Resilient Sites for Species Conservation in the Northeast and Mid-Atlantic Region

Total Page:16

File Type:pdf, Size:1020Kb

Resilient Sites for Species Conservation in the Northeast and Mid-Atlantic Region Resilient Sites for Species Conservation in the Northeast and Mid-Atlantic Region The Nature Conservancy • Eastern Conservation Science Mark G. Anderson, Melissa Clark, and Arlene Olivero Sheldon ©Linda Cullivan, USFWS ©USFWS ©Adam Mann, USFWS © R.G. Tucker Jr, .USFWS © Greg Breese, USFWS ©USFWS © John Alderman, VA Dept. of Game and Inland Fisheries Please cite as: Anderson, M.G., M. Clark, and A. Olivero Sheldon. 2011 Resilient Sites for Species Conservation in the Northeast and Mid-Atlantic Region. The Nature Conservancy, Eastern Conservation Science. 122pp. This project was supported by a grant to the Northeast Association of Fish and Wildlife Agencies (#2008-03 Regional Focal Areas for Species of Greatest Conservation Need based on Site Adaptive Capacity, Network Resilience and Connectivity) and through funding from the Doris Duke Charitable Foundation and The Nature Conservancy. The work was made possible by data and contributions from the network of Natural Heritage Programs and NatureServe. Project Summary: Resilience concerns the ability of a living system to adjust to climate change, to moderate potential damages, to take advantage of opportunities, or to cope with consequences, in short: its capacity to adapt (IPCC 2007). In this project, we aimed to identify the most resilient examples of key geophysical settings (sand plains, granitic mountains, limestone valleys, etc.), in relation to species of greatest conservation need, to provide conservationists with a nuanced picture of the places where conservation is most likely to succeed under climate change. The central idea was that by mapping key geophysical settings and evaluating them for landscape characteristics that buffer against climate effects, we could identify the most resilient examples of each setting. Our approach was based on observations that 1) species diversity is highly correlated with geophysical diversity (Anderson and Ferree 2010), and 2) that species take advantage of the micro-climates available in complex landscapes and 3) if the area is permeable, species can move to adjust to climatic changes. Developing a quantitative estimate of site resilience was the essence of the project, and we accomplished this by measuring the landscape complexity and permeability of every 30 by 30 square meter of the region, creating comprehensive wall-to-wall data on the physical components of resilience. We applied the information to known species sites and compared the scores between sites with a similar geophysical composition to identify the most resilient sites for each setting (Facing page –front map). Further, we analyzed broad east-west and north-south permeability gradients to identify areas where ecological flows and species movements potentially become concentrated. These areas may need conservation attention to allow the biota to adjust to a changing climate (Facing page – back map). The Most Resilient Sites for Species of Greatest Conservation Need. The map encompasses 17 separate geophysical settings and shows the sites that score the highest for landscape complexity and local connectedness within in each setting. Only settings that contain SGCN species are shown (about half of the region). See also Map 5.18. Key Areas for Ecological Flows. The map shows areas where processes and species movements potentially become concentrated due to the regional pattern of land uses and natural cover. Sites important to Species of Greatest Conservation Need are overlaid as darker hexagons. See also Map 5.22. Acknowledgements This project would not have been possible without the expertise contributed by several individuals including Brad McRae of The Nature Conservancy’s Washington office and Brad Compton University of Massachusetts both who have created powerful new tools for measuring connectivity. They were always willing to listen to our questions, provide guidance in using the tools correctly, and, in some cases, run the analysis for us. Charles Ferree also contributed immensely to the mapping and modeling of landforms, and in calculating the landform variety and elevation range metrics. We would like to particularly thank NatureServe and the network of Natural Heritage Programs for access to their species databases. Without the continued field work and information management conducted by Natural Heritage Programs and NatureServe this report would not be possible. We thank the following individuals for the assistance with obtaining this critical data: NatureServe: Lynn Kutner, Kat Maybury, Margaret Ormes, and Adele Tomaino; CT NHP: Nancy Murray and Karen Zyko, DE NHP: Karen Bennett, NH NHP: Don Kent, NY NHP: D.J. Evans, NJ DEP Jason McNees, C. David Jenkins, Jr. , Bob Cartica, Gretchen Fowles, Elena Williams, Peter Winkler, and Kathleen Walz, PA NHP Susan Klugman and Jeff Wagner, ME NHP: Molly Docherty, MD NHP : Lynn Davidson, MA NHP: Henry Woolsey and Sarah Haggerty, RI NHP: Rick Enser and David Gregg, VT NHP: Bob Popp and Steve Parren, VA NHP: Tom Smith, and WV NHP: Barbara Sargent. Finally, we would like to thank members of the Conservancy’s resilience team that provided assistance with data gathering, analysis, editing, and review during this project; especially the scientists and partners for the Central Appalachian region (Judy Dunscomb, Tamara Gagnolet, Thomas Minney, Angela Watland, Nels Johnson, Rodney Bartgis, Amy Cimarolli) and the Northern Appalachian region (Barbara Vickery, Mark Zankel, Dirk Bryant, Philip Huffman, Andrew Finton, Megan de Graaf, Daniel Coker, Louise Gratton, Rebecca Shirer, Rose Paul, Daryl Burtnett, Andrew Cutko, Steve Walker). These teams provided critical feedback regarding analysis methodology and the utility of various outputs. Finally, state and federal agencies provided many of the underlying datasets used in this project, and we would like to particularly thank the Multi-Resolution Land Characteristics (MRLC) Consortium for their work on the national land cover datasets and the U.S.G.S for their work on the National Elevation Dataset (NED). We would also like to thank John Kantor for help with the selection of Species of Greatest Conservation Need. Table of Contents Chapter 1 - Introduction .................................................................................................................................................. 1 Chapter 2 – Identifying Species and Their Locations .............................................................................................. 3 Characterizing the Species ............................................................................................................................ 3 Species Location ........................................................................................................................................... 4 Chapter 3 – Defining Sites and Geophysical Settings .............................................................................................. 8 Analysis Unit 1,000 Acre Hexagon ............................................................................................................. 8 Geophysical Settings ..................................................................................................................................... 8 Clustering Hexagons into Geophysical Settings ......................................................................................... 13 Mapping the Full Range of each Setting ..................................................................................................... 13 Results ......................................................................................................................................................... 16 Chapter 4 – Estimating Resilience ................................................................................................................................. 19 Section 1: Landscape Complexity............................................................................................................... 19 Background .................................................................................................................................... 19 Landscape Variety ......................................................................................................................... 20 Elevation Range ............................................................................................................................. 24 Wetland Density ............................................................................................................................ 24 Landscape Complexity Combined Index ....................................................................................... 28 Section 2: Landscape Permeability ............................................................................................................. 31 Local Connectedness ..................................................................................................................... 32 Regional Flow Patterns .................................................................................................................. 39 Integration with Other Metrics ....................................................................................................... 42 Section 3: Combining Resilience Factors ................................................................................................... 44 A Common Scale ........................................................................................................................... 44 Landscape
Recommended publications
  • Stelprdb5157819.Pdf
    Lynn Cameron To: [email protected] <[email protected]> cc: Subject: Friends of Shenandoah Mountain map correction 01/05/2009 08:19 AM Dear Planning Team, Friends of Shenandoah Mountain submitted comments on October 30, 2008, with an accompanying boundary map of the proposed Shenandoah Mountain NSA and Wilderness areas within. We are submitting the attached map as a boundary adjustment to Lynn Hollow Wilderness. We did not mean to include Puffenbarger Pond and its access road in our proposed Wilderness. Thank you. Lynn Cameron Co-Chair Friends of Shenandoah Mountain -- Lynn Cameron Coordinator of Library Instruction Liaison Librarian for Psychology Carrier Library James Madison University Harrisonburg, VA 22807 (540)568-3826 "I only went out for a walk, and finally concluded to stay out till sundown, for going out, I found, was really going in" - John Muir (1838-1914) "steven krichbaum" To: [email protected] <[email protected] cc: [email protected], [email protected] > Subject: plan revision comments 01/09/2009 11:23 AM happy new year, hope you are all well - attached are comments pertaining to wildlife and vegetation management - please let me know asap if you cannot open this; have sent same document twice, one with .doc extension - thank you - steve krichaum Steven Krichbaum 412 Carter St. Staunton, VA 24401 540 - 886 -1584 [email protected] January 8, 2009 George Washington National Forest - Supervisor’s Office 5162 Valleypointe Pkwy. Roanoke, VA 24019 888-265-0019
    [Show full text]
  • Information on the NCWRC's Scientific Council of Fishes Rare
    A Summary of the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina Submitted by Bryn H. Tracy North Carolina Division of Water Resources North Carolina Department of Environment and Natural Resources Raleigh, NC On behalf of the NCWRC’s Scientific Council of Fishes November 01, 2014 Bigeye Jumprock, Scartomyzon (Moxostoma) ariommum, State Threatened Photograph by Noel Burkhead and Robert Jenkins, courtesy of the Virginia Division of Game and Inland Fisheries and the Southeastern Fishes Council (http://www.sefishescouncil.org/). Table of Contents Page Introduction......................................................................................................................................... 3 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes In North Carolina ........... 4 Summaries from the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina .......................................................................................................................... 12 Recent Activities of NCWRC’s Scientific Council of Fishes .................................................. 13 North Carolina’s Imperiled Fish Fauna, Part I, Ohio Lamprey .............................................. 14 North Carolina’s Imperiled Fish Fauna, Part II, “Atlantic” Highfin Carpsucker ...................... 17 North Carolina’s Imperiled Fish Fauna, Part III, Tennessee Darter ...................................... 20 North Carolina’s Imperiled Fish Fauna, Part
    [Show full text]
  • Lamprey, Hagfish
    Agnatha - Lamprey, Kingdom: Animalia Phylum: Chordata Super Class: Agnatha Hagfish Agnatha are jawless fish. Lampreys and hagfish are in this class. Members of the agnatha class are probably the earliest vertebrates. Scientists have found fossils of agnathan species from the late Cambrian Period that occurred 500 million years ago. Members of this class of fish don't have paired fins or a stomach. Adults and larvae have a notochord. A notochord is a flexible rod-like cord of cells that provides the main support for the body of an organism during its embryonic stage. A notochord is found in all chordates. Most agnathans have a skeleton made of cartilage and seven or more paired gill pockets. They have a light sensitive pineal eye. A pineal eye is a third eye in front of the pineal gland. Fertilization of eggs takes place outside the body. The lamprey looks like an eel, but it has a jawless sucking mouth that it attaches to a fish. It is a parasite and sucks tissue and fluids out of the fish it is attached to. The lamprey's mouth has a ring of cartilage that supports it and rows of horny teeth that it uses to latch on to a fish. Lampreys are found in temperate rivers and coastal seas and can range in size from 5 to 40 inches. Lampreys begin their lives as freshwater larvae. In the larval stage, lamprey usually are found on muddy river and lake bottoms where they filter feed on microorganisms. The larval stage can last as long as seven years! At the end of the larval state, the lamprey changes into an eel- like creature that swims and usually attaches itself to a fish.
    [Show full text]
  • The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research Jonathan J
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Cooperative Fish & Wildlife Research Nebraska Cooperative Fish & Wildlife Research Unit -- Staff ubP lications Unit 2015 The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research Jonathan J. Spurgeon University of Nebraska–Lincoln, [email protected] Martin J. Hamel University of Nebraska-Lincoln, [email protected] Kevin L. Pope U.S. Geological Survey—Nebraska Cooperative Fish and Wildlife Research Unit,, [email protected] Mark A. Pegg University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/ncfwrustaff Part of the Aquaculture and Fisheries Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, and the Water Resource Management Commons Spurgeon, Jonathan J.; Hamel, Martin J.; Pope, Kevin L.; and Pegg, Mark A., "The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research" (2015). Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications. 203. http://digitalcommons.unl.edu/ncfwrustaff/203 This Article is brought to you for free and open access by the Nebraska Cooperative Fish & Wildlife Research Unit at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Cooperative Fish & Wildlife Research Unit -- Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Reviews in Fisheries Science & Aquaculture, 23:329–345, 2015 CopyrightO c Taylor & Francis Group, LLC ISSN: 2330-8249 print / 2330-8257 online DOI: 10.1080/23308249.2015.1068737 The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research JONATHAN J.
    [Show full text]
  • A List of Common and Scientific Names of Fishes from the United States And
    t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature.
    [Show full text]
  • Reproductive Ecology and Habitat Preference of the Leopard Darter, Percina Pantherina
    REPRODUCTIVE ECOLOGY AND HABITAT PREFERENCE OF THE LEOPARD DARTER, PERCINA PANTHERINA By PAUL WILLIAM /~AMES Bachelor of Science University of Kansas Lawrence, Kansas 1981 ·4::er of Science ...1.issouri State University 3pringfield, Missouri 1983 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the·Degree of DOCTOR OF PHILOSOPHY July, 1989 . - ~· ,• ) "' Oklahoma State Univ. Lihra1 REPRODUCTIVE ECOLOGY AND HABITAT PREFERENCE OF THE LEOPARD DARTER, PERCINA PANTHERINA Thesis Approved: ii ACKNOWLEDGMENTS I wish to thank my advisor, Dr. o. Eugene Maughan, for giving me the opportunity to work on this project and for his encouragement throughout my graduate program. I would also like to thank the members of my graduate committee, Dr. William A. Drew, Dr. Anthony A. Echelle, Dr. Rudolph J. Miller, and Dr. Alexander v. Zale, for their professional and personal advice throughout the course of the study. I wish to extend my sincere gratitude to the u. s. Fish and Wildlife Service, the Oklahoma Department of Wildlife Conservation, and the Oklahoma Cooperative Fish and Wildlife Research Unit for providing financial and technical support for the study. I am especially grateful to Mr. Frank James of the Oklahoma Department of Wildlife Conservation's McCurtain County Wilderness Area for his friendship and hospitality during extended field trips. A sincere thanks goes to Rick Horton, Steve O'Donnell, and Todd Phillips for their help in the field and laboratory. A special thanks goes to Stuart Leon for helping with the development of many of the field and data analysis techniques used in this study.
    [Show full text]
  • The Life History, Behavior, and Ecology of Etheostoma
    THE LIFE HISTORY, BEHAVIOR, AND ECOLOGY OF ETHEOSTOMA SAGITTA (JORDAN AND SWAIN) A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville John Eldon Lowe, Jr. December 1979 1404996 ACKNOWLEDGMENTS I would like to thank Dr. D. A. Etnier, the chairman of my supervisory committee. He gave advice and direction during the entire project, including preparation of the manuscript. I am also indebted to the other members of my committee, Drs. M. C. Whiteside and G. M. Burghardt for serving in that capacity. Monetary support for the study was received from the Department of Ecology (my special thanks to Dr. Frank McCormick). The experimental raceway site was provided by the East Tennessee Chest and Disease Hospital by permission of Mr. James Gleason. The Tennessee Wildlife Resources Agency issued me a permit for collecting specimens in the state of Tennessee. I am thankful to Mr. R. B. Fitz of the staff of the Division of Forestry, Fisheries, and Wildlife, Tennessee Valley Authority, Norris, Tennessee, for allowing me to use their scale projector. I am also indebted to Mr. Bill Wolfe as a companion on my field trips. My very special thanks go to my wife, Karen, who helped me collect my specimens, did the spawning pair drawing, and exhibited her patience and understanding throughout. ii ABSTRACT The life history, behavior, and ecology of Etheostoma sagitta (Jordan and Swain) were studied in the Cumberland River system in Tennessee. Diving equipment was utilized in making observations on macrohabitat, microhabitat, distribu- tion, seasonal and diurnal activity, feeding behavior, migration, territoriality, associated species, competition, and population density and structure.
    [Show full text]
  • Xerox University Microfilms
    INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated w ith a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Key to the Freshwater Fishes of Maryland Key to the Freshwater Fishes of Maryland
    KEY TO THE FRESHWATER FISHES OF MARYLAND KEY TO THE FRESHWATER FISHES OF MARYLAND Compiled by P.F. Kazyak; R.L. Raesly Graphics by D.A. Neely This key to the freshwater fishes of Maryland was prepared for the Maryland Biological Stream Survey to support field and laboratory identifications of fishes known to occur or potentially occurring in Maryland waters. A number of existing taxonomic keys were used to prepare the initial version of this key to provide a more complete set of identifiable features for each species and minimize the possibility of incorrectly identifying new or newly introduced species. Since that time, we have attempted to remove less useful information from the key and have enriched the key by adding illustrations. Users of this key should be aware of the possibility of taking a fish species not listed, especially in areas near the head-of- tide. Glossary of anatomical terms Ammocoete - Larval lamprey. Lateral field - Area of scales between anterior and posterior fields. Basal - Toward the base or body of an object. Mandible - Lower jaw. Branchial groove - Horizontal groove along which the gill openings are aligned in lampreys. Mandibular pores - Series of pores on the ventral surface of mandible. Branchiostegal membranes - Membranes extending below the opercles and connecting at the throat. Maxillary - Upper jaw. Branchiostegal ray - Splint-like bone in the branchiostegal Myomeres - Dorsoventrally oriented muscle bundle on side of fish. membranes. Myoseptum - Juncture between myomeres. Caudal peduncle - Slender part of body between anal and caudal fin. Palatine teeth - Small teeth just posterior or lateral to the medial vomer.
    [Show full text]
  • Learning Lessons About Lampreys Don Orth
    Learning Lessons about Lampreys Don Orth 11 American Currents Vol. 43, No. 3 LEARNING LESSONS ABOUT LAMPREYS Don Orth Virginia Tech University, Blacksburg, Virginia Lampreys are simple fish that leave me with many ques- tiative emerged. Will the Pacific Lamprey ever recover? The tions. Lampreys and hagfishes are genetically very similar Lost Fish movie tells an all too familiar story (Freshwaters and represent the oldest living groups of vertebrates (Fig- Illustrated 2015) of the loss of important fish populations ure 1). These two lineages of Chordates arose well before the before scientists even have a chance to discover their distri- appearance of jawed fishes. Lampreys and hagfish persisted butions and uniqueness (Carim et al. 2017; Wade et al. 2018). through at least four of five mass extinction events on Earth. Joni Mitchell’s lyrics from “Big Yellow Taxi” seem appropri- How did they survive when most other marine organisms ate here. perished? What does their presence today indicate? “Don’t it always seem to go Studies of evolutionary history tell us that the appear- That you don’t know what you’ve got till it’s gone ance of the cranium, eyes, pineal gland, inner ear, olfactory They paved paradise rosettes, lateral line, large brain, and muscular heart, were And put up a parking lot” first evident in the lamprey. In fact, the body form of lam- A common genus of lampreys in eastern USA drainages preys is essentially the same as a 360 million-year-old fos- is Ichthyomyzon, which includes six species. Ichthyomyzon sil lamprey (Gess et al.
    [Show full text]
  • Bill Beamish's Contributions to Lamprey Research and Recent Advances in the Field
    Guelph Ichthyology Reviews, vol. 7 (2006) 1 Bill Beamish’s Contributions to Lamprey Research and Recent Advances in the Field This paper is based on an oral presentation given at a symposium honouring Bill Beamish and his contributions to fisheries science at the Canadian Conference for Fisheries Research, in Windsor, Ontario on January 7, 2005 Margaret F. Docker Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada Current Address: Department of Zoology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada (e-mail: [email protected]) Key Words: review, sex determination, statoliths, pheromones, reproductive endocrinology, phylogeny Guelph Ichthyology Reviews, vol. 7 (2006) 2 Synopsis Since his first lamprey paper in 1972, Bill Beamish has published more than 50 papers on numerous aspects of lamprey biology, reporting on several native lamprey species as well as the Great Lakes sea lamprey. Bill and his colleagues have contributed to our knowledge of the basic biology of larval lampreys (e.g., abundance, habitat, feeding, growth, and gonadogenesis), helped refine techniques to determine age in larvae (using statoliths, structures analogous to the teleost otolith), and studied the process of metamorphosis and the feeding and bioenergetics of juvenile (parasitic) lampreys. Current research continues to build on Bill’s contributions, and also makes many advances in novel directions. This exciting current research includes: the use of high-resolution ultrasound to study gonadogenesis and evaluate sex ratio in live larval lampreys; the elucidation of some of the exogenous and endogenous triggers of metamorphosis; examination of the neuroendocrine control of reproduction and the role of unconventional sex steroids in lampreys; the discovery of migratory and sex pheromones and their potential use in sea lamprey control; the use of molecular markers to study lamprey mating systems and phylogeny; and the renewed interest in the conservation of native lampreys.
    [Show full text]
  • Lamprey (Family Petromyzontidae) Diversity in North Carolina
    Lamprey (Family Petromyzontidae) Diversity in North Carolina In North Carolina, lampreys constitute a small family of very evolutionary primitive fishes. Most people, including fishermen, are not aware of their existence, unless one is fortunate enough to observe a spawning aggregation in the riffles of a clear Mountain or Coastal Plain stream during the late Winter or early Spring or if one has hooked a large gamefish and wondered what sort of critter was attached to it looking like something out of a science fiction movie. Lampreys are eel-like in appearance being slender, slippery, and without scales or jaws. In fact, many people think that’s what they are – some sort of eel. However, lampreys, along with hagfishes, are the most primitive of all fishes, having been around for more than 300 million years. Lampreys range in size from about 100 mm for the smaller Least Brook Lamprey up to 1200 mm (almost 48 inches) and as big around as your fore-arm for fully-grown, adult, Sea Lamprey. In North Carolina, there are only five species (Table 1) which are widely distributed in many Mountain and Coastal Plain basins, but absent from the Piedmont (Tracy et al. 2020). Lampreys are not known to occur in the Savannah, Pigeon, Watauga, or New basins; all other basins are known to have at least one species (Tracy et al. 2020). Table 1. Species of lampreys found in North Carolina. Scientific Name, Scientific Name, American Fisheries Society Accepted Common Name American Fisheries Society Accepted Common Name Ichthyomyzon bdellium – Ohio Lamprey Lethenteron appendix – American Brook Lamprey Ichthyomyzon greeleyi – Mountain Brook Lamprey Petromyzon marinus – Sea Lamprey Lampetra aepyptera – Least Brook Lamprey Unlike most fish species found in North Carolina’s waters, the Family Petromyzontidae are known simply as lampreys.
    [Show full text]