THE RESEARCH of MEDICINAL PLANTS by Ph. D. STUDIES at FACULTY of PHARMACY CLUJ-NAPOCA (ROMANIA) P

Total Page:16

File Type:pdf, Size:1020Kb

THE RESEARCH of MEDICINAL PLANTS by Ph. D. STUDIES at FACULTY of PHARMACY CLUJ-NAPOCA (ROMANIA) P Hop and medicinal plants, Year XXI, No. 1-2 (41-42), 2013 ISSN 1454-7805 THE RESEARCH OF MEDICINAL PLANTS BY Ph. D. STUDIES AT FACULTY OF PHARMACY CLUJ-NAPOCA (ROMANIA) P. I. (2004-2007) TĂMAȘ Mircea University of Medicine and Pharmacy Cluj-Napoca, RO [email protected] Abstract. A synthesis of Ph. D. Thesis in the field of medicinal plants research for 2004-2007, at Faculty of Pharmacy Cluj-Napoca (Romania) is presented. The following species were studied botanically, phytochemically and pharmacologically: Veronica (14 sp.), Geranium (8 sp.), Solidago (3 sp.). Anagalis arvensis, Scopolia carnioloica Jacq., Eryngium (3 sp), 8 buds for gemmoterapy, biotransformation of hydrochinine in to arbutoside, in vitro cells culture and the diuretic action for 4 species, in 9 Ph. D. Thesis. Key words: Ph. D. Thesis synthesis, medicinal plants research. In the last 10 years I was supervissor for 18 Ph. D. Thesis, at Pharmaceutical Botany Chair, Faculty of Pharmacy of Uniersity of Medicine and Pharmacy Iuliu Hațieganu Cluj Napoca. These studies have as a subjects the botanical, phytochemical and pharmacological knowledge of the plants, the most of the research having in view the comparative studies of the species belonging to the same genus or family and were a thoroughly continuation of the first research biggining at our chair.For a better knowledge of the original contribution for these plants we present the most important results of the PhD students. 1.Pharmacobotanical studies of some indigenous species of Veronica (Scrophulariaceae) (1). 14 species of Veronica from wild flora of Transilvania were studied. The previous research shows the antiulcer properties of the extract obtained from Veronica officinalis (speedwell) as show the pharmacological experiments in rats (2), then a phytochemical screening of the plant was achieved (3) and hystoanatomical studies, having in view to avoid the adulteration of the officinal herb(4,5). The extracts obtained from V.officinlis herba have a hypolipaemic and hypocolesterolaemic effect (6), and a HPLC analysis of polyphenols and iridoids from Veronica species was performed (7). 36 2. Pharmacobotanical studies on indigenous species of Geranium (8).Previous data for Geranium species show only the benefit properties of G.macrorrhizum extract in the treatment of mous diseases e.g. Aftogeranil(9). In ethnomedicine are used others two species, G. robertianum, in neoplasic deseases and G.pratense in cardiovascular diseases, but no phytochemical or pharmacological proofs are available. The research were extended to a 8 species of Geranium from the wild flora: G.pratense, G.robertianum, G.pyrenaicum, G. pusyllum, G. palustre, G.sanguineum, G.macrorrhizum and G.phaeum (10, 11, 12, 13, 14). In addition a HPLC anaysis of polyphenols from Geranium species were analysed (15, 16). 3. Pharmacobotanical Researh on some indigenous species with triterpenic saponins (17). The our previsous research shows the chemotaxonomique value of flavonoids for Solidago species differentiation(18) and a high content of triterpenic saponins with a high haemolytic index for Solidago canadensis and S.gigantea (19) and for Anagalis arvensis (H. I.=40.000) (17) and a high diuretic index for all specises of Solidago (20). A therapeutic value of Solidago species was presented (22). Dobjanschi and col. estabilished the criteria for the differentiation of the three species of Solidago (21) and a histoanatomical research for these species was achieved (23), whereas the extract of Solidago virgaurea (golden rod)was tested in vitro for the antiinflammatory action by arginine-NO test (24). 4. Scopolia carniolica Jacq. (Solanaceae)- pharmacobotanical studies (25). This is a first, botanaical, phytochemical and biotechnological study for this species from wild flora of Romania, that is very important for pharmacy by their high content in scopolamine. By HPLC analysis was esteblished the content in scopolamine from the rhizoms colected fron wild flora of Counties Cluj and Maramureș (26), and from the adventive roots, cultivated in vitro (27). Also the anatomical structure of vegetative organs was studied (28) whereas the coumaruins from different organs were analysed qualitativelly and quantitativelly by means of HPLC (29). 5.Comparative pharmacobotanical research on indigenous species of genus Eryngium (Apiaceae) (30). In romanian wild flora there are 3 species of Eryngium (E. planum, E. campestre and E. maritimum) but only the former is used in phytotherapy against the whooping cough, beeing a roumanian original remedy, but are not scientific studies for these species. A original contribution to the study of flavonoids by TLC and HPLC analysis (31), the 37 content of total polyphenols, saponins, sterols, pectins, and free triterpenic acids were achieved as well as anatomical research for these species, the haemolytic index determination for isolated saponins and for extracts and the bactericide properties of this (30). 6. The biology, chemical composition and the pharmacological action of some buds used in gemmotherapy (32). The author of this thesis has experience(practices) in the field of gemmotherapic remedies. Eight species of buds were studied histologicaly(the extension of meristematic tissues) (33), chemical composition(34) and a screening of biological activity of buds extracts, inclusively by phytobiological test (35). 7. The Phytomedicine in cardiovascular diseases (36). The author of this thesis, primary physician in inner medicine, have a great experience in pytotherapy (40). He selected four species (Crataegus monogyna, Rosmarinus officinalis, Arnica montana )and performed botanical, pharmacological and clinical experiences and put in evidence the efficiency of Rosmarinus and Crataegus remedies in hypo- and hyper arterial tension (37). Also an analyse of Arnicae flowers by Eur.Pharm. and determined the content of hellenaline, expressed as santonine by HPLC method (37), was analysed, by different techniques, the rosmarinic acid in rosemary leaves (39). 8. The biosyntesis of arbutoside by biotransformation in in vitro cells cultures (41). The presence of am unspecific enzyme, glicosydase, in the cell culture of Digitalis lanata allow the biosynthese the arbutoside from hydroquinone and glucose, added in culture medium. This show the posibility to obtain in vitro, pharmacological active substances by biotechnology. The methods of arbutoside analysis from plants, biomass, liquid medium and extracts are presented (42), the efficiency of biotransformation, depending of different factors (43) and also the analysis of arbutoside from a new resource, Bergenia crassifolia (44). 9. Comparative studies on diuretic action of some medicinal plants (45). The previous our research and phytotherapy literature date allow to select four species (Solidago virgaurea, Calluna vulgaris, Prunus spinosa, Hieracium pilosella) that were tested for diuretic, saluretic, uricosuric and antiinflammatory activity in correlation with their chemical composition (46, 47). 38 References 1. Crișan G. C., (2004), Studii farmacobotanice asupra unor specii indigene de Veronica (Scrophulariaceae), Teză de doctorat UMF Cluj-Napoca. 2. Scarlat A.M., Șandor Vl., Tămaș M., Cuparencu B., (1985), Experimental antiulcer activity of Veronica officinalis extracts, J.of Ethnopharmacol., 13, 157-163 3. Tămaș M., Roșca M., (1984), Studiul fitochimic al plantei Veronica officinalis, Clujul Medical 57(2), 169-172 4. Crișan G., Tămaș M., (2004), Studii morfoanatomice asupra unor specii de Veronica, Rev.Med.Farm.(Tg.Mureș), 50, 14-17 5. Crișan G., Tămaș M., Garbacki N., Angenot L., (2001), Criterii de diferențiere a unor specii de Veronica, Farmacia 49,(6), 67-73 6. Crișan G., Krausz T., Șandor Vl., Tămaș M., Toader S., (2003) Cercetări asupra efectului hipocolestreolemiant al unor specii de Veronica, Clujul Medical, 76(4), 937-940 7. Crișan G., Tămaș M., Miclăuș V., krausz T., Șandor Vl., (2007), A comparative study of some Veronica species. Rev.Med.Chir. Med. Nat.Iași 111(1), 280-284 8. Fodorea C. Ș., (2006) Studii farmacobotanice asupra unor specii indigene de Geranium L., Teză de doctorat UMF Cluj-Napoca 9. Borzea D., Hodișan V., (1986), Rezultate clinice cu preparatul Aftogeranil, Clujul Medical 59(2), 178-182 10. Fodorea C., Tămaș M., (2003) Studii comparative asupra speciilor Geranium robertianum și G.pratense, Rev.Med.Chir.Med.Nat. Iași, 107(2),73-77 11. Fodorea Cristina, Tămaș M., (2004) Cercetări morfologice și anatomice asupra speciei Geranium sanguineum L. Farmacia 52(5), 86-93 12. Fodorea C., Vlase L., Leucuța S., Tămaș M. (2004), Cercetări fitochimice asupra speciei Geranium palustre, Clujul Med. 76(4), 923-926 13. Fodorea C., Tămaș M., (2005) Root, stem and leaf anatomy of Geranium palustre, Rev.Med.Chir.Med.Nat.Iași 109(2), 419-421 39 14. Fodorea C., Pârvu M, Tămaș M., Crișan G., (2003) Phytochemical and morphological study on Geranium macrorrhizum L. And his activity against the fungus Botrytis cinerea. Anal.Univ.Ovidius, 1,73- 78. 15. Fodorea C., Vlase L., Tămaș M., (2005) Phytochemical studies on some indigenous Geranium species, Contrib.Bot.(Cluj-Napoca) 40, 237-242. 16. Fodorea C., Vlase L., Tămaș M., (2005) Phytochemical study on some polyphenols of Geranium pyrenaicum Chem.Nat.Comp. 41(4), 400-403. 17. Dobjanschi L., (2006), Cercetări farmacobotanice asupra unor specii vegetale indigene cu saponine triterpenice, Teză de doctorat UMF Cluj-Napoca. 18. Tămaș M., (1986), Cercetări chemotaxonomice la genul Solidago, Contribuții botanice (Cluj Napoca) 109-113.
Recommended publications
  • A Phylogenetic Framework for Evolutionary Study of the Nightshades
    Särkinen et al. BMC Evolutionary Biology 2013, 13:214 http://www.biomedcentral.com/1471-2148/13/214 RESEARCH ARTICLE Open Access A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree Tiina Särkinen1,2*, Lynn Bohs3, Richard G Olmstead4 and Sandra Knapp1 Abstract Background: The Solanaceae is a plant family of great economic importance. Despite a wealth of phylogenetic work on individual clades and a deep knowledge of particular cultivated species such as tomato and potato, a robust evolutionary framework with a dated molecular phylogeny for the family is still lacking. Here we investigate molecular divergence times for Solanaceae using a densely-sampled species-level phylogeny. We also review the fossil record of the family to derive robust calibration points, and estimate a chronogram using an uncorrelated relaxed molecular clock. Results: Our densely-sampled phylogeny shows strong support for all previously identified clades of Solanaceae and strongly supported relationships between the major clades, particularly within Solanum. The Tomato clade is shown to be sister to section Petota, and the Regmandra clade is the first branching member of the Potato clade. The minimum age estimates for major splits within the family provided here correspond well with results from previous studies, indicating splits between tomato & potato around 8 Million years ago (Ma) with a 95% highest posterior density (HPD) 7–10 Ma, Solanum & Capsicum c. 19 Ma (95% HPD 17–21), and Solanum & Nicotiana c. 24 Ma (95% HPD 23–26). Conclusions: Our large time-calibrated phylogeny provides a significant step towards completing a fully sampled species-level phylogeny for Solanaceae, and provides age estimates for the whole family.
    [Show full text]
  • Great-Granny's Garden: a Living Archive and a Sensory Garden
    Biodivers Conserv (2011) 20:441–449 DOI 10.1007/s10531-010-9931-9 ORIGINAL PAPER Great-granny’s Garden: a living archive and a sensory garden Liv Borgen • Ane S. Guldahl Received: 7 September 2009 / Accepted: 18 October 2010 / Published online: 9 November 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Since 2003, the Botanical Garden in Oslo has been involved in a project coordinated by the Norwegian Genetic Resource Centre. The wide range of work super- vised by this centre includes conservation of ornamental plants. Our garden has been responsible for the registration and collecting of ornamentals in Southeast-Norway and has a special responsibility for the conservation of Paeonia species and cultivars. As a result of the project, Great-granny’s Garden was opened to the public in 2008. It has two objectives. Firstly, it shall be a living archive of Norway’s horticultural heritage. Although proven hardy, easy to grow, and long-lived, old varieties of traditional ornamentals are rapidly disappearing. We aim to keep these old-fashioned varieties for sustainable use in future horticulture and encourage people to use them in present day gardening, both in new gardens and in the restoration of old ones. Secondly, the garden is designed as a sensory garden for people with dementia, in cooperation with Oslo’s Resource Centre for Dementia and Psychiatric Care of the Elderly. It is enclosed by a picked fence and by shrubs, offers rest on several benches, and has a paved and easy to follow round-walk among traditional garden elements and plants with a lush variety of colours, forms, and scents.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • Iconography of the Solanaceae from Antiquity to the Xviith Century: a Rich Source of Information on Genetic Diversity and Uses
    Iconography of the Solanaceae from Antiquity to the XVIIth Century: a Rich Source of Information on Genetic Diversity and Uses Marie-Christine Daunay and Henri Laterrot Jules Janick INRA, Unité de Génétique & Amélioration Department of Horticulture des Fruits et Légumes Landscape Architecture Domaine St. Maurice, BP 94 Purdue University 84143 Montfavet cedex 625 Agriculture Mall Drive France West Lafayette, IN 47907–2010 USA Keywords: alkekenge, belladonna, capsicum pepper, datura, eggplant, henbane, husk tomato, mandrake, nightshades, potato, tobacco, tomato, Renaissance herbals Abstract The systematic study of solanaceous plant iconography has been a neglected source of information although historical records (ceramics, painted and printed images in manuscripts, and printed documents) are numerous. Many wild and domesticated solanaceous species have been associated with human culture from antiquity, as medicinal, ritual or magical herbs and/or food crops in the Old World (alkekenge, belladonna, eggplant, henbane, mandrake) and New World (capsicum pepper, datura, husk tomato, potato, tobacco, tomato). Mandrake (Mandragora spp.) images can be found in Egyptian sources in the second millennium BCE, and along with alkekenge (Physalis alkekengi) and black nightshade (Solanum nigrum aff.) are found in the oldest extant copy of the Materia Medica of Dioscorides (Codex Vindobonensis, Aniciae Julianae, 512 CE), as well as in many later Medieval and Renaissance sources. Images of henbane (Hyocyamus spp.) appears in the VIIIth century while belladonna (Atropa belladonna) first appears in the Renaissance. Images of eggplant (Solanum melongena), an Asian crop, are found in Asian and European manuscripts from the XIVth century onwards. Images of New World species are present in pre-Columbian sources, attesting to their wide use by native populations.
    [Show full text]
  • Some Medicinal Plants from Wild Flora of Romania and the Ecology
    Research Journal of Agricultural Science, 44 (2), 2012 SOME MEDICINAL PLANTS FROM WILD FLORA OF ROMANIA AND THE ECOLOGY Helena Maria SABO Faculty of Psychology and Science of Education, UBB, Sindicatelor Street. No.7, Cluj-Napoca, Romania E-mail: [email protected] Abstract: The importance of ecological factors for characteristic of central and Western Europe, medicinal species and their influence on active specific continental to the Eastern Europe, the principles synthesis and the specific uptake of presence of the Carpathian Mountains has an mineral elements from soil are presented. The impact on natural vegetation, and vegetation in the biological and ecological characters, the medicinal south has small Mediterranean influence. The importance, and the protection measurements for therapeutic use of medicinal plants is due to active some species are given. Ecological knowledge of principles they contain. For the plant body these medicinal plants has a double significance: on the substances meet have a metabolic role, such as one hand provides information on resorts where vitamins, enzymes, or the role of defense against medicinal plant species can be found to harvest and biological agents (insects, fungi, even vertebrates) use of them, on the other hand provides to chemical and physical stress (UV radiation), and information on conditions to be met by a possible in some cases still not precisely known functions of location of their culture. Lately several medicinal these substances for plants. As a result of research species were introduced into culture in order to on medicinal plants has been established that the ensure the raw materials of vegetable drug following factors influence ecology them: abiotic - industry.
    [Show full text]
  • Plant of the Month: Cardamine Heptaphylla 'Big White' Joe Sime
    THE NEWSLETTER OF THE SHADE AND WOODLAND PLANTS GROUP May 2019 Plant of the Month: Cardamine heptaphylla 'Big White' Joe Sime I like cardamines and cannot resist buying and planting any new ones that I see. This has led to some disappointments. I could never get C. diphylla to thrive, having tried the basic form, 'Echo Cutleaf' and 'American Sweetheart' in the past. It has also led to some problems. I bought and planted C. bulbifera in spite of the clear warning given to me by the seller. It is a redefinition of the term 'Thug'. It spreads by rhizomes and by bulbils produced in the leaf axils. I have tried to confine it to one particular area of the garden, but the bulbils have obviously managed to spread themselves around in the dead leaves used for leaf mould and I now have little colonies trying to establish themselves around the place. Luckily they are easy to spot and pull up. There are easier ways to get pink flowers! However 'Big White' is neither a disappointment nor a thug. It is large for a cardamine, growing to about 40 cms tall and as much across. The leaves are large with, as the name suggests, seven toothed leaflets. In spring it produces good heads of pure white flowers. It should produce the long seed pods typical of the brassica family but mine has not. It is dormant by mid summer leaving room for later things around it. The basic species comes from meadows and woodland in central and southern Europe. It is said to prefer alkaline soils and a fairly open site, but manages with the acid side of neutral and an overhead oak tree here.
    [Show full text]
  • SOLANACEAE 茄科 Qie Ke Zhang Zhi-Yun, Lu An-Ming; William G
    Flora of China 17: 300–332. 1994. SOLANACEAE 茄科 qie ke Zhang Zhi-yun, Lu An-ming; William G. D'Arcy Herbs, shrubs, small trees, or climbers. Stems sometimes prickly, rarely thorny; hairs simple, branched, or stellate, sometimes glandular. Leaves alternate, solitary or paired, simple or pinnately compound, without stipules; leaf blade entire, dentate, lobed, or divided. Inflorescences terminal, overtopped by continuing axes, appearing axillary, extra-axillary, or leaf opposed, often apparently umbellate, racemose, paniculate, clustered, or solitary flowers, rarely true cymes, sometimes bracteate. Flowers mostly bisexual, usually regular, 5-merous, rarely 4- or 6–9-merous. Calyx mostly lobed. Petals united. Stamens as many as corolla lobes and alternate with them, inserted within corolla, all alike or 1 or more reduced; anthers dehiscing longitudinally or by apical pores. Ovary 2–5-locular; placentation mostly axile; ovules usually numerous. Style 1. Fruiting calyx often becoming enlarged, mostly persistent. Fruit a berry or capsule. Seeds with copious endosperm; embryo mostly curved. About 95 genera with 2300 species: best represented in western tropical America, widespread in temperate and tropical regions; 20 genera (ten introduced) and 101 species in China. Some species of Solanaceae are known in China only by plants cultivated in ornamental or specialty gardens: Atropa belladonna Linnaeus, Cyphomandra betacea (Cavanilles) Sendtner, Brugmansia suaveolens (Willdenow) Berchtold & Presl, Nicotiana alata Link & Otto, and Solanum jasminoides Paxton. Kuang Ko-zen & Lu An-ming, eds. 1978. Solanaceae. Fl. Reipubl. Popularis Sin. 67(1): 1–175. 1a. Flowers in several- to many-flowered inflorescences; peduncle mostly present and evident. 2a. Fruit enclosed in fruiting calyx.
    [Show full text]
  • Scientific Opinion on the Assessment of the Risk of Solanaceous Pospiviroids for the EU Territory and the Identification and Evaluation of Risk Management Options1
    EFSA Journal 2011;9(8):2330 SCIENTIFIC OPINION Scientific Opinion on the assessment of the risk of solanaceous pospiviroids for the EU territory and the identification and evaluation of risk 1 management options EFSA Panel on Plant Health (PLH)2, 3 European Food Safety Authority (EFSA), Parma, Italy ABSTRACT Following a request from the EU Commission, the EFSA PLH Panel conducted a risk assessment for the EU territory of pospiviroids affecting solanaceous crops, identified and evaluated risk reduction options and evaluated the EU provisional emergency measures targeting Potato spindle tuber viroid (PSTVd). The risk assessment included PSTVd, Citrus exocortis viroid, Columnea latent viroid, Mexican papita viroid, Tomato apical stunt viroid, Tomato chlorotic dwarf viroid, Tomato planta macho viroid, Chrysanthemum stunt viroid and Pepper chat fruit viroid. Four entry pathways were identified, three involving plant propagation material, with moderate probability of entry, and one involving plant products for human consumption, with low probability of entry. The probability of establishment was considered very high. Spread was considered likely within a crop and moderately likely between crop species, with exception of spread to potato, rated as unlikely. The probability of long distance spread within vegetatively propagated crops was estimated as likely/very likely. The direct consequences were expected to be major in potato and tomato, moderate in pepper, minimal/minor in other vegetables and minimal in ornamentals. Main risk assessment uncertainties derive from limited knowledge on pospiviroids other than PSTVd, although all pospiviroids are expected to have similar biological properties. Management options to reduce risk of entry, spread and consequences were identified and evaluated.
    [Show full text]
  • Ethnopharmacological Investigations of Phytochemical Constituents
    International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 589 ISSN 2229-5518 Ethnopharmacological Investigations of Phytochemical Constituents Isolated from the Genus Atropa Mannawar Hussain a, Waseem Akram, b Jaleel Ahmad, b Taha Bin Qasim, c Rukhsana Bibi c All Address; Department of Applied Chemistry Government College University, Faisalabad a, Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University, Multan b, Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan b Department of Chemistry Government College University Lahore b Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan c Email; [email protected] Cell no 923460655538a [email protected] b [email protected] b [email protected] c [email protected] c Corresponding Author; Mannawar Hussain Abstract Medicinal plants play a vital role in the development of human culture. Medicinal plantsIJSER are a source of traditional medicine, and many modern medicines come directly from plants. According to WHO the world's people in progressing countries 80 percent rely on traditional medicine for their primary health care more over about 85% of traditional medication involves the make use of plant extracts. Herb and shrubs of the genus Atropa (Solonaceae) inhabitate various ecosystems in worldwide. This review present a complete study of the text on, phytochemistry, pharmacognosy and traditional biological meditional uses of Atropa. Atropa genus contain many chemical constituents like, flavonoids, phenolic compounds like Alkoloids, alcohols, terpenes and flavonoids have been identified in this genus. Some published studies have shown a broad spectrum of biological and pharmacological activities, including anticancer, antioxidant, anti-tumor agent, antibacterial, antimicrobial, antifungal and antiviral effects.
    [Show full text]
  • Poisons, Drugs and Medicine: on the Use of Atropine and Scopolamine in Medicine and Ophthalmology: an Historical Review of Their Applications
    Journal of Eye Study and Treatment ISSN: 2652-5046 10.33513/JEST/1901-13 OCIMUM Scholtz S et al. J Eye Stud Treat 2019(01): 51-58. Historical Review Poisons, Drugs and Medicine: On the Use of Atropine and Scopolamine in Medicine and Ophthalmology: An Historical Review of their Applications Sibylle Scholtz1*, Lee MacMorris1, Frank Abstract Krogmann1,2 and Gerd U Auffarth1 Purpose: For thousands of years all kinds of ingredients of plants were 1International Vision Correction Research Centre used to treat diseases. Among other highly active ingredients, plants like (IVCRC), Department of Ophthalmology, University belladonna, datura, henbane and mandrake contain alkaloids and even highly of Heidelberg, Heidelberg, Germany toxic alkaloids like atropine and scopolamine. Our article will show major 2General Manager and Member of Board of historical facts about the mentioned two drugs and the origin of their names. Directors, Julius-Hirschberg-Society, Vienna, The history of the discovery of atropine and scopolamine, Austria Methods: two highly poisonous alkaloids, was analysed and interpreted based on a selective literature research of books and journal articles via PubMed, Received: 13 June 2019 Google Scholar and Google. Accepted: 26 July 2019 Version of Record Online: 31 July 2019 Results: Both alkaloids, used in antiquity, are essential drugs in modern medicine. Atropine is an extremely potent poison and, as a medicine, was widely used in ancient times. Today it is still an essential drug in today’s Citation medicine and in ophthalmology. The name has its source in the legends of Scholtz S, MacMorris L, Krogmann F, Auffarth Greek mythology and refers to the Greek goddess, Atropos.
    [Show full text]
  • “Hexing Herbs” in Ethnobotanical Perspective: a Historical Review of the Uses of Anticholinergic Solanaceae Plants in Europe
    “Hexing Herbs” in Ethnobotanical Perspective: A Historical Review of the Uses of Anticholinergic Solanaceae Plants in Europe KARSTEN FATUR Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia Though not the most frequently used botanical family, the Solanaceae or nightshade family has provided many plants of great importance around the world. Throughout Europe, the “hexing herbs,” plants from this family with anticholinergic alkaloids, have played an especially impor- tant role in the history and formation of traditions pertaining to plant use in many aspects of human life. Represented in Europe by the genera Atropa, Datura, Hyoscyamus, Mandragora,and Scopolia, the alkaloids hyoscyamine/atropine and scopolamine in these plants have allowed them to be used as medicines, poisons, and intoxicants, leading to the creation of a large mythos and extensive cultural valuation. Through a review of the literature, the exact roles that these “hexing herbs” have played in Europe in the past and present are discussed in this paper, ultimately showing the immense importance of these often misunderstood and vilified plants. Key Words: Ethnobotany, Solanaceae, Hexing herbs, Europe, Anticholinergic, Tropane alkaloids. Introduction made them invaluable to humans throughout the ages (Arroo et al. 2007;Boydetal.1984). Used as OVERVIEW inebriants, medicines, poisons, in rituals, and for many cultural inspirations, these plants have played Informally known as the “hexing herbs,” the a crucial role in the shaping of Europe. anticholinergic members of the Solanaceae that are Among these plants, five genera have been long found in Europe likely earned this name through represented in, or are native to, Europe. All are closely association with witches and magic.
    [Show full text]
  • Multiple Recent Horizontal Transfers of the Cox1 Intron in Solanaceae and Extended Co-Conversion of Flanking Exons
    Sanchez-Puerta et al. BMC Evolutionary Biology 2011, 11:277 http://www.biomedcentral.com/1471-2148/11/277 RESEARCH ARTICLE Open Access Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended co-conversion of flanking exons Maria V Sanchez-Puerta1*, Cinthia C Abbona2, Shi Zhuo3, Eric J Tepe4,5, Lynn Bohs4, Richard G Olmstead6 and Jeffrey D Palmer3 Abstract Background: The most frequent case of horizontal transfer in plants involves a group I intron in the mitochondrial gene cox1, which has been acquired via some 80 separate plant-to-plant transfer events among 833 diverse angiosperms examined. This homing intron encodes an endonuclease thought to promote the intron’s promiscuous behavior. A promising experimental approach to study endonuclease activity and intron transmission involves somatic cell hybridization, which in plants leads to mitochondrial fusion and genome recombination. However, the cox1 intron has not yet been found in the ideal group for plant somatic genetics - the Solanaceae. We therefore undertook an extensive survey of this family to find members with the intron and to learn more about the evolutionary history of this exceptionally mobile genetic element. Results: Although 409 of the 426 species of Solanaceae examined lack the cox1 intron, it is uniformly present in three phylogenetically disjunct clades. Despite strong overall incongruence of cox1 intron phylogeny with angiosperm phylogeny, two of these clades possess nearly identical intron sequences and are monophyletic in intron phylogeny. These two clades, and possibly the third also, contain a co-conversion tract (CCT) downstream of the intron that is extended relative to all previously recognized CCTs in angiosperm cox1.
    [Show full text]