A Putative Origin of the Insect Chemosensory Receptor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Applied Category Theory for Genomics – an Initiative
Applied Category Theory for Genomics { An Initiative Yanying Wu1,2 1Centre for Neural Circuits and Behaviour, University of Oxford, UK 2Department of Physiology, Anatomy and Genetics, University of Oxford, UK 06 Sept, 2020 Abstract The ultimate secret of all lives on earth is hidden in their genomes { a totality of DNA sequences. We currently know the whole genome sequence of many organisms, while our understanding of the genome architecture on a systematic level remains rudimentary. Applied category theory opens a promising way to integrate the humongous amount of heterogeneous informations in genomics, to advance our knowledge regarding genome organization, and to provide us with a deep and holistic view of our own genomes. In this work we explain why applied category theory carries such a hope, and we move on to show how it could actually do so, albeit in baby steps. The manuscript intends to be readable to both mathematicians and biologists, therefore no prior knowledge is required from either side. arXiv:2009.02822v1 [q-bio.GN] 6 Sep 2020 1 Introduction DNA, the genetic material of all living beings on this planet, holds the secret of life. The complete set of DNA sequences in an organism constitutes its genome { the blueprint and instruction manual of that organism, be it a human or fly [1]. Therefore, genomics, which studies the contents and meaning of genomes, has been standing in the central stage of scientific research since its birth. The twentieth century witnessed three milestones of genomics research [1]. It began with the discovery of Mendel's laws of inheritance [2], sparked a climax in the middle with the reveal of DNA double helix structure [3], and ended with the accomplishment of a first draft of complete human genome sequences [4]. -
Culturing and Targeted Pacbio RS Amplicon Sequencing Reveals a Higher Order Taxonomic Diversity and Global Distribution
bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Enigmatic Diphyllatea eukaryotes: Culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution Orr Russell J.S.1,2*, Zhao Sen3,4, Klaveness Dag5, Yabuki Akinori6, Ikeda Keiji7, Makoto M. Watanabe7, Shalchian-Tabrizi Kamran1,2* 1 Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 2 Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 3 Department of Molecular Oncology, Institute of Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway 4 Medical Faculty, Center for Cancer Biomedicine, University of Oslo University Hospital, Oslo, Norway 5 Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway 6 Japan Agency for Marine-Earth Sciences and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan 7 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan * Corresponding authors: Russell J. S. Orr & Kamran Shalchian-Tabrizi Email: [email protected] Mobile: +4748187013 Email: [email protected] Mobile: +4741045328 Address: Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway Keywords: Diphyllatea, PacBio, rRNA, phylogeny, diversity, Collodictyon, amplicon, Sulcozoa 1 bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017. -
Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet. -
Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. -
UNIVERSITY of CALIFORNIA SAN DIEGO Making Sense of Microbial
UNIVERSITY OF CALIFORNIA SAN DIEGO Making sense of microbial populations from representative samples A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science by James T. Morton Committee in charge: Professor Rob Knight, Chair Professor Pieter Dorrestein Professor Rachel Dutton Professor Yoav Freund Professor Siavash Mirarab 2018 Copyright James T. Morton, 2018 All rights reserved. The dissertation of James T. Morton is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California San Diego 2018 iii DEDICATION To my friends and family who paved the road and lit the journey. iv EPIGRAPH The ‘paradox’ is only a conflict between reality and your feeling of what reality ‘ought to be’ —Richard Feynman v TABLE OF CONTENTS Signature Page . iii Dedication . iv Epigraph . .v Table of Contents . vi List of Abbreviations . ix List of Figures . .x List of Tables . xi Acknowledgements . xii Vita ............................................. xiv Abstract of the Dissertation . xvii Chapter 1 Methods for phylogenetic analysis of microbiome data . .1 1.1 Introduction . .2 1.2 Phylogenetic Inference . .4 1.3 Phylogenetic Comparative Methods . .6 1.4 Ancestral State Reconstruction . .9 1.5 Analysis of phylogenetic variables . 11 1.6 Using Phylogeny-Aware Distances . 15 1.7 Challenges of phylogenetic analysis . 18 1.8 Discussion . 19 1.9 Acknowledgements . 21 Chapter 2 Uncovering the horseshoe effect in microbial analyses . 23 2.1 Introduction . 24 2.2 Materials and Methods . 34 2.3 Acknowledgements . 35 Chapter 3 Balance trees reveal microbial niche differentiation . 36 3.1 Introduction . -
Standardised Benchmarking in the Quest for Orthologs
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Standardised Benchmarking in the Quest for Orthologs The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Altenhoff, A. M., B. Boeckmann, S. Capella-Gutierrez, D. A. Dalquen, T. DeLuca, K. Forslund, J. Huerta-Cepas, et al. 2016. “Standardised Benchmarking in the Quest for Orthologs.” Nature methods 13 (5): 425-430. doi:10.1038/nmeth.3830. http://dx.doi.org/10.1038/ nmeth.3830. Published Version doi:10.1038/nmeth.3830 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29408292 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Methods Manuscript Author . Author manuscript; Manuscript Author available in PMC 2016 October 04. Published in final edited form as: Nat Methods. 2016 May ; 13(5): 425–430. doi:10.1038/nmeth.3830. Standardised Benchmarking in the Quest for Orthologs Adrian M. Altenhoff1,2, Brigitte Boeckmann3, Salvador Capella-Gutierrez4,5,6, Daniel A. Dalquen7, Todd DeLuca8, Kristoffer Forslund9, Jaime Huerta-Cepas9, Benjamin Linard10, Cécile Pereira11,12, Leszek P. Pryszcz4, Fabian Schreiber13, Alan Sousa da Silva13, Damian Szklarczyk14,15, Clément-Marie Train1, Peer Bork9,16,17, Odile Lecompte18, Christian von Mering14,15, Ioannis Xenarios3,19,20, Kimmen Sjölander21, Lars Juhl Jensen22, Maria J. -
Protist Phylogeny and the High-Level Classification of Protozoa
Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane). -
S41467-021-25308-W.Pdf
ARTICLE https://doi.org/10.1038/s41467-021-25308-w OPEN Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota ✉ ✉ Luis Javier Galindo 1 , Purificación López-García 1, Guifré Torruella1, Sergey Karpov2,3 & David Moreira 1 Compared to multicellular fungi and unicellular yeasts, unicellular fungi with free-living fla- gellated stages (zoospores) remain poorly known and their phylogenetic position is often 1234567890():,; unresolved. Recently, rRNA gene phylogenetic analyses of two atypical parasitic fungi with amoeboid zoospores and long kinetosomes, the sanchytrids Amoeboradix gromovi and San- chytrium tribonematis, showed that they formed a monophyletic group without close affinity with known fungal clades. Here, we sequence single-cell genomes for both species to assess their phylogenetic position and evolution. Phylogenomic analyses using different protein datasets and a comprehensive taxon sampling result in an almost fully-resolved fungal tree, with Chytridiomycota as sister to all other fungi, and sanchytrids forming a well-supported, fast-evolving clade sister to Blastocladiomycota. Comparative genomic analyses across fungi and their allies (Holomycota) reveal an atypically reduced metabolic repertoire for sanchy- trids. We infer three main independent flagellum losses from the distribution of over 60 flagellum-specific proteins across Holomycota. Based on sanchytrids’ phylogenetic position and unique traits, we propose the designation of a novel phylum, Sanchytriomycota. In addition, our results indicate that most of the hyphal morphogenesis gene repertoire of multicellular fungi had already evolved in early holomycotan lineages. 1 Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France. 2 Zoological Institute, Russian Academy of Sciences, St. ✉ Petersburg, Russia. 3 St. -
Reconstruction of Protein Domain Evolution Using Single-Cell Amplified
Reconstruction of protein domain evolution using single-cell amplified royalsocietypublishing.org/journal/rstb genomes of uncultured choanoflagellates sheds light on the origin of animals Research David López-Escardó 1,2 , Xavier Grau-Bové 1,3,4 , Amy Guillaumet-Adkins 5,6 , Marta Gut 5,6 , Michael E. Sieracki 7 and Iñaki Ruiz-Trillo 1,3,8 Cite this article: López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, 1Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Ruiz-Trillo I. 2019 Reconstruction of protein 08003 Barcelona, Catalonia, Spain 2Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain domain evolution using single- cell amplified 3Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain genomes of uncultured choanoflagellates sheds 4Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK light on the origin of animals. Phil. 5CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Trans. R. Soc. B 374 : 20190088. Barcelona, Spain 6Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain http://dx.doi.org/10.1098/rstb.2019.0088 7National Science Foundation, Arlington, VA 22314, USA 8ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain Accepted: 15 June 2019 DL-E, 0000-0002-9122-6771; XG-B, 0000-0003-1978-5824; IR-T, 0000-0001-6547-5304 One contribution of 18 to a discussion meeting Understanding the origins of animal multicellularity is a fundamental biologi- cal question. Recent genome data have unravelled the role that co-option of issue ‘Single cell ecology ’. -
Multiscale Modeling in Systems Biology
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2051 Multiscale Modeling in Systems Biology Methods and Perspectives ADRIEN COULIER ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1225-5 UPPSALA URN urn:nbn:se:uu:diva-442412 2021 Dissertation presented at Uppsala University to be publicly examined in 2446 ITC, Lägerhyddsvägen 2, Uppsala, Friday, 10 September 2021 at 10:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Mark Chaplain (University of St Andrews). Abstract Coulier, A. 2021. Multiscale Modeling in Systems Biology. Methods and Perspectives. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2051. 60 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1225-5. In the last decades, mathematical and computational models have become ubiquitous to the field of systems biology. Specifically, the multiscale nature of biological processes makes the design and simulation of such models challenging. In this thesis we offer a perspective on available methods to study and simulate such models and how they can be combined to handle biological processes evolving at different scales. The contribution of this thesis is threefold. First, we introduce Orchestral, a multiscale modular framework to simulate multicellular models. By decoupling intracellular chemical kinetics, cell-cell signaling, and cellular mechanics by means of operator-splitting, it is able to combine existing software into one massively parallel simulation. Its modular structure makes it easy to replace its components, e.g. to adjust the level of modeling details. We demonstrate the scalability of our framework on both high performance clusters and in a cloud environment. -
OMA, a Comprehensive, Automated Project for the Identification of Orthologs from Complete Genome Data: Introduction and First Achievements
OMA, A Comprehensive, Automated Project for the Identification of Orthologs from Complete Genome Data: Introduction and First Achievements Christophe Dessimoz, Gina Cannarozzi, Manuel Gil, Daniel Margadant, Alexander Roth, Adrian Schneider, and Gaston H. Gonnet ETH Zurich, Institute of Computational Science, CH-8092 Z¨urich [email protected] Abstract. The OMA project is a large-scale effort to identify groups of orthologs from complete genome data, currently 150 species. The algo- rithm relies solely on protein sequence information and does not require any human supervision. It has several original features, in particular a verification step that detects paralogs and prevents them from being clustered together. Consistency checks and verification are performed throughout the process. The resulting groups, whenever a comparison could be made, are highly consistent both with EC assignments, and with assignments from the manually curated database HAMAP. A highly ac- curate set of orthologous sequences constitutes the basis for several other investigations, including phylogenetic analysis and protein classification. Complete genomes give scientists a valuable resource to assign functions to se- quences and to analyze their evolutionary history. These analyses rely heavily on gene comparison through sequence alignment algorithms that output the level of similarity, which gives an indication of homology. When homologous sequences are of interest, care must often be taken to distinguish between orthologous and paralogous proteins [1]. Both orthologs and paralogs come from the same ancestral sequence, and therefore are homologous, but they differ in the way they arise: paralogous se- quences are the product of gene duplication, while orthologous sequences are the product of speciation. -
Author's Manuscript (764.7Kb)
1 BROADLY SAMPLED TREE OF EUKARYOTIC LIFE Broadly Sampled Multigene Analyses Yield a Well-resolved Eukaryotic Tree of Life Laura Wegener Parfrey1†, Jessica Grant2†, Yonas I. Tekle2,6, Erica Lasek-Nesselquist3,4, Hilary G. Morrison3, Mitchell L. Sogin3, David J. Patterson5, Laura A. Katz1,2,* 1Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA 2Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA 3Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 4Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, Rhode Island 02912, USA 5Biodiversity Informatics Group, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA 6Current address: Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA †These authors contributed equally *Corresponding author: L.A.K - [email protected] Phone: 413-585-3825, Fax: 413-585-3786 Keywords: Microbial eukaryotes, supergroups, taxon sampling, Rhizaria, systematic error, Excavata 2 An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g. plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level ‘supergroups’, many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Further, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduces power to evaluate hypotheses.