Discovery of Pyrobaculum Small RNA Families with Atypical Pseudouridine Guide RNA Features
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Proposal to Rename the Hyperthermophile Pyrococcus Woesei As Pyrococcus Furiosus Subsp
Archaea 1, 277–283 © 2004 Heron Publishing—Victoria, Canada A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei WIROJNE KANOKSILAPATHAM,1 JUAN M. GONZÁLEZ,1,2 DENNIS L. MAEDER,1 1,3 1,4 JOCELYNE DIRUGGIERO and FRANK T. ROBB 1 Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA 2 Present address: IRNAS-CSIC, P.O. Box 1052, 41080 Sevilla, Spain 3 Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20274, USA 4 Corresponding author ([email protected]) Received April 8, 2004; accepted July 28, 2004; published online August 31, 2004 Summary Pyrococcus species are hyperthermophilic mem- relatively rapidly at temperatures above 90 °C and produce ° bers of the order Thermococcales, with optimal growth tem- H2S from elemental sulfur (S ) (Zillig et al. 1987). Two Pyro- peratures approaching 100 °C. All species grow heterotrophic- coccus species, P. furiosus (Fiala and Stetter 1986) and ° ally and produce H2 or, in the presence of elemental sulfur (S ), P. woesei (Zillig et al. 1987), were isolated from marine sedi- H2S. Pyrococcus woesei and P.furiosus were isolated from ma- ments at a Vulcano Island beach site in Italy. They have similar rine sediments at the same Vulcano Island beach site and share morphological and physiological characteristics: both species many morphological and physiological characteristics. We re- are cocci and move by means of a tuft of polar flagella. They port here that the rDNA operons of these strains have identical are heterotrophic and grow optimally at 95–100 °C, utilizing sequences, including their intergenic spacer regions and part of peptides as major carbon and nitrogen sources. -
Ep 1734129 B1
(19) TZZ_¥_ _T (11) EP 1 734 129 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12P 7/24 (2006.01) C12P 17/06 (2006.01) 24.02.2016 Bulletin 2016/08 (86) International application number: (21) Application number: 05727417.7 PCT/JP2005/005719 (22) Date of filing: 28.03.2005 (87) International publication number: WO 2005/098012 (20.10.2005 Gazette 2005/42) (54) PROCESS FOR PRODUCTION OF CHIRAL HYDROXYALDEHYDES VERFAHREN ZUR HERSTELLUNG CHIRALER HYDROXYALDEHYDE PROCÉDÉ DE FABRICATION D’HYDROXYALDÉHYDES CHIRALES (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR WO-A2-03/006656 HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR • SAKURABA, H. ET AL.: "The First Crystal (30) Priority: 29.03.2004 JP 2004095263 Structure of Archaeal Aldolase. unique tetrameric structure of (43) Date of publication of application: 2-deoxy-D-ribose-5-phosphate aldolase from the 20.12.2006 Bulletin 2006/51 hyperthermophilic Archaea Aeropyrum pernix" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. (73) Proprietor: Mitsui Chemicals, Inc. 278, no. 12, 21 March 2003 (2003-03-21), pages Tokyo 105-7117 (JP) 10799-10806, XP002596667 • SAKURABA, H. ET AL.: "Sequential Aldol (72) Inventors: Condensation Catalyzed by Hyperthermophilic • MATSUMOTO, Kazuya, 2-Deoxy-D-Ribose-5-Phosphate Aldolase" c/o Mitsui Chemicals, Inc. APPLIED AND ENVIRONMENTAL Mobara-shi, Chiba 2970017 (JP) MICROBIOLOGY, vol. 73, no. 22, November 2007 • KAZUNO, Yasushi, (2007-11), pages 7427-7434, XP002596660 c/o Mitsui Chemicals, Inc. -
Pyrobaculum Igneiluti Sp. Nov., a Novel Anaerobic Hyperthermophilic Archaeon That Reduces Thiosulfate and Ferric Iron
TAXONOMIC DESCRIPTION Lee et al., Int J Syst Evol Microbiol 2017;67:1714–1719 DOI 10.1099/ijsem.0.001850 Pyrobaculum igneiluti sp. nov., a novel anaerobic hyperthermophilic archaeon that reduces thiosulfate and ferric iron Jerry Y. Lee, Brenda Iglesias, Caleb E. Chu, Daniel J. P. Lawrence and Edward Jerome Crane III* Abstract A novel anaerobic, hyperthermophilic archaeon was isolated from a mud volcano in the Salton Sea geothermal system in southern California, USA. The isolate, named strain 521T, grew optimally at 90 C, at pH 5.5–7.3 and with 0–2.0 % (w/v) NaCl, with a generation time of 10 h under optimal conditions. Cells were rod-shaped and non-motile, ranging from 2 to 7 μm in length. Strain 521T grew only in the presence of thiosulfate and/or Fe(III) (ferrihydrite) as terminal electron acceptors under strictly anaerobic conditions, and preferred protein-rich compounds as energy sources, although the isolate was capable of chemolithoautotrophic growth. 16S rRNA gene sequence analysis places this isolate within the crenarchaeal genus Pyrobaculum. To our knowledge, this is the first Pyrobaculum strain to be isolated from an anaerobic mud volcano and to reduce only either thiosulfate or ferric iron. An in silico genome-to-genome distance calculator reported <25 % DNA–DNA hybridization between strain 521T and eight other Pyrobaculum species. Due to its genotypic and phenotypic differences, we conclude that strain 521T represents a novel species, for which the name Pyrobaculum igneiluti sp. nov. is proposed. The type strain is 521T (=DSM 103086T=ATCC TSD-56T). Anaerobic respiratory processes based on the reduction of recently revealed by the receding of the Salton Sea, ejects sulfur compounds or Fe(III) have been proposed to be fluid of a similar composition at 90–95 C. -
Improved Prokaryotic Gene Prediction Yields Insights Into Transcription and Translation Mechanisms on Whole Genome Scale
bioRxiv preprint doi: https://doi.org/10.1101/193490; this version posted March 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Improved Prokaryotic Gene Prediction Yields Insights into Transcription and Translation Mechanisms on Whole Genome Scale Alexandre Lomsadze1^, Karl Gemayel2^, Shiyuyun Tang3 and Mark Borodovsky1,2,3,4* ^ joint first authors, *corresponding author, [email protected] 1Wallace H. Coulter Department of Biomedical Engineering, 2School of Computational Science and Engineering, 3School of Biological Sciences, Georgia Tech, Atlanta, Georgia, 30332, USA, 4Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia 1 bioRxiv preprint doi: https://doi.org/10.1101/193490; this version posted March 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. In a conventional view of the prokaryotic genome organization promoters precede operons and RBS sites with Shine-Dalgarno consensus precede genes. However, recent experimental research suggesting a more diverse view motivated us to develop an algorithm with improved gene-finding accuracy. We describe GeneMarkS-2, an ab initio algorithm that uses a model derived by self-training for finding species-specific (native) genes, along with an array of pre-computed heuristic models designed to identify harder-to-detect genes (likely horizontally transferred). Importantly, we designed GeneMarkS-2 to identify several types of distinct sequence patterns (signals) involved in gene expression control, among them the patterns characteristic for leaderless transcription as well as non-canonical RBS patterns. -
A Virus of Hyperthermophilic Archaea with a Unique Architecture Among DNA Viruses
A virus of hyperthermophilic archaea with a unique architecture among DNA viruses Elena Ilka Rensena,1, Tomohiro Mochizukia,b,1, Emmanuelle Quemina, Stefan Schoutenc, Mart Krupovica,2, and David Prangishvilia,2 aDepartment of Microbiology, Institut Pasteur, 75015 Paris, France; bEarth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan; and cDepartment of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, The Netherlands Edited by James L. Van Etten, University of Nebraska-Lincoln, Lincoln, NE, and approved January 19, 2016 (received for review September 23, 2015) Viruses package their genetic material in diverse ways. Most known shell consisting of two protein layers and an external envelope. strategies include encapsulation of nucleic acids into spherical or Our results provide new insights into the diversity of architec- filamentous virions with icosahedral or helical symmetry, respec- tural solutions used by filamentous viruses. tively. Filamentous viruses with dsDNA genomes are currently as- sociated exclusively with Archaea. Here, we describe a filamentous Results hyperthermophilic archaeal virus, Pyrobaculum filamentous virus 1 Virus and Host Isolation. From the environmental sample collected (PFV1), with a type of virion organization not previously observed at the Pozzuoli Solfatara, Italy, enrichment cultures were estab- in DNA viruses. The PFV1 virion, 400 ± 20 × 32 ± 3 nm, contains an lished in conditions known to favor the growth of aerobic mem- envelope and an inner core consisting of two structural units: a rod- bers of the archaeal genus Pyrobaculum (14). The virus-like particles shaped helical nucleocapsid formed of two 14-kDa major virion pro- (VLPs) were detected in the enrichment culture by transmission teins and a nucleocapsid-encompassing protein sheath composed electron microscopy (TEM). -
Different Proteins Mediate Step-Wise Chromosome Architectures in 2 Thermoplasma Acidophilum and Pyrobaculum Calidifontis
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.13.982959; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Different Proteins Mediate Step-wise Chromosome Architectures in 2 Thermoplasma acidophilum and Pyrobaculum calidifontis 3 4 5 Hugo Maruyama1†*, Eloise I. Prieto2†, Takayuki Nambu1, Chiho Mashimo1, Kosuke 6 Kashiwagi3, Toshinori Okinaga1, Haruyuki Atomi4, Kunio Takeyasu5 7 8 1 Department of Bacteriology, Osaka Dental University, Hirakata, Japan 9 2 National Institute of Molecular Biology and Biotechnology, University of the Philippines 10 Diliman, Quezon City, Philippines 11 3 Department of Fixed Prosthodontics, Osaka Dental University, Hirakata, Japan 12 4 Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, 13 Kyoto University, Kyoto, Japan 14 5 Graduate School of Biostudies, Kyoto University, Kyoto, Japan 15 † These authors have contributed equally to this work 16 17 * Correspondence: 18 Hugo Maruyama 19 [email protected]; [email protected] 20 21 Keywords: archaea, higher-order chromosome structure, nucleoid, chromatin, HTa, histone, 22 transcriptional regulator, horizontal gene transfer 23 Running Title: Step-wise chromosome architecture in Archaea 24 Manuscript length: 6955 words 25 Number of Figures: 7 26 Number of Tables: 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.13.982959; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Evidence for Associated Horizontal Gene Transfer in Pyrococcus Furiosus
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC J Appl Genet 50(4), 2009, pp. 421–430 Original article CRISPR elements in the Thermococcales: evidence for associated horizontal gene transfer in Pyrococcus furiosus M.C. Portillo, J.M. Gonzalez Institute for Natural Resources and Agrobiology, IRNAS-CSIC, Sevilla, Spain Abstract. The presence and distribution of CRISPR (clustered regularly interspaced short palindrome repeat)el- ements in the archaeal order Thermococcales were analyzed. Four complete genome sequences from the species Pyrococcus abyssi, P. furiosus, P. horikoshii, and Thermococcus kodakaraensis were studied. A fragment of the genome of P. furiosus was flanked by CRISPR elements upstream and by a single element downstream. The composition of the gene sequences contained in this genome fragment (positions 699013 to 855319) showed sig- nificant differences from the other genes in the P. furiosus genome. Differences were observed in the GC content at the third codon positions and the frequency of codon usage between the genes located in the analyzed fragment and the other genes in the P. furiosus genome. These results represent the first evidence suggesting that repeated CRISPR elements can be involved in horizontal gene transfer and genomic differentiation of hyperthermophilic Archaea. Keywords: CRISPR, gene transfer, genome, hyperthermophilic Archaea, Pyrococcus furiosus. Introduction spacers and repetitive elements modified the phage-resistance phenotype of bacteria Genomic regions consisting of tandem repeat (Barrangou et al. 2007). The incorporation of short DNA elements, typically of 21–47 base pairs (bp) fragments of foreign DNA into the genome of in length, separated by nonrepetitive spacer se- prokaryotes at CRISPR loci has been reported quences of approximately similar length, have (Bolotin et al. -
Gene Cloning and Characterization of NADH Oxidase from Thermococcus Kodakarensis
African Journal of Biotechnology Vol. 10(78), pp. 17916-17924, 7 December, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.989 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Gene cloning and characterization of NADH oxidase from Thermococcus kodakarensis Naeem Rashid 1*, Saira Hameed 2, Masood Ahmed Siddiqui 3 and Ikram-ul-Haq 2 1School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan. 2Institute of Industrial Biotechnology, GC University, Lahore, Pakistan. 3Department of Chemistry, University of Balochistan, Quetta, Pakistan. Accepted 12 October, 2011 The genome search of Thermococcus kodakarensis revealed three open reading frames, Tk0304, Tk1299 and Tk1392 annotated as nicotinamide adenine dinucleotide (NADH) oxidases. This study deals with cloning, and characterization of Tk0304. The gene, composed of 1320 nucleotides, encodes a protein of 439 amino acids with a molecular weight of 48 kDa. Expression of the gene in Escherichia coli resulted in the production of Tk0304 in soluble form which was purified by heat treatment at 80°C followed by ion exchange chromatography. Enzyme activity of Tk0304 was enhanced about 50% in the presence of 30 µM flavin adenine dinucleotide (FAD) when assay was conducted at 60°C. Surprisingly the activity of the enzyme was not affected by FAD when the assay was conducted at 75°C or at higher temperatures. Tk0304 displayed highest activity at pH 9 and 80°C. The enzyme was highly thermostable displaying 50% of the original activity even after an incubation of 80 min in boiling water. Among the potent inhibitors of NADH oxidases, silver nitrate and potassium cyanide did not show any significant inhibitory effect at a final concentration of 100 µM. -
Pyrococcus Horikoshii Rada Intein Site Selection
Murray State's Digital Commons Honors College Theses Honors College Fall 11-12-2020 Pyrococcus horikoshii RadA Intein Site Selection Noah Stallins Follow this and additional works at: https://digitalcommons.murraystate.edu/honorstheses Part of the Biology Commons Recommended Citation Stallins, Noah, "Pyrococcus horikoshii RadA Intein Site Selection" (2020). Honors College Theses. 61. https://digitalcommons.murraystate.edu/honorstheses/61 This Thesis is brought to you for free and open access by the Honors College at Murray State's Digital Commons. It has been accepted for inclusion in Honors College Theses by an authorized administrator of Murray State's Digital Commons. For more information, please contact [email protected]. Murray State University Honors College HONORS THESIS Certificate of Approval Pyrococcus horikoshii RadA Intein Site Selection Noah Reed Stallins November 2020 Approved to fulfill the requirements of HON 437 __________________________________________ Professor Dr. Christopher Lennon, Assistant Professor Biology Approved to fulfill the Honors Thesis requirement __________________________________________ Of the Murray State Honors Dr. Warren Edminster, Executive Director College Honors College Examination Approval Page Author: Noah Reed Stallins Project Title: Pyrococcus horikoshii RadA Intein Site Selection Department: Biology Date of Defense: 11/12/2020 Approval by Examining Committee: _____________________________ ________ (Dr. Christopher Lennon, Advisor) (Date) ________________________________ ________ (Dr. Gary ZeRuth, Committee Member) (Date) _____________________________ ________ (Dr. Terry Derting, Committee Member) (Date) Pyrococcus horikoshii RadA Intein Site Selection Submitted in partial fulfillment Of the requirements Of the Murray State University Honors Diploma Noah Reed Stallins November 2020 ABSTRACT Inteins are protein segments interrupting polypeptides with the unique ability to excise from the host protein and link flanking protein fragments (exteins) to form a functional protein. -
A Method for Achieving Complete Microbial Genomes and Improving Bins from Metagenomics Data
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.979740; this version posted July 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 A method for achieving complete microbial genomes and improving 2 bins from metagenomics data 3 4 Authors: 5 Lauren M. Lui1, Torben N. Nielsen1, Adam P. Arkin1,2,3* 6 7 Affiliations: 8 1Environmental Genomics and Systems Biology Division, Lawrence Berkeley National 9 Laboratory, Berkeley, CA, USA. 10 2Department of Bioengineering, University of California, Berkeley, CA, USA 11 3Innovative Genomics Institute, Berkeley, CA, USA 12 13 *Correspondence: [email protected] 14 15 16 17 18 19 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.979740; this version posted July 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 22 Abstract 23 Metagenomics facilitates the study of the genetic information from uncultured microbes 24 and complex microbial communities. Assembling complete microbial genomes (i.e., 25 circular with no misassemblies) from metagenomics data is difficult because most 26 samples have high organismal complexity and strain diversity. Less than 100 27 circularized bacterial and archaeal genomes have been assembled from metagenomics 28 data despite the thousands of datasets that are available. -
Deep Conservation of Histone Variants in Thermococcales Archaea
bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.455978; this version posted September 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Deep conservation of histone variants in Thermococcales archaea 2 3 Kathryn M Stevens1,2, Antoine Hocher1,2, Tobias Warnecke1,2* 4 5 1Medical Research Council London Institute of Medical Sciences, London, United Kingdom 6 2Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, 7 United Kingdom 8 9 *corresponding author: [email protected] 10 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.455978; this version posted September 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Abstract 2 3 Histones are ubiquitous in eukaryotes where they assemble into nucleosomes, binding and 4 wrapping DNA to form chromatin. One process to modify chromatin and regulate DNA 5 accessibility is the replacement of histones in the nucleosome with paralogous variants. 6 Histones are also present in archaea but whether and how histone variants contribute to the 7 generation of different physiologically relevant chromatin states in these organisms remains 8 largely unknown. Conservation of paralogs with distinct properties can provide prima facie 9 evidence for defined functional roles. -
Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs.