Blue Jay Cyanocitta Cristata Adult ILLINOIS RANGE

Total Page:16

File Type:pdf, Size:1020Kb

Blue Jay Cyanocitta Cristata Adult ILLINOIS RANGE blue jay Cyanocitta cristata Kingdom: Animalia FEATURES Phylum: Chordata The blue jay averages 11 to12 inches in length. It is a Class: Aves large bird with blue feathers and a crest. White Order: Passeriformes feather patches are present in the wings and tail. A black line behind the head extends from each side Family: Corvidae to form a black “necklace” on the throat. This bird ILLINOIS STATUS has white or gray feathers underneath. common, native BEHAVIORS The blue jay is a common, permanent resident statewide in Illinois. However, blue jays do migrate within Illinois, moving to southern Illinois from the northern sections of the state in the winter. The nesting season lasts from April through mid-July. The nest is built in a forest, residential area, orchard or other location where trees are present, from five to 50 feet above the ground. Both sexes construct the nest of twigs, bark, leaves, mosses and string and line it with rootlets. Four or five olive, tan or blue- green eggs with dark markings are laid. Both the male and female take turns incubating the eggs over a 17- to 18-day period. One brood is raised per year. This aggressive bird uses its loud calls (“jay,” “jeeah,” adult “queedle, queedle”) to alert others to possible danger. The blue jay can mimic some other birds, too. It may go to roost in mid-afternoon in the winter months. Found in woodlands and residential ILLINOIS RANGE areas, the blue jay eats nuts, particularly acorns, corn, fruits, insects and dead animals. © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. adult adult © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. Aquatic Habitats bottomland forests Woodland Habitats bottomland forests; coniferous forests; upland deciduous forests Prairie and Edge Habitats none © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources..
Recommended publications
  • Cyanocitta Stelleri)
    MOBBING BEHAVIOR IN WILD STELLER’S JAYS (CYANOCITTA STELLERI) By Kelly Anne Commons A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Wildlife Committee Membership Dr. Jeffrey M. Black, Committee Chair Dr. Barbara Clucas, Committee Member Dr. Micaela Szykman Gunther, Committee Member Dr. Alison O’Dowd, Graduate Coordinator December 2017 ABSTRACT MOBBING BEHAVIOR IN WILD STELLER’S JAYS (CYANOCITTA STELLERI) Kelly Anne Commons Mobbing is a widespread anti-predator behavior with multifaceted functions. Mobbing behavior has been found to differ with respect to many individual, group, and encounter level factors. To better understand the factors that influence mobbing behavior in wild Steller’s jays (Cyanocitta stelleri), I induced mobbing behavior using 3 predator mounts: a great horned owl (Bubo virginianus), common raven (Corvus corax), and sharp-shinned hawk (Accipiter cooperii). I observed 90 responses to mock predators by 33 color-marked individuals and found that jays varied in their attendance at mobbing trials, their alarm calling behavior, and in their close approaches toward the predator mounts. In general, younger, larger jays, that had low prior site use and did not own the territory they were on, attended mobbing trials for less time and participated in mobbing less often, but closely approached the predator more often and for more time than older, smaller jays, that had high prior site use and owned the territory they were on. By understanding the factors that affect variation in Steller’s jay mobbing behavior, we can begin to study how this variation might relate to the function of mobbing in this species.
    [Show full text]
  • Walker Marzluff 2017 Recreation Changes Lanscape Use of Corvids
    Recreation changes the use of a wild landscape by corvids Author(s): Lauren E. Walker and John M. Marzluff Source: The Condor, 117(2):262-283. Published By: Cooper Ornithological Society https://doi.org/10.1650/CONDOR-14-169.1 URL: http://www.bioone.org/doi/full/10.1650/CONDOR-14-169.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Volume 117, 2015, pp. 262–283 DOI: 10.1650/CONDOR-14-169.1 RESEARCH ARTICLE Recreation changes the use of a wild landscape by corvids Lauren E. Walker* and John M. Marzluff College of the Environment, School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA * Corresponding author: [email protected] Submitted October 24, 2014; Accepted February 13, 2015; Published May 6, 2015 ABSTRACT As urban areas have grown in population, use of nearby natural areas for outdoor recreation has also increased, potentially influencing bird distribution in landscapes managed for conservation.
    [Show full text]
  • A Fossil Scrub-Jay Supports a Recent Systematic Decision
    THE CONDOR A JOURNAL OF AVIAN BIOLOGY Volume 98 Number 4 November 1996 .L The Condor 98~575-680 * +A. 0 The Cooper Omithological Society 1996 g ’ b.1 ;,. ’ ’ “I\), / *rs‘ A FOSSIL SCRUB-JAY SUPPORTS A”kECENT ’ js.< SYSTEMATIC DECISION’ . :. ” , ., f .. STEVEN D. EMSLIE : +, “, ., ! ’ Department of Sciences,Western State College,Gunnison, CO 81231, ._ e-mail: [email protected] Abstract. Nine fossil premaxillae and mandibles of the Florida Scrub-Jay(Aphelocoma coerulescens)are reported from a late Pliocene sinkhole deposit at Inglis 1A, Citrus County, Florida. Vertebrate biochronologyplaces the site within the latestPliocene (2.0 to 1.6 million yearsago, Ma) and more specificallyat 2.0 l-l .87 Ma. The fossilsare similar in morphology to living Florida Scrub-Jaysin showing a relatively shorter and broader bill compared to western species,a presumed derived characterfor the Florida species.The recent elevation of the Florida Scrub-Jayto speciesrank is supported by these fossils by documenting the antiquity of the speciesand its distinct bill morphology in Florida. Key words: Florida; Scrub-Jay;fossil; late Pliocene. INTRODUCTION represent the earliest fossil occurrenceof the ge- nus Aphelocomaand provide additional support Recently, the Florida Scrub-Jay (Aphelocoma for the recognition ofA. coerulescensas a distinct, coerulescens) has been elevated to speciesrank endemic specieswith a long fossil history in Flor- with the Island Scrub-Jay(A. insularis) from Santa ida. This record also supports the hypothesis of Cruz Island, California, and the Western Scrub- Pitelka (195 1) that living speciesof Aphefocoma Jay (A. californica) in the western U. S. and Mex- arose in the Pliocene. ico (AOU 1995).
    [Show full text]
  • Magpie Jay General Information and Care
    Magpie Jay General Information and Care: Black Throated Magpie Jays (Calocitta colliei) and White Throated Magpie Jay (Calocitta formosa) are the only two species in their genus. Black Throated Magpie Jays are endemic to Northwestern Mexico. The range of White Throated Magpie Jays lies to the south, overlapping with Black Throats slightly in the Mexican states of Jalisco and Colima, and running into Costa Rica. Both of these birds are members of the family Corvidae. Magpie Jays are energetic, highly intelligent animals and need to be kept in a large planted aviary - not just a cage. These birds are highly social and are commonly found in the wild as cooperative nesters. They are omnivores and favor a great variety of fruits, insects, small rodents, and nuts. A captive diet that works well in my aviaries is a basic pellet low iron softbill diet such as Kaytee’s Exact Original Low Iron Maintenance Formula for Toucans, Mynas and other Softbills. A bowl of this is in the cage at all times and is supplemented with nuts, fruits and veggies like apples, papaya, grapes, oranges, peas and carrots and the occasional treat of small mice and insects like meal worms, crickets, megaworms, and waxworms are relished by the birds. Extra protein is essential if you want these birds to breed. Fresh water should always be provided. I use a shallow three to four inch deep, twelve inch wide crock the birds can drink from and bath in. The birds you are receiving from my aviaries are hand fed and closed banded. How recently they were weaned will affect how tame they are at first.
    [Show full text]
  • S Largest Islands: Scenarios for the Role of Corvid Seed Dispersal
    Received: 21 June 2017 | Accepted: 31 October 2017 DOI: 10.1111/1365-2664.13041 RESEARCH ARTICLE Oak habitat recovery on California’s largest islands: Scenarios for the role of corvid seed dispersal Mario B. Pesendorfer1,2† | Christopher M. Baker3,4,5† | Martin Stringer6 | Eve McDonald-Madden6 | Michael Bode7 | A. Kathryn McEachern8 | Scott A. Morrison9 | T. Scott Sillett2 1Cornell Lab of Ornithology, Ithaca, NY, USA; 2Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA; 3School of BioSciences, University of Melbourne, Melbourne, Vic., Australia; 4School of Biological Sciences, University of Queensland, St Lucia, Brisbane, Qld, Australia; 5CSIRO Ecosystem Sciences, Ecosciences Precinct, Brisbane, Qld, Australia; 6School of Earth and Environmental Sciences, University of Queensland, St Lucia, Brisbane, Qld, Australia; 7ARC Centre for Excellence for Coral Reefs Studies, James Cook University, Townsville, Qld, Australia; 8U.S. Geological Survey- Western Ecological Research Center, Channel Islands Field Station, Ventura, CA, USA and 9The Nature Conservancy, San Francisco, CA, USA Correspondence Mario B. Pesendorfer Abstract Email: [email protected] 1. Seed dispersal by birds is central to the passive restoration of many tree communi- Funding information ties. Reintroduction of extinct seed dispersers can therefore restore degraded for- The Nature Conservancy; Smithsonian ests and woodlands. To test this, we constructed a spatially explicit simulation Institution; U.S. National Science Foundation (NSF), Grant/Award Number: DEB-1256394; model, parameterized with field data, to consider the effect of different seed dis- Australian Reseach Council; Science and persal scenarios on the extent of oak populations. We applied the model to two Industry Endowment Fund of Australia islands in California’s Channel Islands National Park (USA), one of which has lost a Handling Editor: David Mateos Moreno key seed disperser.
    [Show full text]
  • A Bird in Our Hand: Weighing Uncertainty About the Past Against Uncertainty About the Future in Channel Islands National Park
    A Bird in Our Hand: Weighing Uncertainty about the Past against Uncertainty about the Future in Channel Islands National Park Scott A. Morrison Introduction Climate change threatens many species and ecosystems. It also challenges managers of protected areas to adapt traditional approaches for setting conservation goals, and the phil- osophical and policy framework they use to guide management decisions (Cole and Yung 2010). A growing literature discusses methods for structuring management decisions in the face of climate-related uncertainty and risk (e.g., Polasky et al. 2011). It is often unclear, how- ever, when managers should undertake such explicit decision-making processes. Given that not making a decision is actually a decision with potentially important implications, what should trigger management decision-making when threats are foreseeable but not yet mani- fest? Conservation planning for the island scrub-jay (Aphelocoma insularis) may warrant a near-term decision about non-traditional management interventions, and so presents a rare, specific case study in how managers assess uncertainty, risk, and urgency in the context of climate change. The jay is restricted to Santa Cruz Island, one of the five islands within Chan- nel Islands National Park (CINP) off the coast of southern California, USA. The species also once occurred on neighboring islands, though it is not known when or why those populations went extinct. The population currently appears to be stable, but concerns about long-term viability of jays on Santa Cruz Island have raised the question of whether a population of jays should be re-established on one of those neighboring islands, Santa Rosa.
    [Show full text]
  • Reconstructing the Geographic Origin of the New World Jays
    Neotropical Biodiversity ISSN: (Print) 2376-6808 (Online) Journal homepage: http://www.tandfonline.com/loi/tneo20 Reconstructing the geographic origin of the New World jays Sumudu W. Fernando, A. Townsend Peterson & Shou-Hsien Li To cite this article: Sumudu W. Fernando, A. Townsend Peterson & Shou-Hsien Li (2017) Reconstructing the geographic origin of the New World jays, Neotropical Biodiversity, 3:1, 80-92, DOI: 10.1080/23766808.2017.1296751 To link to this article: https://doi.org/10.1080/23766808.2017.1296751 © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 05 Mar 2017. Submit your article to this journal Article views: 956 View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tneo20 Neotropical Biodiversity, 2017 Vol. 3, No. 1, 80–92, https://doi.org/10.1080/23766808.2017.1296751 Reconstructing the geographic origin of the New World jays Sumudu W. Fernandoa* , A. Townsend Petersona and Shou-Hsien Lib aBiodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA; bDepartment of Life Science, National Taiwan Normal University, Taipei, Taiwan (Received 23 August 2016; accepted 15 February 2017) We conducted a biogeographic analysis based on a dense phylogenetic hypothesis for the early branches of corvids, to assess geographic origin of the New World jay (NWJ) clade. We produced a multilocus phylogeny from sequences of three nuclear introns and three mitochondrial genes and included at least one species from each NWJ genus and 29 species representing the rest of the five corvid subfamilies in the analysis.
    [Show full text]
  • Migrational Movements of Blue Jays West of the 100Th Meridian
    Migrational movementsof Blue Jays west of the 100th meridian Kimberly G. Smith Introduction Since the start of the bird-bandingprogram in movements-- in fall of 1939when 7350Blue Jays North America, the movements of Blue Jays passedHawk Mountain,Pennsylvania, in 16 days (Cyanocittacristata) have been of great interest. in late September(Broun 1941), and in fall of 1962 The first report of bird-bandingrecoveries by the when Blue Jaysinvaded Massachusetts (Nunneley BiologicalSurvey (Lincoln1924) listed 38 Blue Jay 1964). returns, all from the same stationat which they While investigatingthe range extensionof Blue were banded.The secondBiological Survey report Jaysinto westernNorth America(Smith 1978), ! (Lincoln 1927) listed 11 Blue Jays recovered at found that the breedingrange was slowlymoving placesremoved from the originalbanding station, westward,whereas the numberof winter sightings although219 of the 230reports still were returnsat in the PacificNorthwest was increasingdramati- the original station.Seven of these 11 recoveries cally.! was puzzledby the lack of winter sightings were within the samestate as the originalbanding in the Intermountainregion, and decided to ana- station,with the 4 othersall showingsouthward lyze the bandingrecoveries west of the 100thmer- movementsduring fall. Two of these recoveries constituted movements of over 667 kin. Over the idian to determine what pattern might emerge. Here, I presentthat analysis,which stronglysug- next 15 years,many long-distancemovements by geststhat most Blue Jay sightingsin the Pacific bandedBlue Jayswere reported(e.g., Whittle 1928, Northwestare individualsoriginating in western Anon. 1929, Roberts 1936, Stoner 1936), as were Canada rather than birds crossingthe Rockies sightingsof large massmovements or migrationsof from central United States. Blue Jays(e.g., Sherman 1931, Tyrrell 1934,Cottam 1937,Broun 1941,Lewis 1942).
    [Show full text]
  • The Vocal Behavior of the American Crow, Corvus Brachyrhynchos
    THE VOCAL BEHAVIOR OF THE AMERICAN CROW, CORVUS BRACHYRHYNCHOS THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Sciences in the Graduate School of The Ohio State University By Robin Tarter, B.S. ***** The Ohio State University 2008 Masters Examination Committee Approved by Dr. Douglas Nelson, Advisor Dr. Mitch Masters _________________________________ Dr. Jill Soha Advisor Evolution, Ecology and Organismal Biology Graduate Program ABSTRACT The objective of this study was to provide an overview of the vocal behavior of the American crow, Corvus brachyrhynchos, and to thereby address questions about the evolutionary significance of crow behavior. I recorded the calls of 71 birds of known sex and age in a family context. Sorting calls by their acoustic characteristics and behavioral contexts, I identified and hypothesized functions for 7 adult and 2 juvenile call types, and in several cases found preferential use of a call type by birds of a particular sex or breeding status. My findings enrich our understanding of crow social behavior. I found that helpers and breeders played different roles in foraging and in protecting family territories from other crows and from predators. My findings may also be useful for human management of crow populations, particularly dispersal attempts using playbacks of crows’ own vocalizations. ii ACKNOWLEDGEMENTS I would like to thank Dr. Kevin McGowan of Cornell, Dr. Anne Clark of Binghamton University, and Binghamton graduate student Rebecca Heiss for allowing me to work with their study animals. McGowan, Clark and Heiss shared their data with me, along with huge amounts of information and insight about crow behavior.
    [Show full text]
  • Home Range and Habitat Use of Breeding Common Ravens (Corvus
    HOME RANGE AND HABITAT USE OF BREEDING COMMON RAVENS IN REDWOOD NATIONAL AND STATE PARKS by Amy Leigh Scarpignato A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Masters of Science In Natural Resources: Wildlife August, 2011 ABSTRACT Home range and habitat use of breeding Common Ravens in Redwood National and State Parks Amy Scarpignato Very little is known about home range and habitat use of breeding Common Ravens (Corvus corax) in Redwood National and State Parks (RNSP) despite their identification as nest predators of the Marbled Murrelet (Brachyramphus marmoratus). I used radio telemetry to examine home range, habitat use, and foraging behavior of breeding Common Ravens in RNSP during 2009 (n = 3) and 2010 (n = 8). I estimated home range and core-use area size, calculated home range overlap between adjacent ravens, and quantified site fidelity by calculating overlap between years for the same individuals. I used Resource Utilization Functions (RUFs) to examine raven resource use within the home range. Average home range size of ravens in RNSP was 182.5 ha (range 82-381 ha) and average core-use area was 31.4 ha (range 5-71 ha). The most supported habitat use models were the global and human models followed by the old-growth model. All beta coefficients in models of individual birds differed from zero suggesting that the variables in the models had a strong influence on home range use. Home range use of individual ravens was generally higher near roads (n = 6), old-growth edge (n = 7), bare ground (n = 6), and in mixed hardwood (n = 5) and prairie habitats (n = 5).
    [Show full text]
  • The Puzzling Vocal Repertoire of the South American Collared Jay, Cyanolyca Iridicyana Merida
    THE PUZZLING VOCAL REPERTOIRE OF THE SOUTH AMERICAN COLLARED JAY, CYANOLYCA VZRIDZCYANA MERIDA JOHN WILLIAM HARDY Previously, I have indicated (Kansas Sci. Bull., 42: 113, 1961) that the New World jays could be systematically grouped in two tribes on the basis of a variety of morphological and behavioral characteristics. I subsequently demonstrated (Occas. Papers Adams Ctr. Ecol. Studies, No. 11, 1964) the relationships between Cyanolyca and Aphelocoma. The tribe Aphelocomini, comprising the currently recognized genera Aphelocoma and Cyanolyca, may be characterized as follows: pattern and ornamen- tation of head simple, consisting of a dark mask, pale superciliary lineation, and no tendency for a crest; tail plain-tipped; vocal repertoire of one to three basic com- ponents, including alarm calls, flock-social calls, or both, that are nasal, querulous, and upwardly or doubly inflected. In contrast, the Cyanocoracini may be charac- tized as follows: pattern of head complex, consisting of triangular cheek patch, super- ciliary spot, and tendency for a crest; tail usually pale-tipped; vocal repertoire usu- ally complex, commonly including a downwardly inflected cuwing call and never an upwardly inflected, nasal querulous call (when repertoire is limited it almost always includes the cazo!ingcall). None of the four Mexican aphelocomine jays has more than three basic calls in its vocal repertoire. There are two exclusively South American species of CyanuZyca (C. viridicyana and C. pulchra). On the basis of the consistency with which the Mexican and Central American speciesof this genus hew to a general pattern of vocalizations as I described it for the tribe, I inferred (1964 op.
    [Show full text]
  • Observations of Scrub Jays Cleaning Ectoparasites from Black-Tailed Deer
    SHORT COMMUNICATIONS 145 includingone inside a nestcavity. Six other islandsshowed penetrated in the present study, however, suggeststhat no indication of abnormally low nestingsuccess, and were ermine are quite capable of reaching coastal islands in probably not visited by ermine. years when their populations are high, and that such in- The major effects of ermine on guillemot breeding ap- vasionsmay be more frequent than the paucity of records pearedto be discouragementof egg-layingand a reduction suggests. of hatching successdue to nest abandonment. Many cav- ities on Black, Yellow, and Green islands which were oc- I thank W. Cairns, V. Friesen and H. Kaiser for field cupied in previous years were not used in 1983. Eggslaid assistance,and A. J. Gaston, M. B. Fenton and P. Ewins on islands where ermine presencewas confirmed or sug- for commenting on the manuscript. This study was sup- gestedwere often displacedfrom the nest cup and lacked ported by the Canadian Department of Supply and Ser- the shiny appearancewhich is normal for regularly incu- vices and the Canadian Wildlife Service. bated eggs(pers. observ.). Guillemots may have been re- LITERATURE CITED luctant to enter their nests if they had seen an ermine in the colony, which would explain the reductionin both egg- BANFIELD,A. W. F. 1974. The mammals of Canada. laying and hatching. Univ. of Toronto Press. Ermine visited islands as far as 1.6 km from the main- BIANIU,V. V. 1967. Gulls, shorebirdsand alcids of Kan- land (Pitsulak City), and may have reached Kingituayu dalaksha Bay. Israel Program for Scientific Transla- Island as well (2.2 km).
    [Show full text]