Group-Living in the Australian Skink, Egernia Stokesii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Life History of the Coppertail Skink (Ctenotus Taeniolatus) in Southeastern Australia
Herpetological Conservation and Biology 15(2):409–415. Submitted: 11 February 2020; Accepted: 19 May 2020; Published: 31 August 2020. LIFE HISTORY OF THE COPPERTAIL SKINK (CTENOTUS TAENIOLATUS) IN SOUTHEASTERN AUSTRALIA DAVID A. PIKE1,2,6, ELIZABETH A. ROZNIK3, JONATHAN K. WEBB4, AND RICHARD SHINE1,5 1School of Biological Sciences A08, University of Sydney, New South Wales 2006, Australia 2Present address: Department of Biology, Rhodes College, Memphis, Tennessee 38112, USA 3Department of Conservation and Research, Memphis Zoo, Memphis, Tennessee 38112, USA 4School of Life Sciences, University of Technology Sydney, Broadway, New South Wales 2007, Australia 5Present address: Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia 6Corresponding author, e-mail: [email protected] Abstract.—The global decline of reptiles is a serious problem, but we still know little about the life histories of most species, making it difficult to predict which species are most vulnerable to environmental change and why they may be vulnerable. Life history can help dictate resilience in the face of decline, and therefore understanding attributes such as sexual size dimorphism, site fidelity, and survival rates are essential. Australia is well-known for its diversity of scincid lizards, but we have little detailed knowledge of the life histories of individual scincid species. To examine the life history of the Coppertail Skink (Ctenotus taeniolatus), which uses scattered surface rocks as shelter, we estimated survival rates, growth rates, and age at maturity during a three-year capture-mark- recapture study. We captured mostly females (> 84%), and of individuals captured more than once, we captured 54.3% at least twice beneath the same rock, and of those, 64% were always beneath the same rock (up to five captures). -
Multi-National Conservation of Alligator Lizards
MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science. -
Do Worm Lizards Occur in Nebraska? Louis A
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Herpetology Papers in the Biological Sciences 1993 Do Worm Lizards Occur in Nebraska? Louis A. Somma Florida State Collection of Arthropods, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biosciherpetology Part of the Biodiversity Commons, and the Population Biology Commons Somma, Louis A., "Do Worm Lizards Occur in Nebraska?" (1993). Papers in Herpetology. 11. http://digitalcommons.unl.edu/biosciherpetology/11 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Herpetology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. @ o /' number , ,... :S:' .' ,. '. 1'1'13 Do Mono Li ••rel,. Occur ill 1!I! ..br .... l< .. ? by Louis A. Somma Department of- Zoology University of Florida Gainesville, FL 32611 Amphisbaenids, or worm lizards, are a small enigmatic suborder of reptiles (containing 4 families; ca. 140 species) within the order Squamata, which include~ the more speciose lizards and snakes (Gans 1986). The name amphisbaenia is derived from the mythical Amphisbaena (Topsell 1608; Aldrovandi 1640), a two-headed beast (one head at each end), whose fantastical description may have been based, in part, upon actual observations of living worm lizards (Druce 1910). While most are limbless and worm-like in appearance, members of the family Bipedidae (containing the single genus Sipes) have two forelimbs located close to the head. This trait, and the lack of well-developed eyes, makes them look like two-legged worms. -
Bibliography and Scientific Name Index to Amphibians
lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year. -
Animal Information Natural Treasures Reptiles (Non-Snakes)
1 Animal Information Natural Treasures Reptiles (Non-Snakes) Table of Contents Red-footed Tortoise…………….………………………………………………………..2 Argentine Black and white Tegu.………………….………………………..……..4 Madagascar Giant Day Gecko.……………………………………….……..………5 Henkel’s Leaf-Tailed Gecko……………………………………………………………6 Panther Chameleon………………………………………………………………………8 Prehensile-tailed Skink………………………………………….……………………..10 Chuckwalla………………………………………………………….……………………….12 Crevice Spiny Lizard……………………………………………………………………..14 Gila Monster……………………………………………..………………………………...15 Dwarf Caiman………….…………………………………………………………………..17 Spotted Turtle……………………………………………………………………………..19 Mexican Beaded Lizard………………………………………………………………..21 Collared Lizard………………………………………………………………………....…23 Red-footed Tortoise Geocheloidis carbonaria 2 John Ball Zoo Habitat – Depending on whether they can be found either in the Natural Treasures Building or outside in the children’s zoo area across from the Budgie Aviary. Individual Animals: 1 Male, 1 Female Male – Morty (Smooth shell) o Age unknown . Records date back to 1985 o Arrived October 11, 2007 o Weight: 8.5lbs Female - Ethel o Age unknown o Arrived June 02, 2011 o Weight: 9.5-10lbs Life Expectancy Insufficient data Statistics Carapace Length – 1.6 feet for males, females tend to be smaller Diet – Frugivore – an animal that mainly eats fruit Wild – Fruit during the wet season and flowers during the dry season o Some soil and fungi Zoo – Salad mix (greens, fruits, veggies) hard boiled eggs, and fish o Fed twice a week Predators Other than humans, there is no information available concerning predators. Habitat Tropical, terrestrial Rainforests and savanna areas. It prefers heavily forested, humid habitats but avoids muddy areas due to low burrowing capacity of these habitats. Region Throughout the South American mainland and North of Argentina. Red-footed Tortoise 3 Geocheloidis carbonaria Reproduction – Polygynous (having more than one female as a mate at a time). -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Geometric Morphometric Analysis of Cranial Variation in the Egernia Depressa (Reptilia: Squamata: Scincidae) Species Complex Marci G
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 26 138–153 (2011) Geometric morphometric analysis of cranial variation in the Egernia depressa (Reptilia: Squamata: Scincidae) species complex Marci G. Hollenshead Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011, U.S.A. Email: [email protected] ABSTRACT – Few studies have attempted to simultaneously examine geographic, ontogenetic and sexual variation of lizard crania. This study does so with a focus on the Egernia depressa species complex (Pygmy Spiny-tailed Skinks), which occur throughout much of arid Western Australia and inhabits fallen trees in the southern part of its range and rock crevices in disjunct boulder outcrops in the northern part of its range in the Pilbara. Geometric (i.e. landmark-based) morphometrics were used to examine variation in cranial shape in E. depressa, E. cygnitos and E. epsisolus. Cranial differences were evident among the different species; however, the differences depended on which aspect of the cranium was being analysed. A comparison also was made between E. depressa which inhabits tree hollows v. E. cygnitos and E. epsisolus which use rock crevices. The lateral aspect of the cranium of the rock-inhabiting species differs from the log-inhabiting species in having dorsal-ventral compression of the postorbital region. Egernia cygnitos which lives western portion of the Pilbara differs from other species in having a wider cranium with a correspondingly broader palatal region. Sexual dimorphism was not evident, but ontogenetic changes in cranial form were present. KEYWORDS: Australian skinks, Pygmy Spiny-tailed Skinks, Western Australia, landmark-based methods. INTRODUCTION social groups, several individuals will occupy the same The Australian scincid genus Egernia includes some crevice, bask in close proximity and share the same scat of the continent’s largest and most ubiquitous lizards pile (Duffi eld and Bull 2002). -
The Spectacular Sea Anemone 438 by U
THE AUSTRAL IAN MUSEUM will be 150 years old in March 1977. TAMS has its 5th birthday at the same time. Like all healthy five year olds, TAMS is full of fun, eager to learn about the world and constantly on the go! 1977 is a celebration year. Members enjoy a full and varied programme, are entitled to a discount at the Museum bookshop and have reciprocal rights with many other Societies in Australia and overseas. Join the Society today. THE AUSTRALIAN MUSEUM SOCIETY 6-8 College Street, Sydney 2000 Telephone: 33-5525 from 1st February, 1977 AUSTRAliAN NATURAl HISTORY DECEMBER 1976 VOLUME 18 NUMBER 12 PUBLISHED QUARTERLY BY THE AUSTRALIAN MUSEUM, 6-8 COLLEGE STREET, SYDNEY PRESIDENT, MICHAEL PITMAN DIRECTOR, DESMOND GRIFFIN A SATELLITE VIEW OF AUSTRALIA 422 BY J.F . HUNTINGTON A MOST SUCCESSFUL INVASION 428 THE DIVERSITY OF AUSTRALIA'S SKINKS BY ALLEN E. GREER BOTANAVITI 434 TH E ELUSIVE FIJIAN FROGS BY JOHN C. PERNETTA AND BARRY GOLDMAN THE SPECTACULAR SEA ANEMONE 438 BY U. ERICH FRIESE PEOPLE, PIGS AND PUNISHMENT 444 BY O.K . FElL COVER: The sea anemone, Adamsia pal/iata, lives ·com IN REVIEW mensally with the hermit crab, Pagurus prideauxi. (Photo: AUSTRALIAN BIRDS AND OTHER ANIMALS 448 U. E. Friese) A nnual Subscriptio n : $4 .50-Australia; $A5-Papua New Guinea; $A6-other E DITOR/DESIGNE R countr ies. Single copies : $1 ($1.40 posted Australia); $A 1.45-Papua New NANCY SMITH Guinea; $A 1.70-other countries. Cheque or money order p ayable to The ASSISTANT EDITOR Australian Museum should be sent to The Secretary, The Australian Museum, ROBERT STEWART PO Box A285, Sydney South 2000. -
Hoser, R. T. 2018. New Australian Lizard Taxa Within the Greater Egernia Gray, 1838 Genus Group Of
Australasian Journal of Herpetology 49 Australasian Journal of Herpetology 36:49-64. ISSN 1836-5698 (Print) Published 30 March 2018. ISSN 1836-5779 (Online) New Australian lizard taxa within the greater Egernia Gray, 1838 genus group of lizards and the division of Egernia sensu lato into 13 separate genera. RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 1 Jan 2018, Accepted 13 Jan 2018, Published 30 March 2018. ABSTRACT The Genus Egernia Gray, 1838 has been defined and redefined by many authors since the time of original description. Defined at its most conservative is perhaps that diagnosis in Cogger (1975) and reflected in Cogger et al. (1983), with the reverse (splitters) position being that articulated by Wells and Wellington (1985). They resurrected available genus names and added to the list of available names at both genus and species level. Molecular methods have largely confirmed the taxonomic positions of Wells and Wellington (1985) at all relevant levels and their legally available ICZN nomenclature does as a matter of course follow from this. However petty jealousies and hatred among a group of would-be herpetologists called the Wüster gang (as detailed by Hoser 2015a-f and sources cited therein) have forced most other publishing herpetologists since the 1980’s to not use anything Wells and Wellington. Therefore the most commonly “in use” taxonomy and nomenclature by published authors does not reflect the taxonomic reality. This author will not be unlawfully intimidated by Wolfgang Wüster and his gang of law-breaking thugs using unscientific methods to destabilize zoology as encapsulated in the hate rant of Kaiser et al. -
Status and Diversity of Snakes (Reptilia: Squamata: Serpentes) at the Chittagong University Campus in Chittagong
Journal of Threatened Taxa | www.threatenedtaxa.org | 26 November 2015 | 7(14): 8159–8166 Status and diversity of snakes (Reptilia: Squamata: Serpentes) at the Chittagong University Campus in Chittagong, Bangladesh ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) Communication Short M.F. Ahsan 1, I.K.A. Haidar 2 & M.M. Rahman 3 OPEN ACCESS 1 Professor, 2,3 Student, Department of Zoology, University of Chittagong, Chittagong 4331, Bangladesh 1 [email protected] (corresponding author), 2 [email protected], 3 [email protected] Abstract: A study was conducted on the status and diversity of snakes Most of the snakes are harmless and even beneficial of the Chittagong University Campus (CUC) between September 2013 to humans and to the natural ecosystem. They are good and December 2014, and on preserved snake specimens of museums of CUC (Department of Zoology, University of Chittagong; Institute of friends of farmers and help in maintaining the ecological Marine Sciences and Fisheries, University of Chittagong; and Institute balance. Snakes are found all over the world except the of Forestry and Environmental Sciences, University of Chittagong). Thirty-six species of snakes belonging to 22 genera and five families Arctic Region, New Zealand and Ireland (Goin & Goin (Typhlopidae, Pythonidae, Colubridae, Elapidae and Viperidae) were 1971). There are about 3,496 species of snakes under recorded from CUC during the study period. Colubridae comprised the 26 families around the world (Uetz & Hošek 2015). highest (24 species i.e., 66.67%) number of species and Pythonidae the lowest (1 species). Checkered Keelback Xenochrophis piscator Snakes of Bangladesh are still poorly known. -
Synanthropic Spiders, Including the Global Invasive Noble False Widow
www.nature.com/scientificreports OPEN Synanthropic spiders, including the global invasive noble false widow Steatoda nobilis, are reservoirs for medically important and antibiotic resistant bacteria John P. Dunbar1,5*, Neyaz A. Khan2,5, Cathy L. Abberton3, Pearce Brosnan3, Jennifer Murphy3, Sam Afoullouss4, Vincent O’Flaherty2,3, Michel M. Dugon1 & Aoife Boyd2 The false widow spider Steatoda nobilis is associated with bites which develop bacterial infections that are sometimes unresponsive to antibiotics. These could be secondary infections derived from opportunistic bacteria on the skin or infections directly vectored by the spider. In this study, we investigated whether it is plausible for S. nobilis and other synanthropic European spiders to vector bacteria during a bite, by seeking to identify bacteria with pathogenic potential on the spiders. 11 genera of bacteria were identifed through 16S rRNA sequencing from the body surfaces and chelicerae of S. nobilis, and two native spiders: Amaurobius similis and Eratigena atrica. Out of 22 bacterial species isolated from S. nobilis, 12 were related to human pathogenicity among which Staphylococcus epidermidis, Kluyvera intermedia, Rothia mucilaginosa and Pseudomonas putida are recognized as class 2 pathogens. The isolates varied in their antibiotic susceptibility: Pseudomonas putida, Staphylococcus capitis and Staphylococcus edaphicus showed the highest extent of resistance, to three antibiotics in total. On the other hand, all bacteria recovered from S. nobilis were susceptible to ciprofoxacin. Our study demonstrates that S. nobilis does carry opportunistic pathogenic bacteria on its body surfaces and chelicerae. Therefore, some post-bite infections could be the result of vector- borne bacterial zoonoses that may be antibiotic resistant. Bacterial infections represent a major threat to human health. -
Sociality in Lizards: Family Structure in Free-Living King's Skinks Egernia
Sociality in lizards: family structure in free-living King’s Skinks Egernia kingii from southwestern Australia C. Masters1 and R. Shine2,3 1PO Box 315, Capel, WA 6271 2School of Biological Sciences A08, University of Sydney, NSW 2006, Australia. 3Corresponding author Prof. Rick Shine ph: 612-9351-3772, fax: 612-9351-5609, email: [email protected] King’s Skinks Egernia kingii are large viviparous scincid lizards from southwestern Australia. Although some other species within the genus Egernia are known to exhibit complex sociality, with long-term associations between adults and their offspring, there are no published records of such behaviour for E. kingii. Ten years’ observations on a single family of lizards (a pair of adults plus six successive litters of their offspring) in a coastal suburban backyard 250 km south of Perth also revealed a very stable adult pair-bond in this species. The female produced litters of 9 to 11 offspring in summer or autumn at intervals of one to three years. In their first year of life, neonates lived with the adult pair and all the lizards basked together; in later years the offspring dispersed but the central shelter-site contained representatives of up to three annual cohorts as well as the parents. Adults tolerated juveniles (especially neonates) and their presence may confer direct parental protection: on one occasion an adult skink attacked and drove away a tigersnake Notechis scutatus that ventured close to the family’s shelter-site. Although our observations are based only on a single pair of lizards and their offspring, they provide the most detailed evidence yet available on the complex family life of these highly social lizards.