A Massive Central Peak and a Low Peak Ring in Gale Crater-Important Influences on the Formation of Mt. Sharp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
11 Fall Unamagazine
FALL 2011 • VOLUME 19 • No. 3 FOR ALUMNI AND FRIENDS OF THE UNIVERSITY OF NORTH ALABAMA Cover Story 10 ..... Thanks a Million, Harvey Robbins Features 3 ..... The Transition 14 ..... From Zero to Infinity 16 ..... Something Special 20 ..... The Sounds of the Pride 28 ..... Southern Laughs 30 ..... Academic Affairs Awards 33 ..... Excellence in Teaching Award 34 ..... China 38 ..... Words on the Breeze Departments 2 ..... President’s Message 6 ..... Around the Campus 45 ..... Class Notes 47 ..... In Memory FALL 2011 • VOLUME 19 • No. 3 for alumni and friends of the University of North Alabama president’s message ADMINISTRATION William G. Cale, Jr. President William G. Cale, Jr. The annual everyone to attend one of these. You may Vice President for Academic Affairs/Provost Handy festival contact Dr. Alan Medders (Vice President John Thornell is drawing large for Advancement, [email protected]) Vice President for Business and Financial Affairs crowds to the many or Mr. Mark Linder (Director of Athletics, Steve Smith venues where music [email protected]) for information or to Vice President for Student Affairs is being played. At arrange a meeting for your group. David Shields this time of year Sometimes we measure success by Vice President for University Advancement William G. Cale, Jr. it is impossible the things we can see, like a new building. Alan Medders to go anywhere More often, though, success happens one Vice Provost for International Affairs in town and not hear music. The festival student at a time as we provide more and Chunsheng Zhang is also a reminder that we are less than better educational opportunities. -
Workshop on the Martiannorthern Plains: Sedimentological,Periglacial, and Paleoclimaticevolution
NASA-CR-194831 19940015909 WORKSHOP ON THE MARTIANNORTHERN PLAINS: SEDIMENTOLOGICAL,PERIGLACIAL, AND PALEOCLIMATICEVOLUTION MSATT ..V",,2' :o_ MarsSurfaceandAtmosphereThroughTime Lunar and PlanetaryInstitute 3600 Bay AreaBoulevard Houston TX 77058-1113 ' _ LPI/TR--93-04Technical, Part 1 Report Number 93-04, Part 1 L • DISPLAY06/6/2 94N20382"£ ISSUE5 PAGE2088 CATEGORY91 RPT£:NASA-CR-194831NAS 1.26:194831LPI-TR-93-O4-PT-ICNT£:NASW-4574 93/00/00 29 PAGES UNCLASSIFIEDDOCUMENT UTTL:Workshopon the MartianNorthernPlains:Sedimentological,Periglacial, and PaleoclimaticEvolution TLSP:AbstractsOnly AUTH:A/KARGEL,JEFFREYS.; B/MOORE,JEFFREY; C/PARKER,TIMOTHY PAA: A/(GeologicalSurvey,Flagstaff,AZ.); B/(NationalAeronauticsand Space Administration.GoddardSpaceFlightCenter,Greenbelt,MD.); C/(Jet PropulsionLab.,CaliforniaInst.of Tech.,Pasadena.) PAT:A/ed.; B/ed.; C/ed. CORP:Lunarand PlanetaryInst.,Houston,TX. SAP: Avail:CASIHC A03/MFAOI CIO: UNITEDSTATES Workshopheld in Fairbanks,AK, 12-14Aug.1993;sponsored by MSATTStudyGroupandAlaskaUniv. MAJS:/*GLACIERS/_MARSSURFACE/*PLAINS/*PLANETARYGEOLOGY/*SEDIMENTS MINS:/ HYDROLOGICALCYCLE/ICE/MARS CRATERS/MORPHOLOGY/STRATIGRAPHY ANN: Papersthathavebeen acceptedforpresentationat the Workshopon the MartianNorthernPlains:Sedimentological,Periglacial,and Paleoclimatic Evolution,on 12-14Aug. 1993in Fairbanks,Alaskaare included.Topics coveredinclude:hydrologicalconsequencesof pondedwateron Mars; morpho!ogical and morphometric studies of impact cratersin the Northern Plainsof Mars; a wet-geology and cold-climateMarsmodel:punctuation -
Thermokarst Features in Lyot Crater, Mars: Implications for Recent Surface Water Freeze-Thaw, Flow, and Cycling
Late Mars Workshop 2018 (LPI Contrib. No. 2088) 5018.pdf THERMOKARST FEATURES IN LYOT CRATER, MARS: IMPLICATIONS FOR RECENT SURFACE WATER FREEZE-THAW, FLOW, AND CYCLING. N. Glines1,2 and V. Gulick1, 1The SETI Institute / NASA Ames (MS239-20, Moffett Field, CA 94035, [email protected], [email protected]), 2 UCSC. Introduction: We previously reported [7, 10] on ESP_055252_2310 were acquired in May, 2018. The the identification of potential thermokarst depressions terrain surrounding the beads is warped, similar to connected by channel systems on the floor of Lyot dissected mantle, while the bead floors are more Crater (Fig.1, mapped in Fig.2). At first glance, these smooth and flat, with less dissection. circular depressions on the floor of Lyot resemble curiously eroded terrain or secondary crater clusters. However, closer inspection reveals these depressions are flat-floored, circular-to-oblong features without raised rims or ejecta, connected by channels. We determined that these features are morphologically similar to terrestrial thermokarst basins and channels known as paleo-beaded streams. Here, we report a possible paleolake, associated landform assemblages, and the potential for hydrologic cycling. Figure 1: These flat-floored, round depressions connected by channels trend downslope (left to right) on the floor of Lyot Crater. HiRISE image ESP_052628_2310. Analog Beaded Streams. Beaded streams are Figure 2: Map of beaded channels (blue) N/NW of the central peak, gullies (red), potential inverted material and primarily found in circum-arctic tundra with ice deposit (pink), & lake level indicators (dashed green). saturated substrates. Beaded streams are thermokarst Craters are white circles. -
Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km. -
Martian Subsurface Properties and Crater Formation Processes Inferred from Fresh Impact Crater Geometries
Martian Subsurface Properties and Crater Formation Processes Inferred From Fresh Impact Crater Geometries The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Stewart, Sarah T., and Gregory J. Valiant. 2006. Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries. Meteoritics and Planetary Sciences 41: 1509-1537. Published Version http://meteoritics.org/ Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4727301 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Meteoritics & Planetary Science 41, Nr 10, 1509–1537 (2006) Abstract available online at http://meteoritics.org Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries Sarah T. STEWART* and Gregory J. VALIANT Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, USA *Corresponding author. E-mail: [email protected] (Received 22 October 2005; revision accepted 30 June 2006) Abstract–The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. -
Bethany L. Ehlmann California Institute of Technology 1200 E. California Blvd. MC 150-21 Pasadena, CA 91125 USA Ehlmann@Caltech
Bethany L. Ehlmann California Institute of Technology [email protected] 1200 E. California Blvd. Caltech office: +1 626.395.6720 MC 150-21 JPL office: +1 818.354.2027 Pasadena, CA 91125 USA Fax: +1 626.568.0935 EDUCATION Ph.D., 2010; Sc. M., 2008, Brown University, Geological Sciences (advisor, J. Mustard) M.Sc. by research, 2007, University of Oxford, Geography (Geomorphology; advisor, H. Viles) M.Sc. with distinction, 2005, Univ. of Oxford, Environ. Change & Management (advisor, J. Boardman) A.B. summa cum laude, 2004, Washington University in St. Louis (advisor, R. Arvidson) Majors: Earth & Planetary Sciences, Environmental Studies; Minor: Mathematics International Baccalaureate Diploma, Rickards High School, Tallahassee, Florida, 2000 Additional Training: Nordic/NASA Summer School: Water, Ice and the Origin of Life in the Universe, Iceland, 2009 Vatican Observatory Summer School in Astronomy &Astrophysics, Castel Gandolfo, Italy, 2005 Rainforest to Reef Program: Marine Geology, Coastal Sedimentology, James Cook Univ., Australia, 2004 School for International Training, Development and Conservation Program, Panamá, Sept-Dec 2002 PROFESSIONAL EXPERIENCE Professor of Planetary Science, Division of Geological & Planetary Sciences, California Institute of Technology, Assistant Professor 2011-2017, Professor 2017-present; Associate Director, Keck Institute for Space Studies 2018-present Research Scientist, Jet Propulsion Laboratory, California Institute of Technology, 2011-2020 Lunar Trailblazer, Principal Investigator, 2019-present MaMISS -
First Year of Coordinated Science Observations by Mars Express and Exomars 2016 Trace Gas Orbiter
MANUSCRIPT PRE-PRINT Icarus Special Issue “From Mars Express to ExoMars” https://doi.org/10.1016/j.icarus.2020.113707 First year of coordinated science observations by Mars Express and ExoMars 2016 Trace Gas Orbiter A. Cardesín-Moinelo1, B. Geiger1, G. Lacombe2, B. Ristic3, M. Costa1, D. Titov4, H. Svedhem4, J. Marín-Yaseli1, D. Merritt1, P. Martin1, M.A. López-Valverde5, P. Wolkenberg6, B. Gondet7 and Mars Express and ExoMars 2016 Science Ground Segment teams 1 European Space Astronomy Centre, Madrid, Spain 2 Laboratoire Atmosphères, Milieux, Observations Spatiales, Guyancourt, France 3 Royal Belgian Institute for Space Aeronomy, Brussels, Belgium 4 European Space Research and Technology Centre, Noordwijk, The Netherlands 5 Instituto de Astrofísica de Andalucía, Granada, Spain 6 Istituto Nazionale Astrofisica, Roma, Italy 7 Institut d'Astrophysique Spatiale, Orsay, Paris, France Abstract Two spacecraft launched and operated by the European Space Agency are currently performing observations in Mars orbit. For more than 15 years Mars Express has been conducting global surveys of the surface, the atmosphere and the plasma environment of the Red Planet. The Trace Gas Orbiter, the first element of the ExoMars programme, began its science phase in 2018 focusing on investigations of the atmospheric composition with unprecedented sensitivity as well as surface and subsurface studies. The coordination of observation programmes of both spacecraft aims at cross calibration of the instruments and exploitation of new opportunities provided by the presence of two spacecraft whose science operations are performed by two closely collaborating teams at the European Space Astronomy Centre (ESAC). In this paper we describe the first combined observations executed by the Mars Express and Trace Gas Orbiter missions since the start of the TGO operational phase in April 2018 until June 2019. -
The Population of Secondary Impact Craters on Mars
THE POPULATION OF SECONDARY IMPACT CRATERS ON MARS. S.J. Robbins1 and B.M. Hynek1,2, 1LASP, 3665 Discovery Dr., University of Colorado, Boulder, CO 80309, 2Geological Sciences Department, UCB 399, University of Colorado, Boulder, CO 80309. [email protected] Introduction: Impact craters are the most ubiqui- tor of the primary crater population because, like sec- tous exogenic feature on planetary surfaces in the solar ondaries, they form in a geologic instant and are tightly system. They have innumerable applications, but one clustered spatially. Ergo, their removal – or an esti- of their primary utilities is to model surface ages: if mate of what crater would have formed from an intact there are more craters per unit area on one surface, primary – would also be necessary for applications of then it is older than another with fewer craters. This primary craters such as age-modeling. very basic method requires the assumption that the Analysis: To determine a "global" value for the craters formed spatially randomly and stochastically dominance of secondaries, two incremental crater size- with time. Unfortunately, secondary impact craters frequency distributions (SFDs) were calculated – one belie both these assumptions: They form in a geologic for primaries and one for secondaries. If the secondar- instant from cohesive ejecta blocks launched by a pri- ies' SFD intersected and grew larger than the primaries' mary impact ("primary"), and while they may be spa- at any diameter, that would be considered the transition tially correlated with that primary, this is not always diameter. To calculate this on a more useful regional the case. -
In Pdf Format
lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te . -
Simulating Martian Regolith in the Laboratory
ARTICLE IN PRESS Planetary and Space Science 56 (2008) 2009–2025 www.elsevier.com/locate/pss Simulating Martian regolith in the laboratory Karsten Seiferlina,Ã, Pascale Ehrenfreundb, James Garryb, Kurt Gundersona,E.Hu¨tterc, Gu¨nter Karglc, Alessandro Maturillid, Jonathan Peter Merrisone aPhysikalisches Institut, Universita¨t Bern, Sidlerstrasse 5, 3012 Bern, Switzerland bAstrobiology Laboratory, Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands cInstitut fu¨r Weltraumforschung, Graz, O¨sterreichische Akademie der Wissenschaften, Austria dGerman Aerospace Centre (DLR), Institute for Planetary Research, Rutherfordstr. 2, 12489 Berlin-Adlershof, Germany eAarhus Mars Simulation Laboratory, Aarhus University, Denmark Received 6 December 2007; received in revised form 21 July 2008; accepted 21 September 2008 Available online 15 October 2008 Abstract Regolith and dust cover the surfaces of the Solar Systems solid bodies, and thus constitute the visible surface of these objects. The topmost layers also interact with space or the atmosphere in the case of Mars, Venus and Titan. Surface probes have been proposed, studied and flown to some of these worlds. Landers and some of the mechanisms they carry, e.g. sampling devices, drills and subsurface probes (‘‘moles’’) will interact with the porous surface layer. The absence of true extraterrestrial test materials in ample quantities restricts experiments to the use of soil or regolith analogue materials. Several standardized soil simulants have been developed and produced and are commonly used for a variety of laboratory experiments. In this paper we intend to give an overview of some of the most important soil simulants, and describe experiments (penetrometry, thermal conductivity, aeolian transport, goniometry, spectroscopy and exobiology) made in various European laboratory facilities. -
Geologic Mapping of Vinogradov Crater on Mars: Ancient Phyllosilicates to Alluvial Fans
45th Lunar and Planetary Science Conference (2014) 2382.pdf GEOLOGIC MAPPING OF VINOGRADOV CRATER ON MARS: ANCIENT PHYLLOSILICATES TO ALLUVIAL FANS. S. A. Wilson1, J. A. Grant1, C. M. Weitz2 and R. P. Irwin1 1Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, 6th St. at Independence Ave. SW, Washington, DC, 20560 ([email protected]), 2Planetary Science Institute, 1700 E Fort Lowell, Suite 106, Tucson, AZ 85719. Introduction: Southern Margaritifer Terra on Mars preserves a long geologic history of water-related activity (Fig. 1). The northward-draining Uzboi– Ladon–Morava (ULM) outflow system dominates drainage in southwest Margaritifer Terra [1-4] and was incised during the Late Noachian to Hesperian [2]. Holden crater formed in the mid to Late Hesperian [5] and blocked the northern end of Uzboi, creating an enclosed basin that filled as a large paleolake [6]. The geology of Vinogradov crater and vicinity, located ~200 km west of Ladon basin and 250 km northwest of Holden crater (Fig. 1), is consistent with the long and diverse history of water in the region to the east [5]. Figure 2. Vinogradov crater is flanked by fan-bearing craters Roddy (D=85.8km; 21.7ºS, 320.6ºE), Gringauz (D=71.0km; 20.7ºS, 324.3ºE) and Luba (D=38.8km, 18.3ºS, 323ºE). Phyllosilicates are found in the depression (dashed line) between ejecta from Roddy and Gringauz (Fig. 3). MOLA 128 pixel/degree with 25 m contours over THEMIS daytime IR mosaic. Figure 1. Southern Margaritifer Terra indicating major place names. Stars show craters containing alluvial fans [7-8].