The BCG Vaccine for COVID-19: First Verdict and Future Directions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Immunogenicity of Clinically Relevant SARS-Cov-2 Vaccines
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 September 2020 1 Immunogenicity of clinically relevant SARS-CoV-2 vaccines in non-human primates and humans P. J. Klasse (1,*), Douglas F. Nixon (2,*) and John P. Moore (1,+) 1 Department of Microbiology and Immunology; 2 Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065 *These authors contributed equally +Correspondence: [email protected] Short title: SARS-CoV-2 vaccine immunogenicity Key words: SARS-CoV-2, S-protein, RBD, COVID-19, neutralizing antibodies, serology, T- cells, vaccines, animal models, Operation Warp Speed © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 September 2020 2 Abstract Multiple preventive vaccines are being developed to counter the COVID-19 pandemic. The leading candidates have now been evaluated in non-human primates (NHPs) and human Phase 1 and/or Phase 2 clinical trials. Several vaccines have already advanced into Phase 3 efficacy trials, while others will do so before the end of 2020. Here, we summarize what is known of the antibody and T-cell immunogenicity of these vaccines in NHPs and humans. To the extent possible, we compare how the vaccines have performed, taking into account the use of different assays to assess immunogenicity and inconsistencies in how the resulting data are presented. We also summarize the outcome of SARS-CoV-2 challenge experiments in immunized macaques, while noting variations in the protocols used, including but not limited to the virus challenge doses. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 September 2020 3 Introduction The COVID-19 pandemic rages unabated and may continue to do so until there is a safe, effective and widely used protective vaccine. -
A Step Towards Revising the Model for Vaccine Tuberculosis Immunity
COMMENTARY CONTEST Revising the model for vaccine development: a step towards tuberculosis immunity Amy Dagenais1 1University of Ottawa, Ottawa, Ontario, Canada Date Published: August 26, 2021 DOI: https://doi.org/10.18192/UOJM.V11iS1.5929 Keywords: Tuberculosis, COVID-19, vaccines hanks to accelerated vaccine development, the first with the largest infectious disease burden in the world, COVID-19 vaccine was approved for use by Health tolling 10 million new infections and 1.2 million deaths Canada only nine months after the disease was in 2019 alone.² Indeed, tuberculosis is one of the top 10 Tdeclared a pandemic by the World Health Organization.¹ causes of death worldwide—but the situation remains This unprecedented feat was made possible by three underdiscussed as most cases are recorded in developing critical factors: a stressed sense of urgency, substantial areas, such as South-East Asia (44%) and Africa (25%), or funding, and parallel pre-clinical and clinical trials. Such in underserved populations such as the Inuit in Canada.2,3 a concerted effort not only led to the development of Approximately one-quarter of the world population is multiple effective vaccines, but also bred innovation as infected by the etiological agent of tuberculosis: the mRNA technology bloomed despite its limited use in the bacterium Mycobacterium tuberculosis (Mtb), known as past. This success story paves the way for the accelerated the most successful human pathogen.² development of vaccines for other diseases, such as tuberculosis—the deadliest infectious disease of modern The intracellular pathogen has co-evolved with humans times before COVID-19 emerged. to evade host immune defenses, rendering TB treatment particularly difficult. -
Immunogenicity of a New Gorilla Adenovirus Vaccine Candidate for COVID-19
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.22.349951; this version posted October 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Immunogenicity of a new gorilla adenovirus vaccine candidate for COVID-19 Stefania Capone1,6, Angelo Raggioli1,6, Michela Gentile1, Simone Battella1, Armin Lahm1, Andrea Sommella1, Alessandra Maria Contino1, Richard A. Urbanowicz2,3,4, Romina Scala1, Federica Barra1, Adriano Leuzzi1, Eleonora Lilli1, Giuseppina Miselli1, Alessia Noto1, Maria Ferraiuolo1, Francesco Talotta1, Theocharis Tsoleridis2,3,4, Concetta Castilletti5, Giulia Matusali5, Francesca Colavita5, Daniele Lapa5, Silvia Meschi5, Maria Capobianchi5, Marco Soriani1, Antonella Folgori1, Jonathan K. Ball2,3,4, Stefano Colloca1 and Alessandra Vitelli1* 1 ReiThera Srl, Rome, Italy 2 School of Life Sciences, The University of Nottingham, UK 3 NIHR Nottingham Biomedical Research Centre, The University of Nottingham, UK 4 Wolfson Centre for Emerging Virus Research, The University of Nottingham, UK 5 National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS 6 These authors contributed equally * [email protected] ABSTRACT The COVID-19 pandemic caused by the emergent SARS-CoV-2 coronavirus threatens global public health and there is an urgent need to develop safe and effective vaccines. Here we report the generation and the preclinical evaluation of a novel replication-defective gorilla adenovirus-vectored vaccine encoding the pre-fusion stabilized Spike (S) protein of SARS-CoV2. We show that our vaccine candidate, GRAd- COV2, is highly immunogenic both in mice and macaques, eliciting both functional antibodies which neutralize SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and a robust, Th1- dominated cellular response in the periphery and in the lung. -
Considerations for Causality Assessment of Neurological And
Occasional essay J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2021-326924 on 6 August 2021. Downloaded from Considerations for causality assessment of neurological and neuropsychiatric complications of SARS- CoV-2 vaccines: from cerebral venous sinus thrombosis to functional neurological disorder Matt Butler ,1 Arina Tamborska,2,3 Greta K Wood,2,3 Mark Ellul,4 Rhys H Thomas,5,6 Ian Galea ,7 Sarah Pett,8 Bhagteshwar Singh,3 Tom Solomon,4 Thomas Arthur Pollak,9 Benedict D Michael,2,3 Timothy R Nicholson10 For numbered affiliations see INTRODUCTION More severe potential adverse effects in the open- end of article. The scientific community rapidly responded to label phase of vaccine roll- outs are being collected the COVID-19 pandemic by developing novel through national surveillance systems. In the USA, Correspondence to SARS- CoV-2 vaccines (table 1). As of early June Dr Timothy R Nicholson, King’s roughly 372 adverse events have been reported per College London, London WC2R 2021, an estimated 2 billion doses have been million doses, which is a lower rate than expected 1 2LS, UK; timothy. nicholson@ administered worldwide. Neurological adverse based on the clinical trials.6 kcl. ac. uk events following immunisation (AEFI), such as In the UK, adverse events are reported via the cerebral venous sinus thrombosis and demyelin- MB and AT are joint first Coronavirus Yellow Card reporting website. As of ating episodes, have been reported. In some coun- authors. early June 2021, approximately 250 000 Yellow tries, these have led to the temporary halting of BDM and TRN are joint senior Cards have been submitted, equating to around authors. -
COVID-19 Vaccine Candidates in Development, Special Focus on Mrna and Viral Vector Platforms Dr
To view an archived recording of this presentation please click the following link: http://pho.adobeconnect.com/pbwjspa1fh9a/ Please scroll down this file to view a copy of the slides from the session. Helpful tips when viewing the recording: • The default presentation format includes showing the “event index”. To close the events index, please click on the following icon and hit “close” • If you prefer to view the presentation in full screen mode, please click on the following icon in the top right hand corner of the share screen PublicHealthOntario.ca 2 COVID-19 Vaccine Candidates in Development, special focus on mRNA and viral vector platforms Dr. Marina Salvadori and Dr. April Killikelly Centre for Immunization and Respiratory Infectious Diseases, PHAC October 1, 2020 Disclosures • None of the presenters at this session have received financial support or in-kind support from a commercial sponsor. • None of the presenters have potential conflicts of interest to declare. 2 OBJECTIVE • Describe the mechanism of action of mRNA, viral vector and protein- based vaccines • Discuss the evidence available for vaccines in development that may be available in Canada if proved safe and effective 3 Global COVID-19 Vaccine Development Landscape: • As of September 24, 2020, 63 clinical trials have been registered for developmental vaccine candidates against COVID-19. • Two anti-SARS-COV-2 vaccine candidates have obtained regulatory authorization to initiate clinical trials in Canada and one vaccine candidate has begun clinical testing in Canada (Medicago). 4 Lead Candidate COVID-19 Vaccine Development Landscape: Protein-based (top box), viral vector based (middle box) and mRNA (bottom box) and technology constitute the majority of the front running COVID-19 vaccine technologies. -
Adenoviral Vector COVID-19 Vaccines: Process and Cost Analysis
processes Article Adenoviral Vector COVID-19 Vaccines: Process and Cost Analysis Rafael G. Ferreira 1,* , Neal F. Gordon 2, Rick Stock 2 and Demetri Petrides 3 1 Intelligen Brasil, Sao Paulo 01227-200, Brazil 2 BDO USA, LLP, Boston, MA 02110, USA; [email protected] (N.F.G.); [email protected] (R.S.) 3 Intelligen, Inc., Scotch Plains, NJ 07076, USA; [email protected] * Correspondence: [email protected] Abstract: The COVID-19 pandemic has motivated the rapid development of numerous vaccines that have proven effective against SARS-CoV-2. Several of these successful vaccines are based on the adenoviral vector platform. The mass manufacturing of these vaccines poses great challenges, especially in the context of a pandemic where extremely large quantities must be produced quickly at an affordable cost. In this work, two baseline processes for the production of a COVID-19 adenoviral vector vaccine, B1 and P1, were designed, simulated and economically evaluated with the aid of the software SuperPro Designer. B1 used a batch cell culture viral production step, with a viral titer of 5 × 1010 viral particles (VP)/mL in both stainless-steel and disposable equipment. P1 used a perfusion cell culture viral production step, with a viral titer of 1 × 1012 VP/mL in exclusively disposable equipment. Both processes were sized to produce 400 M/yr vaccine doses. P1 led to a smaller cost per dose than B1 ($0.15 vs. $0.23) and required a much smaller capital investment ($126 M vs. $299 M). The media and facility-dependent expenses were found to be the main contributors to the operating cost. -
An Overview of COVID Vaccine Clinical Trial Results & Some Challenges
An overview of COVID vaccine clinical trial results & some challenges DCVMN Webinar December 8th, 2020 Access to COVID-19 tools ACCESSACCESS TO TOCOVID-19 COVID-19 TOOLS TOOLS (ACT) (ACT) ACCELERATOR ACCELERATOR (ACT) accelerator A GlobalA GlobalCollaboration Collaboration to Accelerate tothe AccelerateDevelopment, the Production Development, and Equitable Production Access to New and Equitable AccessCOVID-19 to New diagnostics, COVID-19 therapeutics diagnostics, and vaccines therapeutics and vaccines VACCINES DIAGNOSTICS THERAPEUTICS (COVAX) Development & Manufacturing Led by CEPI, with industry Procurement and delivery at scale Led by Gavi Policy and allocation Led by WHO Key players SOURCE: (ACT) ACCELERATOR Commitment and Call to Action 24th April 2020 ACT-A / COVAX governance COVAX COORDINATION MEETING CEPI Board Co-Chair: Jane Halton Co-Chair: Dr. Ngozi Gavi Board Workstream leads + DCVMN and IFPMA-selected Reps As needed – R&D&M Chair; COVAX IPG Chair Development & Manufacturing Procurement and delivery Policy and allocation (COVAX) at scale Led by (with industry) Led by Led by R&D&M Investment Committee COVAX Independent Product Group Technical Review Group Portfolio Group Vaccine Teams SWAT teams RAG 3 COVAX SWAT teams are being set up as a joint platform to accelerate COVID- 19 Vaccine development and manufacturing by addressing common challenges together Timely and targeted Multilateral Knowledge-based Resource-efficient Addresses specific cross- Establishes a dialogue Identifies and collates Coordinates between developer technical and global joint effort most relevant materials different organizations/ challenges as they are across different COVID-19 and insights across the initiatives to limit raised and/or identified vaccines organizations broader COVID-19 duplications and ensure on an ongoing basis (incl. -
Protective Zika Vaccines Engineered to Eliminate Enhancement of Dengue Infection Via Immunodominance Switch
ARTICLES https://doi.org/10.1038/s41590-021-00966-6 Protective Zika vaccines engineered to eliminate enhancement of dengue infection via immunodominance switch Lianpan Dai 1,2,3,8 ✉ , Kun Xu3,8, Jinhe Li2,4,8, Qingrui Huang5, Jian Song 1, Yuxuan Han2, Tianyi Zheng2,4, Ping Gao2,4, Xuancheng Lu6, Huabing Yang 5, Kefang Liu7, Qianfeng Xia3, Qihui Wang 1, Yan Chai1, Jianxun Qi 1, Jinghua Yan 5 ✉ and George F. Gao 1,2,4 ✉ Antibody-dependent enhancement (ADE) is an important safety concern for vaccine development against dengue virus (DENV) and its antigenically related Zika virus (ZIKV) because vaccine may prime deleterious antibodies to enhance natural infections. Cross-reactive antibodies targeting the conserved fusion loop epitope (FLE) are known as the main sources of ADE. We design ZIKV immunogens engineered to change the FLE conformation but preserve neutralizing epitopes. Single vaccination conferred sterilizing immunity against ZIKV without ADE of DENV-serotype 1–4 infections and abrogated maternal–neonatal transmis- sion in mice. Unlike the wild-type-based vaccine inducing predominately cross-reactive ADE-prone antibodies, B cell profiling revealed that the engineered vaccines switched immunodominance to dispersed patterns without DENV enhancement. The crystal structure of the engineered immunogen showed the dimeric conformation of the envelope protein with FLE disruption. We provide vaccine candidates that will prevent both ZIKV infection and infection-/vaccination-induced DENV ADE. IKV is a mosquito-borne pathogen belonging to the genus models12,13,19,20. More importantly, a recent study of pediatric cohorts Flavivirus in the family Flaviviridae1. The 2015–2016 ZIKV in Nicaragua clearly shows that previous ZIKV infection enhanced epidemic spread to 84 countries worldwide, including future risk of DENV2 disease and severity, as well as DENV3 sever- Z2,3 21,22 China . -
Update 50 (15Th of December 2020)
Update 50 (15th of December 2020) Information about Infection disease COVID-19 (novel coronavirus) Force Health Protection Branch FHPB (former DHSC) NATO MILMED COE in Munich 15th of December 2020 email: [email protected] In December 2019, a novel coronavirus emerged in Wuhan City, China. Since then the virus spread to 65 countries including Europe and America. Since then the virus showed evidence for human-to-human transmission as well as evidence of asymptomatic transmission. At 30th January 2020 WHO declared a Public Health Emergency of International Concern. The disease was formally named COVID-19 on 11th of February. The virus itself has been named SARS-CoV-2. On 11th of March 2020 WHO characterized the disease as a pandemic. HIGHLIGHTS/NEWS GLOBALLY ↗ • GBR/WHO: A new variant of the virus could be responsible for the renewed high number of cases in the UK, among other things, which 72 879 777 confirmed cases could be "in connection with the faster spread in the south of England". 47 710 950 recovered So far, 1000 cases have been identified. 1 622 200 deaths The WHO emphasized that the new variant would now be examined. EU/EEA and the UK ↘ However, there is no evidence that the strain behaves differently than 21 936 276 existing virus types. "We saw many variants, this virus evolves and confirmed cases changes over time." 10 689 950 recovered • Sputnik V: The developers of the Russian coronavirus vaccine Sputnik 479 566 deaths V explain that it creates 91.4 percent protection against the lung disease USA ↗ Covid-19. -
Gene-Based Vaccines (GBV)
Advanced Drug Delivery Reviews 170 (2021) 113–141 Contents lists available at ScienceDirect Advanced Drug Delivery Reviews journal homepage: www.elsevier.com/locate/addr Advances in gene-based vaccine platforms to address the COVID-19 pandemic Deborah Pushparajah a,1, Salma Jimenez a,c,1,ShirleyWonga,HibahAlattasa, Nafiseh Nafissi b, Roderick A. Slavcev a,b,c,⁎ a School of Pharmacy, University of Waterloo, 10A Victoria St S, Kitchener N2G 1C5, Canada b Mediphage Bioceuticals, 661 University Avenue, Suite 1300, Toronto, ON, M5G 0B7, Canada c Theraphage, 151 Charles St W Suite # 199, Kitchener, ON, N2G 1H6, Canada article info abstract Article history: The novel betacoronavirus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has spread across Received 1 October 2020 the globe at an unprecedented rate since its first emergence in Wuhan City, China in December 2019. Scientific Received in revised form 23 December 2020 communities around the world have been rigorously working to develop a potent vaccine to combat COVID-19 Accepted 1 January 2021 (coronavirus disease 2019), employing conventional and novel vaccine strategies. Gene-based vaccine platforms Available online 7 January 2021 based on viral vectors, DNA, and RNA, have shown promising results encompassing both humoral and cell-mediated immune responses in previous studies, supporting their implementation for COVID-19 vaccine de- Keywords: Coronavirus velopment. In fact, the U.S. Food and Drug Administration (FDA) recently authorized the emergency use of two COVID-19 RNA-based COVID-19 vaccines. We review current gene-based vaccine candidates proceeding through clinical SARS-CoV-2 trials, including their antigenic targets, delivery vehicles, and route of administration. -
Prediction of the Supportive Vaccine Type of the Covid-19 for Public Health
Available online at http://scik.org J. Math. Comput. Sci. 11 (2021), No. 5, 5703-5719 https://doi.org/10.28919/jmcs/5738 ISSN: 1927-5307 PREDICTION OF THE SUPPORTIVE VACCINE TYPE OF THE COVID-19 FOR PUBLIC HEALTH NISHANT NAMDEV, ARVIND KUMAR SINHA* Department of Mathematics, National Institute of Technology, Raipur, India Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract: The novel corona virus SARS-Cov-2 caused the COVID-19 pandemic and mostly deteriorated the respiratory system. This paper aims to predict the supportive vaccine type (RNA, Non-replicating viral vector, DNA, Inactivated, Protein subunit) of COVID-19 for the human being by the rough set's novel process. The Rough set is an approach to identify patterns in uncertainty. The vaccine dataset, vaccine name, number of tested cases, age, randomize, and vaccine types of COVID-19 have been taken to overcome this disaster. By the rough set method, the supportive vaccine pattern is predicted, and it is observed that the vaccine based on RNA is highly supported to the human beings compared to the others. Extensive tests explained the Pfizer vaccine (RNA) is 95% effective, Moderna (mRNA) is 94.1%, while the Oxford/AstraZeneca (Non-replicating) one is 62%. It shows that the efficiency obtained by the rough set is accurate. A data-intensive computer-based analysis is given for the medical system. Furthermore, we present an extended record of sources that will support the scientific bioinformatics society to attain various sorts of a database linked to SARS-CoV-2 and advances to associate with COVID-19 treatment. -
En Este Número
Boletín Científico No. 18 (1-10 julio/2021) EN ESTE NÚMERO VacCiencia es una publicación dirigida a Resumen de candidatos vacu- investigadores y especialistas dedicados a nales contra la COVID-19 ba- la vacunología y temas afines, con el ob- sadas en la plataforma de sub- jetivo de serle útil. Usted puede realizar unidad proteica en desarrollo a sugerencias sobre los contenidos y de es- nivel mundial. (segunda parte) ta forma crear una retroalimentación Artículos científicos más que nos permita acercarnos más a sus recientes de Medline sobre necesidades de información. vacunas. Patentes más recientes en Patentscope sobre vacunas. Patentes más recientes en USPTO sobre vacunas. 1| Copyright © 2020. Todos los derechos reservados | INSTITUTO FINLAY DE VACUNAS Resumen de vacunas contra la COVID-19 basadas en la plataforma de subunidad proteica en desarrollo a nivel mundial (segunda parte) Las vacunas de subunidades antigénicas son aquellas en las que solamente se utilizan los fragmentos específicos (llamados «subunidades antigénicas») del virus o la bacteria que es indispensable que el sistema inmunitario reconozca. Las subunidades antigénicas suelen ser proteínas o hidratos de carbono. La mayoría de las vacunas que figuran en los calendarios de vacunación infantil son de este tipo y protegen a las personas de enfermedades como la tos ferina, el tétanos, la difteria y la meningitis meningocócica. Este tipo de vacunas solo incluye las partes del microorganismo que mejor estimulan al sistema inmunitario. En el caso de las desarrolladas contra la COVID-19 contienen generalmente, la proteína S o fragmentos de la misma como el Dominio de Unión al Receptor (RBD, por sus siglas en inglés).