Tornadogenesis: Our Current Understanding, Operational Considerations, and Questions to Guide Future Research

Total Page:16

File Type:pdf, Size:1020Kb

Tornadogenesis: Our Current Understanding, Operational Considerations, and Questions to Guide Future Research 4th European Conference on Severe Storms 10 - 14 September 2007 - Trieste - ITALY Tornadogenesis: Our current understanding, operational considerations, and questions to guide future research Paul Markowski Department of Meteorology, Pennsylvania State University, University Park, Pennsylvania, USA, [email protected] I. INTRODUCTION to the horizontal buoyancy gradient. Whereas the tilt- ing of environmental horizontal vorticity has been shown Although we know much about the dynamics of to be fundamental to the formation of midlevel meso- midlevel updraft rotation—the defining characteristic of cyclones, the tilting of horizontal vorticity originating supercell thunderstorms—the details of how near-ground within this baroclinic zone has been implicated in the for- rotation arises and is amplified to tornado strength re- mation of low-level mesocyclones (Klemp and Rotunno main a challenge. I will review our current understand- 1983; Rotunno and Klemp 1985), where “low-level” typ- ing of the origins of rotation in supercells and the req- ically has referred to approximately a few hundred me- uisites for tornadogenesis. I also will discuss the chal- ters to ∼1 km above ground level. Recent observations lenges for forecasters and what strategies are likely to be reported by Shabbott and Markowski (2006), however, most fruitful given the current state of our understand- have raised some questions about the importance of hori- ing. I will conclude by mentioning what I believe are zontal vorticity generation within the forward-flank baro- some of the most important outstanding questions per- clinic zone. taining to tornadogenesis and the relationship between tornadic storms and their parent environments. III. REQUISITES FOR NEAR-GROUND ROTATION II. UPDRAFT ROTATION AWAY FROM THE By definition, tornadogenesis requires that large ver- GROUND tical vorticity arises at the ground. If preexisting verti- cal vorticity is negligible near the ground, then vorticity It is widely accepted that vertical vorticity arises stretching near the ground is initially negligible and ver- within thunderstorm updrafts (away from the ground) tical vorticity first must arise either from the tilting of as a result of tilting and subsequent stretching of hori- horizontal vorticity or from advection toward the surface zontal vorticity associated with mean vertical wind shear from aloft. Tilting by the horizontal vertical velocity gra- (Barnes 1978; Rotunno 1981; Davies-Jones 1984). When dients associated with an updraft alone is not effective at the environmental horizontal vorticity is purely cross- producing vertical vorticity near the surface because air wise, updrafts acquire no net rotation, but consist of is rising away from the surface as horizontal vorticity is a dipole of equally strong positive and negative verti- tilted into the vertical. But if a downdraft is involved in cal vorticity extrema that straddle the updraft, with the the tilting process, then vertical vorticity can be advected positive (negative) vorticity extremum being located on toward the surface as it is produced via tilting (Davies- the right (left) flank of the updraft when looking downs- Jones and Brooks 1993), where it subsequently can be hear (Davies-Jones 1984). Updrafts acquire net cyclonic stretched to form a tornado. For these reasons, it has (anticyclonic) rotation when the environmental horizon- been argued that a downdraft is needed for tornadogen- tal vorticity has a streamwise (antistreamwise) compo- esis when preexisting rotation is absent near the ground nent, and the correlation between vertical velocity and (Davies-Jones 1982a,b). (This conclusion depends on ed- vertical vorticity increases as the ratio of streamwise to dies being too weak to transport vertical vorticity down- crosswise vorticity increases, all else being equal (storm- ward against the flow. Furthermore, once a tornado is relative wind strength, growth rate of isentropic surface; established, tilting of surface-layer horizontal vorticity Davies-Jones 1984). by the extreme vertical velocity gradient associated with Three-dimensional numerical simulations of supercell the tornado updraft itself probably contributes to the thunderstorms have shown that baroclinic horizontal vor- near-ground vertical vorticity in a significant way. How- ticity, generated by the horizontal buoyancy gradient ever, such abrupt upward turning of streamlines, strong along the forward-flank gust front, can be tilted into the pressure gradients, and large vertical velocities are not vertical and stretched, just as environmental horizontal present next to the ground prior to tornadogenesis; thus, vorticity associated with the mean vertical wind shear is such tilting in the absence of a downdraft cannot be in- tilted and stretched (Klemp and Rotunno 1983; Rotunno voked to explain the amplification of near-ground vertical and Klemp 1985). This horizontal vorticity tends to vorticity that results in tornadogenesis.) be streamwise because storm-relative winds approaching The aforementioned theoretical arguments for the im- the updraft from the forward flank are generally normal portance of downdrafts in tornadogenesis have been ver- 2 ified in numerical simulations (e.g., Rotunno and Klemp vored in environments having a low cloud base (environ- 1985; Walko 1993). Moreover, nearly countless observa- ments with a low cloud base, i.e., large boundary layer tions exist of rear-flank downdrafts (RFDs), hook echoes, relative humidity, can limit the production of exception- and “clear slots” in close proximity to tornadoes. Fur- ally cold outflow). It seems as though tornadic super- thermore, trajectory analyses in a limited number of ob- cells might benefit from large low-level horizontal vortic- served supercells indicate that at least some of the air ity that is not accompanied by large negative buoyancy; entering the tornado passes through the RFD prior to strong cold pools have a tendency to either undercut up- entering the tornado (e.g., Brandes 1978). Numerical drafts (e.g., Brooks et al. 1993) and/or suppress vortic- simulation results also have emphasized the importance ity stretching beneath the updraft (e.g., Markowski et of the RFD and have shown similar trajectories of air al. 2003). When the ambient horizontal vorticity is only parcels entering modeled vortices resembling tornadoes relatively modest, then perhaps tornadogenesis requires (Wicker and Wilhelmson 1995; Xue 2004). significant enhancement of the ambient horizontal vor- When there is preexisting rotation at the surface, a ticity. Such enhancement might be difficult to accom- downdraft such as the RFD is not needed for tornadoge- plish without strong storm-induced baroclinity (which is nesis. In these cases, near-ground convergence alone can suppressed by large ambient low-level relative humidity), amplify vertical vorticity to tornado intensity. It seems but strong baroclinity is difficult to achieve without fairly as though nonsupercell tornadoes like waterspouts and strong cold pools. landspouts (e.g., Wakimoto and Wilson 1989; Roberts and Wilson 1995), and perhaps most other geophysical vortices, commonly arise in this manner. V. FUTURE RESEARCH There are a number of aspects of supercell thunder- IV. CHALLENGES TO FORECASTERS storms and tornadogenesis that remain poorly under- stood. Among these are the four-dimensional forcings Although supercells might be regarded as being rela- of RFDs and the dynamical role of RFDs in tornadogen- tively easy to anticipate, predicting which supercells will esis, the importance of microphysical differences among spawn tornadoes is one of the most arduous tasks facing supercells and how those microphysical differences arise, operational meteorologists and researchers alike. A re- the thermodynamic characteristics of supercells above cent study in the U.S. has confirmed prior anecdotal evi- the ground, the effects of radiative transfer processes on dence of the relative infrequency of tornadoes even within storm dynamics, the dynamics of storm-storm and storm- supercells; Trapp et al. (2005) reported that only about boundary interactions, and the importance, if any, of a quarter of all radar-detected mesocyclones were associ- meso-γ-scale variability (such as that due to dry bound- ated with tornadoes, using fairly stringent mesocyclone ary layer convection) on storms. I am optimistic that detection criteria. Tornadoes occur over a broad range of substantial gains in understanding can be achieved in the midlevel mesocyclone intensities, with some of the most not-too-distant future as a result of new field projects, intense mesocyclones ever documented being observed in continually increasing computing power, and growing in- nontornadic supercells (Wakimoto et al. 2004). terest in severe convective storms worldwide. Except in rare circumstances, radars only detect tor- nado parent circulations (i.e., mesocyclones)—they can- not resolve tornadoes themselves. One of the most fruit- VI. ACKNOWLEDGMENTS ful strategies undertaken in the U.S. for improving tor- nado warnings has been to combine real-time radar data with observations of the near-storm environment. I am indebted to Dr. Yvette Richardson and our stu- Two parameters seem to offer the most promise in dents at Penn State University: Zack Byko, Jeff Frame, discriminating between nontornadic and tornadic super- Mario Majcen, and Jim Marquis. I also thank my re- cells: (1) boundary layer water vapor concentration and cent collaborators, Mr. Don Burgess, Dr. David Dow- (2) low-level vertical wind
Recommended publications
  • Polarimetric Radar Characteristics of Tornadogenesis Failure in Supercell Thunderstorms
    atmosphere Article Polarimetric Radar Characteristics of Tornadogenesis Failure in Supercell Thunderstorms Matthew Van Den Broeke Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; [email protected] Abstract: Many nontornadic supercell storms have times when they appear to be moving toward tornadogenesis, including the development of a strong low-level vortex, but never end up producing a tornado. These tornadogenesis failure (TGF) episodes can be a substantial challenge to operational meteorologists. In this study, a sample of 32 pre-tornadic and 36 pre-TGF supercells is examined in the 30 min pre-tornadogenesis or pre-TGF period to explore the feasibility of using polarimetric radar metrics to highlight storms with larger tornadogenesis potential in the near-term. Overall the results indicate few strong distinguishers of pre-tornadic storms. Differential reflectivity (ZDR) arc size and intensity were the most promising metrics examined, with ZDR arc size potentially exhibiting large enough differences between the two storm subsets to be operationally useful. Change in the radar metrics leading up to tornadogenesis or TGF did not exhibit large differences, though most findings were consistent with hypotheses based on prior findings in the literature. Keywords: supercell; nowcasting; tornadogenesis failure; polarimetric radar Citation: Van Den Broeke, M. 1. Introduction Polarimetric Radar Characteristics of Supercell thunderstorms produce most strong tornadoes in North America, moti- Tornadogenesis Failure in Supercell vating study of their radar signatures for the benefit of the operational and research Thunderstorms. Atmosphere 2021, 12, communities. Since the polarimetric upgrade to the national radar network of the United 581. https://doi.org/ States (2011–2013), polarimetric radar signatures of these storms have become well-known, 10.3390/atmos12050581 e.g., [1–5], and many others.
    [Show full text]
  • Electrical Role for Severe Storm Tornadogenesis (And Modification) R.W
    y & W log ea to th a e m r li F C o r Armstrong and Glenn, J Climatol Weather Forecasting 2015, 3:3 f e o c l a a s n t r i http://dx.doi.org/10.4172/2332-2594.1000139 n u g o J Climatology & Weather Forecasting ISSN: 2332-2594 ReviewResearch Article Article OpenOpen Access Access Electrical Role for Severe Storm Tornadogenesis (and Modification) R.W. Armstrong1* and J.G. Glenn2 1Department of Mechanical Engineering, University of Maryland, College Park, MD, USA 2Munitions Directorate, Eglin Air Force Base, FL, USA Abstract Damage from severe storms, particularly those involving significant lightning is increasing in the US. and abroad; and, increasingly, focus is on an electrical role for lightning in intra-cloud (IC) tornadogenesis. In the present report, emphasis is given to severe storm observations and especially to model descriptions relating to the subject. Keywords: Tornadogenesis; Severe storms; Electrification; in weather science was submitted in response to solicitation from the Lightning; Cloud seeding National Science Board [16], and a note was published on the need for cooperation between weather modification practitioners and academic Introduction researchers dedicated to ameliorating the consequences of severe weather storms [17]. Need was expressed for interdisciplinary research Benjamin Franklin would be understandably disappointed. Here on the topic relating to that recently touted for research in the broader we are, more than 260 years after first demonstration in Marly-la-Ville, field of meteorological sciences [18].
    [Show full text]
  • Delayed Tornadogenesis Within New York State Severe Storms Article
    Wunsch, M. S. and M. M. French, 2020: Delayed tornadogenesis within New York State severe storms. J. Operational Meteor., 8 (6), 79-92, doi: https://doi.org/10.15191/nwajom.2020.0806. Article Delayed Tornadogenesis Within New York State Severe Storms MATTHEW S. WUNSCH NOAA/National Weather Service, Upton, NY, and School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY MICHAEL M. FRENCH School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY (Manuscript received 11 June 2019; review completed 21 October 2019) ABSTRACT Past observational research into tornadoes in the northeast United States (NEUS) has focused on integrated case studies of storm evolution or common supportive environmental conditions. A repeated theme in the former studies is the influence that the Hudson and Mohawk Valleys in New York State (NYS) may have on conditions supportive of tornado formation. Recent work regarding the latter has provided evidence that environments in these locations may indeed be more supportive of tornadoes than elsewhere in the NEUS. In this study, Weather Surveillance Radar–1988 Doppler data from 2008 to 2017 are used to investigate severe storm life cycles in NYS. Observed tornadic and non-tornadic severe cases were analyzed and compared to determine spatial and temporal differences in convective initiation (CI) points and severe event occurrence objectively within the storm paths. We find additional observational evidence supporting the hypothesis the Mohawk and Hudson Valley regions in NYS favor the occurrence of tornadogenesis: the substantially longer time it takes for storms that initiate in western NYS and Pennsylvania to become tornadic compared to storms that initiate in either central or eastern NYS.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Analysis of Tornadogenesis Failure Using Rapid-Scan Data from the Atmospheric Imaging Radar
    Analysis of Tornadogenesis Failure Using Rapid-Scan Data from the Atmospheric Imaging Radar KYLE D. PITTMAN∗ Department of Geographic and Atmospheric Sciences, Northern Illinois University DeKalb, Illinois ANDREW MAHRE School of Meteorology, and Advanced Radar Research Center, University of Oklahoma Norman, Oklahoma DAVID J. BODINE,CASEY B. GRIFFIN, AND JIM KURDZO Advanced Radar Research Center, University of Oklahoma Norman, Oklahoma VICTOR GENSINI Department of Geographic and Atmospheric Sciences, Northern Illinois University DeKalb, Illinois ABSTRACT Tornadogenesis in supercell thunderstorms has been a heavily studied topic by the atmospheric science community for several decades. However, the reasons why some supercells produce tornadoes, while others in similar environments and with similar characteristics do not, remains poorly understood. For this study, tornadogenesis failure is defined as a supercell appearing capable of tornado production, both visually and by meeting a vertically contiguous differential velocity (DV) threshold, without producing a sustained tor- nado. Data from a supercell that appeared capable of tornadogenesis, but which failed to produce a sustained tornado, was collected by the Atmospheric Imaging Radar (the AIR, a high temporal resolution radar) near Denver, CO on 21 May 2014. These data were examined to explore the mechanisms of tornadogenesis fail- ure within supercell thunderstorms. Analysis was performed on the rear-flank downdraft (RFD) region and mesocyclone, as previous work highlights the importance of these supercell features in tornadogenesis. The results indicate a lack of vertical continuity in rotation between the lowest level of data analyzed (100 m AGL), and heights aloft (> 500 m AGL). A relative maximum in low-level DV occurred at approximately 100 m AGL (0.5◦ in elevation on the radar) around the time of suspected tornadogenesis failure.
    [Show full text]
  • Tornadogenesis in a Simulated Mesovortex Within a Mesoscale Convective System
    3372 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 69 Tornadogenesis in a Simulated Mesovortex within a Mesoscale Convective System ALEXANDER D. SCHENKMAN,MING XUE, AND ALAN SHAPIRO Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma (Manuscript received 3 February 2012, in final form 23 April 2012) ABSTRACT The Advanced Regional Prediction System (ARPS) is used to simulate a tornadic mesovortex with the aim of understanding the associated tornadogenesis processes. The mesovortex was one of two tornadic meso- vortices spawned by a mesoscale convective system (MCS) that traversed southwestern and central Okla- homa on 8–9 May 2007. The simulation used 100-m horizontal grid spacing, and is nested within two outer grids with 400-m and 2-km grid spacing, respectively. Both outer grids assimilate radar, upper-air, and surface observations via 5-min three-dimensional variational data assimilation (3DVAR) cycles. The 100-m grid is initialized from a 40-min forecast on the 400-m grid. Results from the 100-m simulation provide a detailed picture of the development of a mesovortex that produces a submesovortex-scale tornado-like vortex (TLV). Closer examination of the genesis of the TLV suggests that a strong low-level updraft is critical in converging and amplifying vertical vorticity associated with the mesovortex. Vertical cross sections and backward trajectory analyses from this low-level updraft reveal that the updraft is the upward branch of a strong rotor that forms just northwest of the simulated TLV. The horizontal vorticity in this rotor originates in the near-surface inflow and is caused by surface friction.
    [Show full text]
  • Multiscale Overview of a Violent Tornado Outbreak with Attendant Flash Flooding
    416 WEATHER AND FORECASTING VOLUME 15 Multiscale Overview of a Violent Tornado Outbreak with Attendant Flash Flooding JOSEPH A. ROGASH NOAA/NWS/Storm Prediction Center, Norman, Oklahoma RICHARD D. SMITH National Weather Service, Tulsa, Oklahoma (Manuscript received 8 January 1999, in ®nal form 7 January 2000) ABSTRACT On 1 March 1997 violent tornadoes caused numerous fatalities and widespread damage across portions of central and eastern Arkansas and western Tennessee. In addition, the associated thunderstorms produced very heavy rainfall and ¯ash ¯ooding, with a few locations receiving up to 150 mm (6 in.) of rainfall in 3 h. The initial environment appeared favorable for strong tornadoes with unseasonably warm moist air at lower levels resulting in signi®cant instability (convective available potential energy values between 1400 and 1800 J kg21) where 0±2-km storm-relative helicities exceeded 300 m2 s22 and the middle-tropospheric storm-relative ¯ow was conducive for tornadic supercells. The most destructive tornadoes developed along a preexisting surface boundary where lower-tropospheric moisture convergence and frontogenesis were enhanced. Tornadoes and heaviest rainfall only ensue after upward motion associated with the direct circulation of an upper-tropospheric jet streak became collocated with lower-tropospheric upward forcing along the surface boundaries. From a ¯ash ¯ood perspective the event occurred in a hybrid mesohigh-synoptic heavy rain pattern as thunderstorms developed and moved along surface boundaries aligned nearly parallel to the mean wind. In addition, strong ¯ow and associated moisture ¯ux convergence in the lower troposphere favored the formation of cells to the southwest or upstream of the initial convection with thunderstorms, including a a tornadic supercell, traversing over the same area.
    [Show full text]
  • The Origins of Vortex Sheets in a Simulated Supercell Thunderstorm
    3944 MONTHLY WEATHER REVIEW VOLUME 142 The Origins of Vortex Sheets in a Simulated Supercell Thunderstorm PAUL MARKOWSKI AND YVETTE RICHARDSON Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania GEORGE BRYAN Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado (Manuscript received 23 May 2014, in final form 16 July 2014) ABSTRACT This paper investigates the origins of the (cyclonic) vertical vorticity within vortex sheets that develop within a numerically simulated supercell in a nonrotating, horizontally homogeneous environment with a free-slip lower boundary. Vortex sheets are commonly observed along the gust fronts of supercell storms, particularly in the early stages of storm development. The ‘‘collapse’’ of a vortex sheet into a compact vortex is often seen to accompany the intensification of rotation that occasionally leads to tornadogenesis. The vortex sheets predominantly acquire their vertical vorticity from the tilting of horizontal vorticity that has been modified by horizontal buoyancy gradients associated with the supercell’s cool low-level outflow. If the tilting is within an ascending airstream (i.e., the horizontal gradient of vertical velocity responsible for the tilting resides entirely within an updraft), the vertical vorticity of the vortex sheet nearly vanishes at the lowest model level for horizontal winds (5 m). However, if the tilting occurs within a descending airstream (i.e., the hori- zontal gradient of vertical velocity responsible for tilting includes a downdraft adjacent to the updraft within which the majority of the cyclonic vorticity resides), the vortex sheet extends to the lowest model level. The findings are consistent with the large body of prior work that has found that downdrafts are necessary for the development of significant vertical vorticity at the surface.
    [Show full text]
  • An Examination of the Mechanisms and Environments Supportive of Bow Echo Mesovortex Genesis
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Earth and Atmospheric Sciences, Department Atmospheric Sciences of 5-2013 An Examination of the Mechanisms and Environments Supportive of Bow Echo Mesovortex Genesis George Limpert University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss Part of the Atmospheric Sciences Commons, and the Meteorology Commons Limpert, George, "An Examination of the Mechanisms and Environments Supportive of Bow Echo Mesovortex Genesis" (2013). Dissertations & Theses in Earth and Atmospheric Sciences. 39. https://digitalcommons.unl.edu/geoscidiss/39 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AN EXAMINATION OF THE MECHANISMS AND ENVIRONMENTS SUPPORTIVE OF BOW ECHO MESOVORTEX GENESIS by George Limpert A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Earth and Atmospheric Sciences Under the Supervision of Professor Adam Houston Lincoln, Nebraska May, 2013 AN EXAMINATION OF THE MECHANISMS AND ENVIRONMENTS SUPPORTIVE OF BOW ECHO MESOVORTEX GENESIS George Limpert, Ph.D. University of Nebraska, 2013 Adviser: Adam Houston Low-level mesovortices are associated with enhanced surface wind gusts and high-end wind damage in quasi-linear thunderstorms. Although damage associated with mesovortices can approach that of moderately strong tornadoes, skill in forecasting mesovortices is low.
    [Show full text]
  • Version 3.0) VORTEX2 Domain Multiple Ground Bases Approved for 2009-10
    VORTEX 2 (Version 3.0) VORTEX2 domain multiple ground bases Approved for 2009-10 Sioux City www.vortex2.org for updates Boulder NCAR Steering committee: CSWR Hays Howie Bluestein, OU Don Burgess, CIMMS Norman NSSL David Dowell, NCAR OU Paul Markowski, PSU Lub b o c k Erik Rasmussen, CIMMS Yvette Richardson, PSU Lou Wicker, NSSL Joshua Wurman, CSWR Rapid-Scan DOW SMART-Radar UAV DOW NOXP (XPOL) W-Band Fig. 3.2 RECUV UAV being readied for flight. A variety of instruments, focusing on mesoscale observations, radar, and direct T, RH, wind (others likely to be proposed too) Probes Sticknet DOWs Mesonets Tethered pre-storm Tethered Phase, in OK K V N 4/1-5/10 X KT Takes advantage of LX stationary assets like the Norman Phased-Array 0 25 km CASA, etc. N K O U (fixed radars not shown in order to improve clarity) K F WSR-88D dual- NWRT-PAR CASA mobile radar D coverage polarimetric coverage at X-band radar coverage at stick net R at 1 km AGL WSR-88D 1 km AGL coverage at 250 m AGL Oklahoma coverage 250 m AGL Studies larger mesoscale at 1 km AGL TDWR fixed site mobile Texas coverage at Oklahoma Ft. Cobb Little Washita rawinsonde rawinsonde 250 m AGL mesonet ARS micronet ARS micronet 0 50 100 km site ASOS wind profiler mobile mesonet UAV Cell merger precipitation gust front K supercell forward flank region V N X anvil edge KT LX precipitation gust front 0 5km K O U N (radars not shown in order to improve clarity) K F WSR-88D dual- NWRT-PAR CASA mobile radar D coverage polarimetric coverage at X-band radar coverage at stick net at 1 km AGL WSR-88D 1 km AGL coverage at R 250 m AGL Oklahoma coverage 250 m AGL at 1 km AGL TDWR fixed site mobile Texas coverage at Oklahoma Ft.
    [Show full text]
  • Thermodynamic and Kinematic Analysis of Multiple Rfd Surges for the 24 June 2003 Manchester, South Dakota Cyclic Tornadic Supercell During Project Answers 2003
    P11.2 THERMODYNAMIC AND KINEMATIC ANALYSIS OF MULTIPLE RFD SURGES FOR THE 24 JUNE 2003 MANCHESTER, SOUTH DAKOTA CYCLIC TORNADIC SUPERCELL DURING PROJECT ANSWERS 2003 Bruce D. Lee and Catherine A. Finley WindLogics, Inc. Grand Rapids, Minnesota Patrick Skinner WeatherBank, Inc. Edmond, Oklahoma 1. INTRODUCTION tornadic supercell thunderstorms. While the analyzed dataset of RFD events sampled by During Project ANSWERS 2003 (Analysis of mobile mesonets for tornadic and non-tornadic the Near-Surface Wind and Environment Along supercells as presented by Markowski et al. the Rear Flank of Supercells), mobile mesonet (2002) is significant in size, it is not exhaustive data (Straka et al. 1996) was collected on a cyclic given the latitude of the potential scenarios leading tornadic supercell that tracked from near to tornadogenesis or tornadogenesis failure. Woonsocket to Bryant, South Dakota on 24 June There is a need for mobile mesonet datasets that 2003. A large F4 tornado, one of the many capture RFD surge evolution and the RFD tornadoes associated with this storm, destroyed evolution in cyclic tornadic supercells. There is the town of Manchester. This tornado was one of also a need for high density mobile mesonet at least 8 tornadoes observed by the ANSWERS observations near specific boundary structures on teams on this evening. The ANSWERS mesonet the periphery of the tornadogenesis region. collected a rare observational dataset from within Project ANSWERS 2003 was designed to the rear flank downdraft (RFD) surge and along address a number of hypothesis-driven objectives the RFD surge boundary in the early, mature and that involve attributes of the RFD and RFDB dissipating stages of the Manchester tornado.
    [Show full text]
  • Low-Level Mesovortices Within Squall Lines and Bow Echoes. Part I: Overview and Dependence on Environmental Shear
    NOVEMBER 2003 WEISMAN AND TRAPP 2779 Low-Level Mesovortices within Squall Lines and Bow Echoes. Part I: Overview and Dependence on Environmental Shear MORRIS L. WEISMAN National Center for Atmospheric Research,* Boulder, Colorado ROBERT J. TRAPP1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma (Manuscript received 12 November 2002, in ®nal form 3 June 2003) ABSTRACT This two-part study proposes fundamental explanations of the genesis, structure, and implications of low- level meso-g-scale vortices within quasi-linear convective systems (QLCSs) such as squall lines and bow echoes. Such ``mesovortices'' are observed frequently, at times in association with tornadoes. Idealized simulations are used herein to study the structure and evolution of meso-g-scale surface vortices within QLCSs and their dependence on the environmental vertical wind shear. Within such simulations, signi®cant cyclonic surface vortices are readily produced when the unidirectional shear magnitude is 20 m s 21 or greater over a 0±2.5- or 0±5-km-AGL layer. As similarly found in observations of QLCSs, these surface vortices form primarily north of the apex of the individual embedded bowing segments as well as north of the apex of the larger-scale bow-shaped system. They generally develop ®rst near the surface but can build upward to 6±8 km AGL. Vortex longevity can be several hours, far longer than individual convective cells within the QLCS; during this time, vortex merger and upscale growth is common. It is also noted that such mesoscale vortices may be responsible for the production of extensive areas of extreme ``straight line'' wind damage, as has also been observed with some QLCSs.
    [Show full text]