Lessons from Primary Succession for Restoration of Severely Damaged Habitats
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Silvicultural Systems and Regeneration Methods: Current Practices and New Alternatives 153
Silvicultural Systems and 9 Regeneration Methods: Current Practices and New Alternatives John C. Tappeiner, Denis Lavender, Jack Walstad, Robert O. Curtis, and Dean S. DeBell Development of Regeneration Practices 151 Early Logging Practices and Regeneration Methods 152 Studies of Natural Regeneration Processes 153 Artificial ConiferRegeneration 154 Producing Stands of Diverse Structures and Habitats 156 At Harvest 156 Young Stand Establishment 158 Regeneration inYoung to Mature Stands 158 Natural Succession 159 Conclusion 160 Literature Oted 160 In this chapter, we discuss silvicuItural systems and objective 1, and considerable wildlife habitat and regeneration methods to meet the needs of society other values can be provided while producing rela over the next several decades. We begin with a brief tively high yields of wood under objective 2. The history of silvicuItural systems and what we have knowledge and skills are available to pursue both ob learned about forest regeneration.in the Pacific jectives effectively. Moreover, many ownerswill likely Northwest. We then discuss how regeneration meth manage their forests under both approaches. ods might evolve over the next several decades. We believe that the practice of silviculture gen erally will be applied to two different forest man Development of Regeneration Practices agement philosophies and objectives, providing (1) old-forest characteristics and (2) wood production. Traditional methods for regenerating forests as part Significant amounts of wood can be produced under of a timber harvest fall into two broad categories: (1) 151 152 Section ll. Silvicultural Systems and Management Concerns even-age management systems, which include clear drew heavily on European experience and called for cutting, shelterwood, and seed-tree methods, and (2) intensive practices and detailed stand analyses. -
Intermediate Disturbance Hypothesis
TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004 ISSUES – FIGURE SET Ecology of Disturbance Charlene D'Avanzo, School of Natural Sciences Hampshire College, Amherst, MA, 01002 [email protected] Controlled fire, © Konza Prairie LTER, Manhattan, KS {www.konza.ksu.edu/ gallery/hulbert.jpg} Figure Set 1: Intermediate Disturbance Hypothesis Purpose: To illustrate the intermediate disturbance hypothesis with 2 field experiments. Teaching Approach: "Pairs Share" Cognitive Skills: (see Bloom's Taxonomy) — comprehension, interpretation, application, analysis Student Assessment: Take home or in class essay quiz © 2004 – Charlene D’Avanzo and the Ecological Society of America. Teaching Issues and Experiments in Ecology, TIEE Volume 1 © 2004 - Ecological Society of America (www.tiee.ecoed.net). page 2 Charlene D’Avanzo TIEE Volume 1, January 2004 BACKGROUND W. Sousa (1979) In this study, Wayne Sousa tested the intermediate disturbance hypothesis proposed by Connell (1978). In the 70's and 80's ecologists hotly debated factors explaining high diversity in tropical regions and bottom of the deep sea. Popular ideas included: the time hypothesis (older communities are more diverse), the competition hypothesis (in agreeable climates where biological and not physical factors prevail, interspecific competition and niche partitioning results in high diversity), and the environmental stability hypothesis (relatively unchanging physical variables allow more species to exist). Connell questioned all of these and reasoned instead that highest species diversity exists under conditions of intermediate disturbance. He proposed that in recently disturbed communities a few early colonizing species prevail; similarly after a long time diversity is also low, but these few are long-living and competitively dominant organisms. -
Analysis of Habitat Fragmentation and Ecosystem Connectivity Within the Castle Parks, Alberta, Canada by Breanna Beaver Submit
Analysis of Habitat Fragmentation and Ecosystem Connectivity within The Castle Parks, Alberta, Canada by Breanna Beaver Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Environmental Science Program YOUNGSTOWN STATE UNIVERSITY December, 2017 Analysis of Habitat Fragmentation and Ecosystem Connectivity within The Castle Parks, Alberta, Canada Breanna Beaver I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Breanna Beaver, Student Date Approvals: Dawna Cerney, Thesis Advisor Date Peter Kimosop, Committee Member Date Felicia Armstrong, Committee Member Date Clayton Whitesides, Committee Member Date Dr. Salvatore A. Sanders, Dean of Graduate Studies Date Abstract Habitat fragmentation is an important subject of research needed by park management planners, particularly for conservation management. The Castle Parks, in southwest Alberta, Canada, exhibit extensive habitat fragmentation from recreational and resource use activities. Umbrella and keystone species within The Castle Parks include grizzly bears, wolverines, cougars, and elk which are important animals used for conservation agendas to help protect the matrix of the ecosystem. This study identified and analyzed the nature of habitat fragmentation within The Castle Parks for these species, and has identified geographic areas of habitat fragmentation concern. This was accomplished using remote sensing, ArcGIS, and statistical analyses, to develop models of fragmentation for ecosystem cover type and Digital Elevation Models of slope, which acted as proxies for species habitat suitability. -
Effect of Forest Fire on Tree Diversity and Regeneration Potential in a Tropical
Verma et al. Ecological Processes (2017) 6:32 DOI 10.1186/s13717-017-0098-0 RESEARCH Open Access Effect of forest fire on tree diversity and regeneration potential in a tropical dry deciduous forest of Mudumalai Tiger Reserve, Western Ghats, India Satyam Verma, Dharmatma Singh, Sathya Mani and Shanmuganathan Jayakumar* Abstract Introduction: The study was conducted in Mudumalai Tiger Reserve, in the Western Ghats to understand the effect of a single fire event on tree diversity and regeneration status. Four forest patches were selected which were unburned, 2-year-old burn, 5-year-old burn, and 15-year-old burn. Three 0.1 ha square plots were laid randomly in all four patches and analyzed for tree diversity, stand structure, and regeneration of tree species. Results: A total of 4129 individuals of tree species were recorded in field surveys, comprising 3474 seedlings, 121 saplings, and 534 trees. Totally, 40 tree species were recorded in study plots, from which 28 species were seedlings, 16 species were saplings, and 37 species were at tree stages. Conclusions: Tree diversity decreased in 2-year-old and 5-year-old burnt plots and was reached to the level of unburnt plots in 15 years of interval. Stems of small size classes started increasing after the fire. Seedling density increased linearly in subsequent years after fire but sapling and tree density recorded less than control in B2 but was higher in B5 and B15. The overall fire affected diversity, but regeneration showed a positive trend. Keywords: Dry deciduous forest, Forest fire, Fire mapping, Regeneration, Western Ghats Introduction seeds near the soil surface (Balch et al. -
Seral Stages
WHITE PAPER USDA Forest Service Pacific Northwest Region Umatilla National Forest White Paper F14-SO-WP-Silv-10 November 2012 A Stage Is A Stage Is A Stage…Or Is It? Successional Stages, Structural Stages, Seral Stages David C. Powell; Forest Silviculturist Umatilla National Forest; Pendleton, OR Initial Version: APRIL 1996 INTRODUCTION A landmark book called “Wildlife Habitats in Managed Forests: the Blue Mountains of Oregon and Washington” was published in 1979 (Thomas 1979). This book examined the effects of management activities on wildlife habitat, particularly the impact of timber management practices on large, free-ranging ungulates (e.g., deer and elk). Among other things, the Blue Mountains book also attempted to correlate wildlife habitat with vegetation seral status by using a successional stage classification system. As a result of the book’s popularity with natural resource managers, use of its succes- sional stage classification became common in the Blue Mountains (fig. 1). Shortly after publication of the Wildlife Habitats book, the Umatilla National Forest ini- tiated a planning process in response to the National Forest Management Act of 1976. The planning process consumed an entire decade and culminated with publication of a Land and Resource Management Plan (e.g., Forest Plan) in 1990 (USDA Forest Service 1990). The Land and Resource Management Plan (Forest Plan) for the Umatilla National Forest (USDA Forest Service 1990) established specific standards related to seral (suc- cessional) stages for three management allocation areas (A10, C4, and E2). The seral stage system used in the Forest Plan is the same as the successional stage system de- scribed in the Wildlife Habitats book (Thomas 1979). -
Chapter 5 Species Interactions, Ecological Succession, and Population Control How Do Species Interact?
Chapter 5 Species interactions, Ecological Succession, and Population Control How do species interact? Give some limited resources that organisms need in order to survive. Food, shelter, space, mate to reproduce, water, light air How might species interact to get these limited resources? Competition Have you ever competed with another organism to get what you wanted/needed? Interspecific competition is between different species. Intraspecific competition is between a single species. Competition Species need to compete because their niches overlap and they end up sharing the limited resources. When the word “share” is used here, it doesn’t mean equal sharing. Species like to reduce or avoid competition, so they resource partition. Competition Resource partitioning is a way for organisms to share a resource by using the resource at different times or using different parts of the resource. Predator/Prey interactions Predator is the hunter and feeds on the prey (the hunted) This interaction has a strong effect on population sizes. Predator/Prey interactions pg 134- 135 Give a way predators capture their prey. What are some ways prey avoid predators? Birds of prey (predators) and prey Google search ‘Birds of Prey’ – the Nature Conservancy has a great site Google search ‘bluebird, robin, sparrow’ Answer: 1. What differences do you notice regarding placement of the eyes in each group? 2. How might the difference in eye placement benefit each group of birds? What is mimicry? • Mimicry is the similarity of one species to another species which protects one or both organisms. Can be in appearance, behavior, sound, scent and even location. Who are the players? Mimics can be good tasting (easy targets) so they need to gain protection by looking like something bad tasting or dangerous. -
Mechanism of Ecological Succession
Environmental Biology Prof.(Dr.) Punam Jeswal Head M.Sc semester IV Botany Department MECHANISM OF ECOLOGICAL SUCCESSION ECOLOGICAL SUCCESSION Ecological succession is the gradual and continuous change in the species composition and community structure over time in the same area. Environment is always kept on changing over a period of time due to - i) Variations in climatic and physiographic factors and ii) The activities of the species of the communities themselves. These influences bring changes in the existing community which is sooner or later replaced by another community developed one after another. This process continues and successive communities develop one after another over the same area, until the terminal final community again becomes more or less stable for a period of time. The occurrence of definite sequence of communities over a period of time in the same area is known as Ecological Succession. Succession is a unidirectional progressive series of changes which leads to the established of a relatively stable community. Hult (1885), while studying communities of Southern Sweden used for the first time the term succession for the orderly changes in the communities. Clements (1907, 1916) put forth various principles that governed the process of succession, and while studying plant communities, defined succession as ' the natural process by which the same locality becomes successively colonized by different groups or communities of plants. According to E.P. Odum (1971), the ecological succession is an orderly process of community change in a unity area. It is the process of changes in species composition in an ecosystem over time. In simple terms, it is the process of ecosystem development in nature. -
Is Ecological Succession Predictable?
Is ecological succession predictable? Commissioned by Prof. dr. P. Opdam; Kennisbasis Thema 1. Project Ecosystem Predictability, Projectnr. 232317. 2 Alterra-Report 1277 Is ecological succession predictable? Theory and applications Koen Kramer Bert Brinkman Loek Kuiters Piet Verdonschot Alterra-Report 1277 Alterra, Wageningen, 2005 ABSTRACT Koen Kramer, Bert Brinkman, Loek Kuiters, Piet Verdonschot, 2005. Is ecological succession predictable? Theory and applications. Wageningen, Alterra, Alterra-Report 1277. 80 blz.; 6 figs.; 0 tables.; 197 refs. A literature study is presented on the predictability of ecological succession. Both equilibrium and nonequilibrium theories are discussed in relation to competition between, and co-existence of species. The consequences for conservation management are outlined and a research agenda is proposed focusing on a nonequilibrium view of ecosystem functioning. Applications are presented for freshwater-; marine-; dune- and forest ecosystems. Keywords: conservation management; competition; species co-existence; disturbance; ecological succession; equilibrium; nonequilibrium ISSN 1566-7197 This report can be ordered by paying € 15,- to bank account number 36 70 54 612 by name of Alterra Wageningen, IBAN number NL 83 RABO 036 70 54 612, Swift number RABO2u nl. Please refer to Alterra-Report 1277. This amount is including tax (where applicable) and handling costs. © 2005 Alterra P.O. Box 47; 6700 AA Wageningen; The Netherlands Phone: + 31 317 474700; fax: +31 317 419000; e-mail: [email protected] No part of this publication may be reproduced or published in any form or by any means, or stored in a database or retrieval system without the written permission of Alterra. Alterra assumes no liability for any losses resulting from the use of the research results or recommendations in this report. -
Chapter 5 Hmdscience.Com EN Online Vir Onmental Science Work Ecosystems How
DO NOT EDIT--Changes must be made through “File info” printcode=a Chapter 5 Section 1 Energy Flow in Ecosystems How Section 2 The Cycling of Matter Section 3 How Ecosystems Change Why It Matters Ecosystems This frog gets the energy it needs to survive by eating other organisms, such as damselflies. Frogs and damselflies are both consumers in an aquatic food chain. Work How does energy continue to be transferred in this food chain? CASESTUDY Learn how pollutants, like the pesticide DDT, are transferred through a food chain in the case study DDT in an Aquatic Food Chain on page 120. Online enVirOnmental Science HMDScience.com Go online to access additional resources, including labs, worksheets, multimedia, and resources in Spanish. Inc. Cosmos Blank/Photo Researchers, ©A. 116 DO NOT EDIT--Changes must be made through “File info” printcode=a Section 1 Energy Flow in Objectives Describe how energy is transferred from the sun Ecosystems to producers and then to consumers. organisms need energy to survive, grow, and reproduce. Different organisms Describe one way in which get energy from different sources, but the ultimate source of energy for almost all consumers depend on producers. organisms on earth is the sun. Identify two types of consumers. Explain how energy transfer in a Life Depends on the Sun food web is more complex than Energy from the sun enters an ecosystem when organisms use sunlight energy transfer in a food chain. to make sugar in a process called photosynthesis. During photosynthesis, plants, algae, and some bacteria capture light energy from the sun and Explain why an energy pyramid use it to convert carbon dioxide and water into sugar and oxygen, as is a representation of trophic shown in Figure 1.1. -
Early Successional Habitat
Early Successional Habitat January 2007 Fish and Wildlife Habitat Management Leaflet Number 41 Introduction Change is a characteristic of all natural systems. Directional change in the make-up and appearance of natural communities over time is commonly known as ecological succession. This change begins with a dis- turbance to the existing community, followed by plant colonization or regrowth. Materials (snags, soils, and disturbance-adapted seeds and other organisms) that are left behind after a disruptive event serve as biolog- ical legacies; that is, potential reservoirs of life, facili- tating the recovery of the habitat and biological com- munity. Through complex interactions, the disturbances, cli- mate, and soils of an ecological site are reflected in NRCS a plant community that is unique to that site. In a Early successional habitats are highly dynamic, highly healthy ecosystem, the plant community is in a state productive seral stages with uniquely adapted animal of dynamic (or ever changing) equilibrium exhibiting communities. variability in species composition and successional stages following disturbance. This variability creates valuable wildlife habitat because different wildlife Early successional habitats form soon after a distur- species are adapted to different plant species and suc- bance. Early successional plants are generally her- cessional stages. Over evolutionary time, plants and baceous annuals and perennials that quickly occupy animals have developed traits that allow them to sur- disturbed sites. They reproduce seeds that are distur- vive, exploit, and even depend on disturbances. For bance adapted or can be widely dispersed by wind, example, some plants require fire to produce seeds or water, or animals. Early successional communities flowers, and some fish depend on regular flooding to are characterized by high productivity and provide create and maintain their streambed habitat. -
Ecosystem Succession: Who/What Is Where and When
Ecosystem Succession: Who/What is Where and When Dennis Baldocchi ESPM Un ivers ity o f Ca liforn ia, Ber ke ley ESPM 111 Ecosystem Ecology Succession • From the Latin, succedere, to follow after • Orderly process of community development that is directional and predictable • Results from the modification of physical environment by the community – Succession is community-controlled even though the physical environment determines the pattern , rate of change and limits • Culminates in a stabilized ecosystem in which biomass and symbiotic function between organisms are maintained per unity of available energy flow – Eugene P Odum, 1969, Science ESPM 111 Ecosystem Ecology Succession • Primary Succession – After severe disturbance that remove or bury products of the ecosystem • Secondary Succession – After disturbance on a vegetated site. Most above ground live biomass may be disturbed but soil organic matter and plant propagules remain • Gap Phase Succession – Mortality and Tree fall for gap in canopy for new vegetation to invade and establish itself ESPM 111 Ecosystem Ecology Dynamic Sequence of Vegetation • Initial Conditions – Equilibrium • Disturbance • Colonization/Recruitment • Recovery • Competition • Succession – Primary – Secondary – Gap Succession • Climax – New Eq uilibri u m ESPM 111 Ecosystem Ecology Disturbance • Relativelyyp Discrete event, in time and space, that alters the structure of populations, communities and ecosystems and causes changes in resource availability and the ppyhysical environment. Chapin et al. ESPM 111 -
Primary Succession Recapitulates Phylogeny
etics & E en vo g lu t lo i y o h n a P r f y Journal of Phylogenetics & o B l i a o n l r o u g Bast, J Phylogenetics Evol Biol 2016, 4:1 o y J Evolutionary Biology 10.4172/2329-9002.1000e117 ISSN: 2329-9002 DOI: Editorial Open Access Primary Succession Recapitulates Phylogeny Felix Bast* Centre for Plant Sciences, Central University of Punjab, Bathinda, Punjab, India *Corresponding author: Felix Bast, Centre for Plant Sciences, Central University of Punjab, Bathinda, Punjab, India, Tel: +91 98721 52694; E-mail: [email protected] Received date: January 04, 2016; Accepted date: January 06, 2016; Published date: January 12, 2016 Copyright: © 2016 Bast F. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The parallelism between the process of primary succession and the evolution of life on this planet is remarkable and conspicuous, yet never been spotted before. The order, at which each seral community appear, right from the pioneer species until the climax communities, is by the order of appearance of the respective evolutionary lineages in the tree of life. Evolutionary history of life on this planet is, in fact, a massive and ongoing process of primary succession, and I believe that is the rationale for this striking harmony. Central premise of this postulation is the idea that the plants that have been evolved to adapt to an almost naked landscape would be the first to colonize new environments.