09GE Unit II 2.4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diptera, Tabanoidea, Tabanidae) Dorian D
Dörge et al. Parasites Vectors (2020) 13:461 https://doi.org/10.1186/s13071-020-04316-7 Parasites & Vectors RESEARCH Open Access Incompletely observed: niche estimation for six frequent European horsefy species (Diptera, Tabanoidea, Tabanidae) Dorian D. Dörge1*, Sarah Cunze1 and Sven Klimpel1,2 Abstract Background: More than 170 species of tabanids are known in Europe, with many occurring only in limited areas or having become very rare in the last decades. They continue to spread various diseases in animals and are responsible for livestock losses in developing countries. The current monitoring and recording of horsefies is mainly conducted throughout central Europe, with varying degrees of frequency depending on the country. To the detriment of tabanid research, little cooperation exists between western European and Eurasian countries. Methods: For these reasons, we have compiled available sources in order to generate as complete a dataset as possi- ble of six horsefy species common in Europe. We chose Haematopota pluvialis, Chrysops relictus, C. caecutiens, Tabanus bromius, T. bovinus and T. sudeticus as ubiquitous and abundant species within Europe. The aim of this study is to esti- mate the distribution, land cover usage and niches of these species. We used a surface-range envelope (SRE) model in accordance with our hypothesis of an underestimated distribution based on Eurocentric monitoring regimes. Results: Our results show that all six species have a wide range in Eurasia, have a broad climatic niche and can there- fore be considered as widespread generalists. Areas with modelled habitat suitability cover the observed distribution and go far beyond these. This supports our assumption that the current state of tabanid monitoring and the recorded distribution signifcantly underestimates the actual distribution. -
Price's Scrub State Park
Price’s Scrub State Park Advisory Group Draft Unit Management Plan STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Division of Recreation and Parks September 2018 TABLE OF CONTENTS INTRODUCTION ...................................................................................1 PURPOSE AND SIGNIFICANCE OF THE PARK ....................................... 1 Park Significance ................................................................................1 PURPOSE AND SCOPE OF THE PLAN..................................................... 2 MANAGEMENT PROGRAM OVERVIEW ................................................... 7 Management Authority and Responsibility .............................................. 7 Park Management Goals ...................................................................... 8 Management Coordination ................................................................... 9 Public Participation ..............................................................................9 Other Designations .............................................................................9 RESOURCE MANAGEMENT COMPONENT INTRODUCTION ................................................................................. 11 RESOURCE DESCRIPTION AND ASSESSMENT..................................... 12 Natural Resources ............................................................................. 12 Topography .................................................................................. 12 Geology ...................................................................................... -
6. Bremsen Als Parasiten Und Vektoren
DIPLOMARBEIT / DIPLOMA THESIS Titel der Diplomarbeit / Title of the Diploma Thesis „Blutsaugende Bremsen in Österreich und ihre medizini- sche Relevanz“ verfasst von / submitted by Manuel Vogler angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Magister der Naturwissenschaften (Mag.rer.nat.) Wien, 2019 / Vienna, 2019 Studienkennzahl lt. Studienblatt / A 190 445 423 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Lehramtsstudium UF Biologie und Umweltkunde degree programme as it appears on UF Chemie the student record sheet: Betreut von / Supervisor: ao. Univ.-Prof. Dr. Andreas Hassl Danksagung Hiermit möchte ich mich sehr herzlich bei Herrn ao. Univ.-Prof. Dr. Andreas Hassl für die Vergabe und Betreuung dieser Diplomarbeit bedanken. Seine Unterstützung und zahlreichen konstruktiven Anmerkungen waren mir eine ausgesprochen große Hilfe. Weiters bedanke ich mich bei meiner Mutter Karin Bock, die sich stets verständnisvoll ge- zeigt und mich mein ganzes Leben lang bei all meinen Vorhaben mit allen ihr zur Verfügung stehenden Kräften und Mitteln unterstützt hat. Ebenso bedanke ich mich bei meiner Freundin Larissa Sornig für ihre engelsgleiche Geduld, die während meiner zahlreichen Bremsenjagden nicht selten auf die Probe gestellt und selbst dann nicht überstrapaziert wurde, als sie sich während eines Ausflugs ins Wenger Moor als ausgezeichneter Bremsenmagnet erwies. Auch meiner restlichen Familie gilt mein Dank für ihre fortwährende Unterstützung. -
Scottish Pollinating Flies
Scottish Pollinating Flies Introduction to True flies True flies form one of the largest and most diverse orders of insects called Diptera (meaning two wings). There are around 160,000 species worldwide in 150 families, with 7,200 species from over 90 families recorded in the UK. They inhabit every continent and almost every terrestrial and freshwater niche on the planet which is testament to their adaptability. True flies differ from other insects in that they have retained only their front pair of wings, with the hind pair having evolved into small club-shaped appendages called ‘halteres’ which act as gyroscopes and facilitate greater aerobatic agility. They provide a range of ecological services including pollination, controlling pest species, the decomposition of organic material, and supplementing the dietary requirements of a wide range of other organisms. Pollinating flies and other dipterans Of the four most significant orders of pollinating insects, flies are the most abundant. Approximately 1,500 of the 7,200 British species are thought to contribute to pollination. Hoverflies (family Syrphidae) are especially significant pollinators, but some other families (the house flies and their relatives) are just as important. The remainder of the 90+ families contribute relatively few, or no pollinating species. True flies contribute to more pollination in Scotland than any other order of insects, mainly due to the sparsity, absence or selectiveness of bees in colder, northern upland habitats. Below are some examples that demonstrate the diversity of true flies that may be encountered. Common dronefly (Eristalis tenax) Splayed deerfly Chrysops( caecutiens) © Steven Falk © Steven © Steven Falk © Steven Cranefly Tipula lateralis Orange-legged robberfly (Dioctria oelandica) © Steven Falk © Steven Falk © Steven Buglife—The Invertebrate Conservation Trust is a company limited by guarantee. -
The Status and Distribution of the Horseflies Atylotus Plebeius and Hybomitra Lurida on the Cheshire Plain Area of North West England
The status and distribution of the horseflies Atylotus plebeius and Hybomitra lurida on the Cheshire Plain area of North West England Including assessments of mire habitats and accounts of other horseflies (Tabanidae) Atylotus plebeius (Fallén) [Cheshire Horsefly]: male from Little Budworth Common 10th June 2018; female from Shemmy Moss 9th June 2018 A report to Gary Hedges, Tanyptera Regional Entomology Project Officer, Entomology, National Museums Liverpool, World Museum, William Brown Street, L3 8EN Email: [email protected] By entomological consultant Andrew Grayson, ‘Scardale’, High Lane, Beadlam, Nawton, York, YO62 7SX Email: [email protected] Based on The results of a survey carried out during 2018 Report submitted on 2nd March 2019 CONTENTS INTRODUCTION . 1 SUMMARY . 1 THE CHESHIRE PLAIN AREA MIRES . 1 HISTORICAL BACKGROUND TO ATYLOTUS PLEBEIUS IN THE CHESHIRE PLAIN AREA . 2 HISTORICAL BACKGROUND TO HYBOMITRA LURIDA IN THE CHESHIRE PLAIN AREA . 2 OTHER HORSEFLIES RECORDED IN THE CHESHIRE PLAIN AREA . 3 METHODOLOGY FOR THE 2018 SURVEY . 3 INTRODUCTION . 3 RECONNAISSANCE . 4 THE SURVEY . 4 LOCALITIES . 5 ABBOTS MOSS COMPLEX MIRES ON FOREST CAMP LAND . 5 ABBOTS MOSS COMPLEX MIRES ON FORESTRY COMMISSION LAND . 7 BRACKENHURST BOG AND NEWCHURCH COMMON . 8 DELAMERE FOREST MIRES . 9 LITTLE BUDWORTH COMMON MIRES . 17 PETTY POOL AREA WETLANDS . 18 MISCELLANEOUS DELAMERE AREA MIRES . 19 WYBUNBURY MOSS AND CHARTLEY MOSS . 21 BROWN MOSS . 22 CLAREPOOL MOSS AND COLE MERE . 23 THE FENN’S, WHIXALL, BETTISFIELD, WEM AND CADNEY MOSSES COMPLEX SSSI MIRES . 24 POTENTIAL HOST ANIMALS FOR FEMALE TABANIDAE BLOOD MEALS . 26 RESULTS . 27 TABANIDAE . 27 SUMMARY . 27 SPECIES ACCOUNTS . 27 TABLE SHOWING DISSECTION OF HORSEFLY NUMBERS . -
Checklist of Lithuanian Diptera
Acta Zoologica Lituanica. 2000. Volumen 10. Numerus 1 3 ISSN 1392-1657 CHECKLIST OF LITHUANIAN DIPTERA Saulius PAKALNIÐKIS1, Jolanta RIMÐAITË1, Rasa SPRANGAUSKAITË-BERNOTIENË1, Rasa BUTAUTAITË2, Sigitas PODËNAS2 1 Institute of Ecology, Akademijos 2, 2600 Vilnius, Lithuania 2 Department of Zoology, Vilnius University, M.K. Èiurlionio 21/27, 2009 Vilnius, Lithuania Abstract. The list of 2283 Lithuanian Diptera species of 78 families is based on 224 literary sources. Key words: Diptera, Acroceridae, Agromyzidae, Anisopodidae, Anthomyiidae, Anthomyzidae, Asilidae, Athericidae, Bibionidae, Bombyliidae, Calliphoridae, Cecidomyiidae, Ceratopogonidae, Chama- emyiidae, Chaoboridae, Chironomidae, Chloropidae, Coelopidae, Conopidae, Culicidae, Cylindroto- midae, Diastatidae, Ditomyiidae, Dixidae, Dolichopodidae, Drosophilidae, Dryomyzidae, Empididae, Ephydridae, Fanniidae, Gasterophilidae, Helcomyzidae, Heleomyzidae, Hippoboscidae, Hybotidae, Hypodermatidae, Lauxaniidae, Limoniidae, Lonchaeidae, Lonchopteridae, Macroceridae, Megamerinidae, Micropezidae, Microphoridae, Muscidae, Mycetophilidae, Neottiophilidae, Odiniidae, Oestridae, Opo- myzidae, Otitidae, Pallopteridae, Pediciidae, Phoridae, Pipunculidae, Platypezidae, Psilidae, Psychod- idae, Ptychopteridae, Rhagionidae, Sarcophagidae, Scathophagidae, Scatopsidae, Scenopinidae, Sciaridae, Sciomyzidae, Sepsidae, Simuliidae, Sphaeroceridae, Stratiomyidae, Syrphidae, Tabanidae, Tachinidae, Tephritidae, Therevidae, Tipulidae, Trichoceridae, Xylomyidae, Xylophagidae, checklist, Lithuania INTRODUCTION -
Deer Flies, Yellow Flies and Horse Flies, Chrysops, Diachlorus, and Tabanus Spp
EENY-028 Deer Flies, Yellow Flies and Horse Flies, Chrysops, Diachlorus, and Tabanus spp. (Insecta: Diptera: Tabanidae)1 J. M. Squitier 2 Introduction Distribution The family Tabanidae, commonly known as horse flies and Horse flies and deer flies are world wide in distribution. deer flies, contains pests of cattle, horses, and humans. In They are, however, unreported in Hawaii, Greenland, and Florida there are 35 species of Tabanidae that are consid- Iceland. In the United States, Florida produces a large ered economically important. Horse flies are in the genus population of tabanids because of the availability of suitable Tabanus and deer flies are in the genusChrysops . The yellow habitat. Florida’s mild climate and large, permanently wet fly, Diachlorus ferrugatus (Fabricius), is known in Florida and undeveloped areas provide good breeding areas. as a fierce biter. Like mosquitoes, it is the female fly that is responsible for inflicting a bite. The males are mainly pollen Description and nectar feeders. Tabanids are most likely encountered in hot summer and early fall weather. They are active during Eggs daylight hours. Eggs are laid in masses ranging from 100 to 1000 eggs. Eggs are laid in layers on a vertical surface, such as overhanging foliage, projecting rocks, sticks, and aquatic vegetation. Aquatic vegetation is preferred. A shiny or chalky secre- tion, which aids in water protection, often covers eggs. The vertical surfaces on which the eggs are deposited are always directly over water and wet ground favorable to the development of larvae. The female will not deposit egg masses on vegetation that is too dense. -
New Records for the Horse Fly Fauna (Diptera: Tabanidae) of Jordan with Remarks on Ecology and Zoogeography
9ROQR -RXUQDORI9HFWRU(FRORJ\ New records for the horse fly fauna (Diptera: Tabanidae) of Jordan with remarks on ecology and zoogeography Günter C. Müller1 , Jerome A. Hogsette2, Edita E. Revay3, Vasiliy D. Kravchenko4, Andrey Leshvanov5, and Yosef Schlein1 1Department of Microbiology and Molecular Genetics, IMRIC, Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, Hebrew University, Jerusalem, Israel, 91120, [email protected] 2United States Department of Agriculture-ARS-Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, U.S.A. 3Department of Anatomy and Cell Biology, Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel 4Department of Zoology, Tel Aviv University, Tel Aviv, Israel 5Department of Zoology, Ulyanovsk State Pedagogical University, 432600, Russia Received 4 August 2011; Accepted 5 September 2011 ABSTRACT: The horse fly fauna (Diptera: Tabanidae) of Jordan is, after Israel, the richest in the Levant, with 24 known species. During the 20-year project “The Ecology and Zoogeography of the Lepidoptera of the Near East,” we regularly collected blood-feeding flies, resulting in 11 additional species of Tabanidae for Jordan. The new records are: Atylotus quadrifarius (Loew, 1874), Chrysops caecutiens (Linnaeus, 1758), Dasyrhamphis nigritus (Fabricius, 1794), Haematopota pallens Loew, 1871, Nemorius irritans (Ricardo, 1901), Philipomyia graeca (Fabricius, 1794), Tabanus cordiger Meigen, 1820, Tabanus taeniola Palisot de Beauvois, 1806, Tabanus quatuornotatus Meigen, 1820, Tabanus separatus Effllatoun, 1930, and Tabanus spectabilis Loew, 1858. Most of the new records (10/11) are of Palearctic origin; of these, six are of a Mediterranean and one each of West Palearctic, Euroasiatic, Irano-Turanian, and Eremic providence. Only one species, T. -
Francisella Tularensis: Possible Agent in Bioterrorism
FOCUS: BIOTERRORISM Francisella tularensis: Possible Agent in Bioterrorism MELISSA GALLAGHER-SMITH, JOSEPHINE KIM, RASHA AL-BAWARDY, DEBORAH JOSKO Francisella tularensis, the causative agent of tularemia, is a Connie Mahon MS CLS is the Focus: Bioterrorism guest editor. highly infectious gram-negative coccobacillus. Due to its high infectivity it is of major concern to public health officials as Focus Continuing Education Credit: see pages 40 to 42 for a possible biological weapon. Although accidental exposure learning objectives, test questions, and application form. can occur through arthropod bites, handling infected ani- mals, or breathing in aerosols, cases are usually isolated and LEARNING OBJECTIVES Downloaded from contained. In the event of an intentional exposure such as in See learning objectives #15 through #20 on page 40. a bioterrorist attack, inhalation of aerosols can result in dev- astating consequences with much causality. Although a vac- There is an increasing threat that chemical and biological weap- cine is available, sufficient quantities may not be readily ac- ons will be used on civilian populations in an act of domestic cessible in an actual attack. Therefore, it is very important or international terrorism. One of the identified diseases caused for both medical professionals and public health officials to by an act of bioterrorism is tularemia, a systemic disease caused http://hwmaint.clsjournal.ascls.org/ be prepared to contain and control the situation should it by Francisella tularensis. Human infections develop -
Dipterists Digest
Dipterists Digest 2018 Vol. 25 No. 2 Cover illustration: Palloptera usta (Meigen, 1826) (Pallopteridae), male, on a rotten birch log at Glen Affric (NH 28012832), 4 November 2018. © Alan Watson Featherstone. In Britain, a predominantly Scottish species, having strong associations with Caledonian pine forest, but also developing in wood of broad-leaved trees. Rearing records from under bark of Betula (3), Fraxinus (1), Picea (18), Pinus (21), Populus (2) and Quercus (1) were cited by G.E. Rotheray and R.M. Lyszkowski (2012. Pallopteridae (Diptera) in Scotland. Dipterists Digest (Second Series ) 19, 189- 203). Apparently a late date, as the date range given by Rotheray and Lyszkowski ( op. cit .) for both adult captures and emergence dates from puparia was 13 May to 29 September. Dipterists Digest Vol. 25 No. 2 Second Series 2018 th Published 27 February 2019 Published by ISSN 0953-7260 Dipterists Digest Editor Peter J. Chandler, 606B Berryfield Lane, Melksham, Wilts SN12 6EL (E-mail: [email protected]) Editorial Panel Graham Rotheray Keith Snow Alan Stubbs Derek Whiteley Phil Withers Dipterists Digest is the journal of the Dipterists Forum . It is intended for amateur, semi- professional and professional field dipterists with interests in British and European flies. All notes and papers submitted to Dipterists Digest are refereed. Articles and notes for publication should be sent to the Editor at the above address, and should be submitted with a current postal and/or e-mail address, which the author agrees will be published with their paper. Articles must not have been accepted for publication elsewhere and should be written in clear and concise English. -
Volume 2, Chapter 12-17: Terrestrial Insects: Holometabola
Glime, J. M. 2017. Terrestrial Insects: Holometabola – Diptera Overview. Chapt. 12-17. In: Glime, J. M. Bryophyte Ecology. 12-17-1 Volume 2. Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-17 TERRESTRIAL INSECTS: HOLOMETABOLA – DIPTERA BIOLOGY AND HABITATS TABLE OF CONTENTS Diptera Overview ........................................................................................................................................... 12-17-2 Role of Bryophytes ................................................................................................................................. 12-17-3 Collection and Extraction Methods ......................................................................................................... 12-17-6 Fly Dispersal of Spores ........................................................................................................................... 12-17-8 Habitats ........................................................................................................................................................ 12-17-13 Wetlands ............................................................................................................................................... 12-17-13 Forests .................................................................................................................................................. -
Tabanidae: Horseflies & Deerflies
Tabanidae: Horseflies & Deerflies Ian Brown Georgia Southwestern State University Importance of Tabanids 4300 spp, 335 US, Chrysops 83, Tabanus 107, Hybomitra 55 Transmission of Disease Humans Tularemia, Anthrax & Lyme?? Loiasis, Livestock & wild - Surra & other Trypanosoma spp. various viral, protozoan, rickettsial, filarid nematodes Animal Stress - painful bites Weight loss & hide damage Milk loss Recreation & Tourism >10 bites/min - bad for business Agricultural workers Egg (1-3mm long) Hatch in 2-3 days Larvae drop into soil or water Generalized Tabanid Adults Emerge in late spring- summer Lifecycle (species dependent). Deerfly small species Feed on nectar & mate. upto 2-3 generations/year Females feed on blood to develop eggs. Horsefly very large species Adult lifespan 30 to 60 days. 2-3 years/ year Larvae Horsefly Predaceous, Deerfly- scavengers?? Final instar overwinters, Pupa pupates in early spring Pupal stage completed in 1-3 weeks Found in upper 2in of drier soil Based on Summarized life cycle of deer flies Scott Charlesworth, Purdue University & Pechuman, L.L. and H.J. Teskey, 1981, IN: Manual of Nearctic Diptera, Volume 1 Deer fly, Chrysops cincticornis, Eggs laying eggs photo J Butler Single or 2-4 layered clusters (100- 1000 eggs) laid on vertical substrates above water or damp soil. Laid white & darken in several hrs. Hatch in 2 –14 days between 70-95F depending on species and weather conditions, Egg mass on cattail Open Aquatic vegetation i.e. Cattails & sedges with vertical foliage is preferred. Larvae Identification