,he wrote,wanted to study nature Lazzaro Spallanzani was the first to demon- his time taking measurements and collecting inside “dead museums”, only hoping to be stratethe necessity of sperm for reproduction.
    [Show full text]
  • Protection of the Most Valuable Nature Objects in the Territory of the Uzhansky National Nature Park
    ROCZNIKI BIESZCZADZKIE 17 (2009), str. 129–136 Stepan Stoyko1, Ivan Ivanega2, Vasyl Kopach2 Received: 26.03.2009 1 Institute of Ecology of the Carpathians NAS of Ukraine Reviewed: 1.07.2009 Kozelnicka str. 4, 79026, Lviv, Ukraine 2 Uzhansky National Nature Park Nezalezhnosti str. 7, Veliky Berezny, 89000, Ukraine [email protected] PROTECTION OF THE MOST valUablE naTURE OBJECTS in THE TERRITORY OF THE UzHanSKY NATIOnal NATURE PARK Abstract: The most biogeographically and ecologically valuable nature objects in the territory of the Uzhansky National Nature Park and ways of solving problems of their conservation are presented. Key words: Uzhansky National Nature Park, International Biosphere Reserve “Eastern Carpathians”, nature protection, reserve. Introduction Uzhansky National Nature Park (39.1 thousands of hectares), which is a part of International Biosphere Reserve “Eastern Carpathians”, belongs to original in biogeographical and landscape-ecological aspects protected objects in the Car- pathian mountain system. Due to its geological, geomorphological, soil, climatic, and ecological diversity, the territory of the park is known for its huge heteroge- neity of natural ecosystems, and biological and phytocenotical diversity (Stojko, Mykhalyk 1991). The beginnings of nature protection in the present territory of the Uzhansky NNP dates back to the first years of the past century. It was in 1910–1912 that Hungarian foresters took the ancient forests under protection, and on their basis the first forest reserves „Stuzhica” and „Tykha” were created. Lots of valuable work in the field of protection of ancient forests of Zakarpattya was done by outstand- ing Czech scientists A. Zlatnik and A. Hilitzer, who in 1930s had substantiated the need to preserve the unique beech, beech-fir, and spruce-beech old forests (Zlatnik, Hilitzer 1932).
    [Show full text]
  • Great-Granny's Garden: a Living Archive and a Sensory Garden
    Biodivers Conserv (2011) 20:441–449 DOI 10.1007/s10531-010-9931-9 ORIGINAL PAPER Great-granny’s Garden: a living archive and a sensory garden Liv Borgen • Ane S. Guldahl Received: 7 September 2009 / Accepted: 18 October 2010 / Published online: 9 November 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Since 2003, the Botanical Garden in Oslo has been involved in a project coordinated by the Norwegian Genetic Resource Centre. The wide range of work super- vised by this centre includes conservation of ornamental plants. Our garden has been responsible for the registration and collecting of ornamentals in Southeast-Norway and has a special responsibility for the conservation of Paeonia species and cultivars. As a result of the project, Great-granny’s Garden was opened to the public in 2008. It has two objectives. Firstly, it shall be a living archive of Norway’s horticultural heritage. Although proven hardy, easy to grow, and long-lived, old varieties of traditional ornamentals are rapidly disappearing. We aim to keep these old-fashioned varieties for sustainable use in future horticulture and encourage people to use them in present day gardening, both in new gardens and in the restoration of old ones. Secondly, the garden is designed as a sensory garden for people with dementia, in cooperation with Oslo’s Resource Centre for Dementia and Psychiatric Care of the Elderly. It is enclosed by a picked fence and by shrubs, offers rest on several benches, and has a paved and easy to follow round-walk among traditional garden elements and plants with a lush variety of colours, forms, and scents.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • Iconography of the Solanaceae from Antiquity to the Xviith Century: a Rich Source of Information on Genetic Diversity and Uses
    Iconography of the Solanaceae from Antiquity to the XVIIth Century: a Rich Source of Information on Genetic Diversity and Uses Marie-Christine Daunay and Henri Laterrot Jules Janick INRA, Unité de Génétique & Amélioration Department of Horticulture des Fruits et Légumes Landscape Architecture Domaine St. Maurice, BP 94 Purdue University 84143 Montfavet cedex 625 Agriculture Mall Drive France West Lafayette, IN 47907–2010 USA Keywords: alkekenge, belladonna, capsicum pepper, datura, eggplant, henbane, husk tomato, mandrake, nightshades, potato, tobacco, tomato, Renaissance herbals Abstract The systematic study of solanaceous plant iconography has been a neglected source of information although historical records (ceramics, painted and printed images in manuscripts, and printed documents) are numerous. Many wild and domesticated solanaceous species have been associated with human culture from antiquity, as medicinal, ritual or magical herbs and/or food crops in the Old World (alkekenge, belladonna, eggplant, henbane, mandrake) and New World (capsicum pepper, datura, husk tomato, potato, tobacco, tomato). Mandrake (Mandragora spp.) images can be found in Egyptian sources in the second millennium BCE, and along with alkekenge (Physalis alkekengi) and black nightshade (Solanum nigrum aff.) are found in the oldest extant copy of the Materia Medica of Dioscorides (Codex Vindobonensis, Aniciae Julianae, 512 CE), as well as in many later Medieval and Renaissance sources. Images of henbane (Hyocyamus spp.) appears in the VIIIth century while belladonna (Atropa belladonna) first appears in the Renaissance. Images of eggplant (Solanum melongena), an Asian crop, are found in Asian and European manuscripts from the XIVth century onwards. Images of New World species are present in pre-Columbian sources, attesting to their wide use by native populations.
    [Show full text]
  • Some Medicinal Plants from Wild Flora of Romania and the Ecology
    Research Journal of Agricultural Science, 44 (2), 2012 SOME MEDICINAL PLANTS FROM WILD FLORA OF ROMANIA AND THE ECOLOGY Helena Maria SABO Faculty of Psychology and Science of Education, UBB, Sindicatelor Street. No.7, Cluj-Napoca, Romania E-mail: [email protected] Abstract: The importance of ecological factors for characteristic of central and Western Europe, medicinal species and their influence on active specific continental to the Eastern Europe, the principles synthesis and the specific uptake of presence of the Carpathian Mountains has an mineral elements from soil are presented. The impact on natural vegetation, and vegetation in the biological and ecological characters, the medicinal south has small Mediterranean influence. The importance, and the protection measurements for therapeutic use of medicinal plants is due to active some species are given. Ecological knowledge of principles they contain. For the plant body these medicinal plants has a double significance: on the substances meet have a metabolic role, such as one hand provides information on resorts where vitamins, enzymes, or the role of defense against medicinal plant species can be found to harvest and biological agents (insects, fungi, even vertebrates) use of them, on the other hand provides to chemical and physical stress (UV radiation), and information on conditions to be met by a possible in some cases still not precisely known functions of location of their culture. Lately several medicinal these substances for plants. As a result of research species were introduced into culture in order to on medicinal plants has been established that the ensure the raw materials of vegetable drug following factors influence ecology them: abiotic - industry.
    [Show full text]
  • THE RESEARCH of MEDICINAL PLANTS by Ph. D. STUDIES at FACULTY of PHARMACY CLUJ-NAPOCA (ROMANIA) P
    Hop and medicinal plants, Year XXI, No. 1-2 (41-42), 2013 ISSN 1454-7805 THE RESEARCH OF MEDICINAL PLANTS BY Ph. D. STUDIES AT FACULTY OF PHARMACY CLUJ-NAPOCA (ROMANIA) P. I. (2004-2007) TĂMAȘ Mircea University of Medicine and Pharmacy Cluj-Napoca, RO [email protected] Abstract. A synthesis of Ph. D. Thesis in the field of medicinal plants research for 2004-2007, at Faculty of Pharmacy Cluj-Napoca (Romania) is presented. The following species were studied botanically, phytochemically and pharmacologically: Veronica (14 sp.), Geranium (8 sp.), Solidago (3 sp.). Anagalis arvensis, Scopolia carnioloica Jacq., Eryngium (3 sp), 8 buds for gemmoterapy, biotransformation of hydrochinine in to arbutoside, in vitro cells culture and the diuretic action for 4 species, in 9 Ph. D. Thesis. Key words: Ph. D. Thesis synthesis, medicinal plants research. In the last 10 years I was supervissor for 18 Ph. D. Thesis, at Pharmaceutical Botany Chair, Faculty of Pharmacy of Uniersity of Medicine and Pharmacy Iuliu Hațieganu Cluj Napoca. These studies have as a subjects the botanical, phytochemical and pharmacological knowledge of the plants, the most of the research having in view the comparative studies of the species belonging to the same genus or family and were a thoroughly continuation of the first research biggining at our chair.For a better knowledge of the original contribution for these plants we present the most important results of the PhD students. 1.Pharmacobotanical studies of some indigenous species of Veronica (Scrophulariaceae) (1). 14 species of Veronica from wild flora of Transilvania were studied. The previous research shows the antiulcer properties of the extract obtained from Veronica officinalis (speedwell) as show the pharmacological experiments in rats (2), then a phytochemical screening of the plant was achieved (3) and hystoanatomical studies, having in view to avoid the adulteration of the officinal herb(4,5).
    [Show full text]
  • Metabolic Engineering of Plant Secondary Metabolism
    Metabolic Engineering of Plant Secondary Metabolism Edited by R. Verpoorte Division Pharmacognosy, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands and A. W. Alfermann Heinrich-Heine- Universitat, Dusseldorf, Institutfiir Entwicklungs- und Molekularbiologie der Pflanzen, Dusseldorf, Germany KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON Library of Congress Cataloging-in-Publication Data Metabolic engineering of plant secondary metabolism / editors R. Verpoorte and A. W. Alfermann. p. cm. ISBN 0-7923-6360-4 (alk. paper) 1. Plants-Metabolism. 2. Metabolism, Secondary. I. Verpoorte, R. IL Alfermann, A. W. QK881 .M45 2000 572\42~dc21 00-030654 ISBN 0-7923-6360-4 Published by Kluwer Academic Publishers, RO. Box 17, 3300 AA Dordrecht, The Netherlands. Sold and distributed in North, Central and South America by Kluwer Academic Publishers, 101 Philip Drive, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Kluwer Academic Publishers, P.O. Box 322, 3300 AH Dordrecht, The Netherlands. Printed on acid-free paper All Rights Reserved © 2000 Kluwer Academic Publishers No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Printed in the Netherlands. DETAILS OF CONTRIBUTORS Prof. Dr. A.W. Alfermann Heinrich-Heine-Universitat Diisseldorf Institut fur Entwicklungs- und Molekularbiologie der Pflanzen Universitatsstr. 1, Geb. 26.13, 40225 Diisseldorf, Germany Dr. Randolph Arroo Natural Products Research, Department of Pharmaceutical Sciences De Montfort University, Leicester, United Kingdom Dr. Olga Artsaenko Rheinisch-Westfalische Technische Hochschule Institut fur Biologie I, Antibody Engineering Group Worringer Weg 1 52074 Aachen, Germany Dr.
    [Show full text]
  • Plant of the Month: Cardamine Heptaphylla 'Big White' Joe Sime
    THE NEWSLETTER OF THE SHADE AND WOODLAND PLANTS GROUP May 2019 Plant of the Month: Cardamine heptaphylla 'Big White' Joe Sime I like cardamines and cannot resist buying and planting any new ones that I see. This has led to some disappointments. I could never get C. diphylla to thrive, having tried the basic form, 'Echo Cutleaf' and 'American Sweetheart' in the past. It has also led to some problems. I bought and planted C. bulbifera in spite of the clear warning given to me by the seller. It is a redefinition of the term 'Thug'. It spreads by rhizomes and by bulbils produced in the leaf axils. I have tried to confine it to one particular area of the garden, but the bulbils have obviously managed to spread themselves around in the dead leaves used for leaf mould and I now have little colonies trying to establish themselves around the place. Luckily they are easy to spot and pull up. There are easier ways to get pink flowers! However 'Big White' is neither a disappointment nor a thug. It is large for a cardamine, growing to about 40 cms tall and as much across. The leaves are large with, as the name suggests, seven toothed leaflets. In spring it produces good heads of pure white flowers. It should produce the long seed pods typical of the brassica family but mine has not. It is dormant by mid summer leaving room for later things around it. The basic species comes from meadows and woodland in central and southern Europe. It is said to prefer alkaline soils and a fairly open site, but manages with the acid side of neutral and an overhead oak tree here.
    [Show full text]
  • SOLANACEAE 茄科 Qie Ke Zhang Zhi-Yun, Lu An-Ming; William G
    Flora of China 17: 300–332. 1994. SOLANACEAE 茄科 qie ke Zhang Zhi-yun, Lu An-ming; William G. D'Arcy Herbs, shrubs, small trees, or climbers. Stems sometimes prickly, rarely thorny; hairs simple, branched, or stellate, sometimes glandular. Leaves alternate, solitary or paired, simple or pinnately compound, without stipules; leaf blade entire, dentate, lobed, or divided. Inflorescences terminal, overtopped by continuing axes, appearing axillary, extra-axillary, or leaf opposed, often apparently umbellate, racemose, paniculate, clustered, or solitary flowers, rarely true cymes, sometimes bracteate. Flowers mostly bisexual, usually regular, 5-merous, rarely 4- or 6–9-merous. Calyx mostly lobed. Petals united. Stamens as many as corolla lobes and alternate with them, inserted within corolla, all alike or 1 or more reduced; anthers dehiscing longitudinally or by apical pores. Ovary 2–5-locular; placentation mostly axile; ovules usually numerous. Style 1. Fruiting calyx often becoming enlarged, mostly persistent. Fruit a berry or capsule. Seeds with copious endosperm; embryo mostly curved. About 95 genera with 2300 species: best represented in western tropical America, widespread in temperate and tropical regions; 20 genera (ten introduced) and 101 species in China. Some species of Solanaceae are known in China only by plants cultivated in ornamental or specialty gardens: Atropa belladonna Linnaeus, Cyphomandra betacea (Cavanilles) Sendtner, Brugmansia suaveolens (Willdenow) Berchtold & Presl, Nicotiana alata Link & Otto, and Solanum jasminoides Paxton. Kuang Ko-zen & Lu An-ming, eds. 1978. Solanaceae. Fl. Reipubl. Popularis Sin. 67(1): 1–175. 1a. Flowers in several- to many-flowered inflorescences; peduncle mostly present and evident. 2a. Fruit enclosed in fruiting calyx.
    [Show full text]