Dendritic Morphology of CA1 and CA3 Hippocampal Pyramidal Neurons

Total Page:16

File Type:pdf, Size:1020Kb

Dendritic Morphology of CA1 and CA3 Hippocampal Pyramidal Neurons Supplemental figure legends Supplemental figure 1: Dendritic morphology of CA1 and CA3 hippocampal pyramidal neurons. (A) ApoTome images, consisting of stacks of multiple optical sections showing the normal morphology of fEGFP labeled CA1 (left) and CA3 (right) hippocampal pyramidal neurons. Note the complete filling of dendrites as well as the absence of any sign of degeneration. Note the highly significant differences in dendritic complexity. Scale bar 100µm. (B) Sholl analysis comparing the apical (B) and basal (B’) dendrite of CA1 and CA3 pyramidal neurons. Note the highly significant differences in dendritic complexity. * indicate p<0.05; ** indicate p<0.01. Supplemental figure 2: Comparison between fEGFP expressing non treated and fEGFP expressing mIgG1 treated hippocampal neurons (A) Sholl analysis comparing the apical and basal dendrite of fEGFP expressing non treated (closed circles) and fEGFP expressing mIgG1 treated (open circles) CA1 pyramidal neurons. The inserts show the total dendritic complexity for the apical (left) and basal (right) dendrites of fEGFP expressing non treated (solid bar) and fEGFP expressing mIgG1 treated (open bar) CA1 pyramidal neurons. (B) Sholl analysis comparing the apical and basal dendrite of fEGFP expressing not treated (closed circles) and fEGFP expressing mIgG1 treated (open circles) CA3 pyramidal neurons. The inserts show the total dendritic complexity for the apical (left) and basal (right) dendrites of fEGFP expressing non treated (solid bar) and fEGFP expressing mIgG1 treated (open bar) CA3 pyramidal neurons. (C) Graph comparing the dendritic spine density values for fEGFP expressing non treated (solid bars) and fEGFP expressing mIgG1 treated (open bar) CA1 pyramidal neurons. (D) Graph comparing the dendritic spine type distribution in fEGFP expressing non treated (solid bars) and fEGFP expressing mIgG1 treated (open bar) CA1 pyramidal neurons. Note the significant higher proportion of mushroom (Type 2) spines in the mid-apical and basal dendrites of the mIgG1 treated cells. The * indicate p<0.05. (E) Graph comparing the dendritic spine density values for fEGFP expressing non treated (solid bars) and fEGFP expressing mIgG1 treated (open bar) CA3 pyramidal neurons. (F) Graph comparing the dendritic spine type distribution in fEGFP expressing non treated (solid bars) and fEGFP expressing mIgG1 treated (open bar) CA3 pyramidal neurons. (G) Sholl analysis comparing axonal complexity of fEGFP expressing non treated and fEGFP expressing mIgG1 treated CA3 pyramidal neurons. The inserts show the total length (left) and number of nodes (right) of fEGFP expressing non treated (solid bar) and fEGFP expressing mIgG1 treated (open bar) CA3 pyramidal neurons. Supplemental figure 3: Comparison between fEGFP/control shRNA expressing and fEGFP expressing hippocampal neurons (A) Sholl analysis comparing the apical and basal dendrites of fEGFP expressing and fEGFP/control shRNA expressing CA3 pyramidal neurons. The inserts show the total dendritic complexity for the apical (left) and basal (right) dendrites of fEGFP expressing (light green) and fEGFP/control shRNA expressing (dark green) CA3 pyramidal neurons. (B) Sholl analysis comparing axonal complexity of fEGFP expressing and fEGFP/control shRNA expressing CA3 pyramidal neurons. The inserts show the total length (left) and number of nodes (right) of fEGFP expressing (light green) and fEGFP/control shRNA expressing (dark green) CA3 pyramidal neurons. (C) Graph comparing the dendritic spine density values for fEGFP expressing (light green) and fEGFP/control shRNA expressing (dark green) CA3 pyramidal neurons. (D) Graph comparing the dendritic spine type distribution in fEGFP expressing (light green) and fEGFP/control shRNA expressing (dark green) CA3 pyramidal neurons. Supplemental figure 4: Effect of Nogo-A over-expression on the dendritic architecture of CA3 hippocampal neurons. (A) Sholl analysis comparing the apical dendrite of fEGFP expressing and fEGFP/Nogo-A over-expressing CA3 pyramidal neurons. The inserts show the total dendritic complexity for the apical dendrite of fEGFP expressing and fEGFP/Nogo-A over-expressing CA3 pyramidal neurons. Note the significant shift of complexity proximally of the Nogo-A over-expressing neurons when compared to the fEGFP only expressing neurons (A’) Sholl analysis comparing the basal dendrite of fEGFP expressing and fEGFP/Nogo-A over-expressing CA3 pyramidal neurons. The inserts show the total dendritic complexity for the basal dendrite of fEGFP expressing and fEGFP/Nogo-A over-expressing CA3 pyramidal neurons. (B) Spine density counts for CA3 hippocampal neurons showing no significant differences in spine density between fEGFP/Nogo-A and fEGFP expressing neurons. Both total spine density and the density in the different dendritic compartments are shown. (B’) The chart shows the proportions of the three spine types for fEGFP/Nogo-A (orange) and fEGFP (green) expressing CA3 neurons plotted for the total neuron or separated between distal-apical, mid-apical and basal compartments. In each dendritic compartments as well as in the total count the proportion of stubby spines (type-I), mushroom spines (type-II) and thin spines (Type-III) are not significantly different between the two neuron groups. Supplemental figure 5: Nogo-B up regulation in nogo-A knockout hippocampus. (A) The Western Blot confirms the absence of Nogo-A in the knockout mice and shows a strong up regulation of Nogo-B when compared to the WT hippocampus. βTubulin was used as a loading control. (B) Sholl analysis comparing the apical dendrite of fEGFP expressing and fEGFP/Nogo-B over-expressing CA3 pyramidal neurons. The inserts show the total dendritic complexity for the apical dendrite of fEGFP expressing and fEGFP/Nogo-B over expressing CA3 pyramidal neurons. Note the absence of significant differences in dendritic complexity in Nogo-B over-expressing when compared to control neurons. (B’) Sholl analysis comparing the basal dendrite of fEGFP expressing and fEGFP/Nogo-B over-expressing CA3 pyramidal neurons. The inserts show the total dendritic complexity for the apical dendrite of fEGFP expressing and fEGFP/Nogo-B over expressing CA3 pyramidal neurons. Note the absence of significant differences in dendritic complexity in Nogo-B over-expressing when compared to control neurons. Supplemental figure 6: (A) and (A’) Micrograph showing the immunohistochemistry for NgR1 in thin sections of the P28 mouse hippocampus in WT and nogo-A KO mice respectively. Note NgR1 expression in the neuropil in the stratum oriens and radiatum of CA1 and CA3. The scale bar is 1mm. (B) The graph shows the relative intensity of NgR1 staining within the different regions of the P28 WT (black) and nogo-A KO (grey) mouse hippocampus. Note the lower levels of NgR1 expression in all regions of the nogo-A knockout when compared to the WT hippocampus. (B’) The graph shows the relative intensity of NgR1 staining within the different layers of CA1, CA3 and DG in P28 WT (black) and nogo-A KO (grey) mouse hippocampus. Note the generally reduced levels of NgR1 in all layers of the nogo-A KO hippocampus. (C) The Western Blot shows a reduction in the levels of NgR1 protein in the hippocampus of nogo-A KO mice when compared to the WT hippocampus. βTubulin was used as a loading control. (C’) The graph shows reduced relative intensity for the NgR1 band in the nogo-A KO (grey) when compared to the WT (black) mouse hippocampus. Supplemental figure 7: (A) and (A’) Micrograph showing the morphology of dendritic spines of fEGFP expressing primary hippocampal neurons treated for 15 minutes with a control (A) or a Nogo-A-Δ20 containing solution (A’). The scale bar is 10 µm. (B) Spine density counts for primary hippocampal neurons showing no significant differences in spine density between fEGFP expressing control (green) and Nogo-A-Δ20 (purple) treated neurons. (B’) The chart shows the proportions of the three spine types for fEGFP expressing primary hippocampal neurons treated with or without Nogo-A-Δ20. Note that while the proportion of stubby spines (type-I) is significantly lower in Nogo-A-Δ20 treated neurons, in these neurons the proportion of mushroom spines (type-II) is significantly increased. CA1 CA3 A Control Control B B’ Apical Basal 12 25 ** m * µ m 0 µ 20 1 0 / 1 * s / n s 15 o n i t o i c t 6 e c s e * r 10 s e r t e n t I n I 5 0 0 0 200 400 600 800 0 50 100 150 200 250 300 350 Distance from the cell body (µm) Distance from the cell body (µm) CA1 n=29 CA3 n=20 CA1 n=29 CA3 n=20 Zagrebelsky et al., Suppl. Fig 1 A B 20 25 s s s 300 250 200 300 s n n n Apical Basal Basal Apical n o o o o i i i i t t t 200 t c c c 150 c e e e m 200 e 200 m s s s 20 150 s µ r r r µ 15 r e e e 0 e 100 0 t t t t 1 1 n n n 100 n i i i i / 100 100 / f f f f s s o o o 50 o 15 50 n n # # # # o o i i t 10 0 0 t 0 0 c non mIgG1 non mIgG1 c non mIgG1 non mIgG1 e e s treated treated treated s 10 treated r r e e t t n n I 5 I 5 0 0 0 200 400 600 800 0 200 400 600 800 Distance from the cell body (µm) Distance from the cell body (µm) non treated n=29 mIgG1 n=22 non treated n=20 mIgG1 n=19 C D 1.4 80 * * 60 s m e µ n / i p s s 40 e 0.7 f n i o p S % 20 0.0 0 Apical Mid-ap. Basal Total 1 2 3 1 2 3 1 2 3 1 2 3 non treated n=18 mIgG1 n=7 Dist-ap.
Recommended publications
  • Long-Term Adult Human Brain Slice Cultures As a Model System to Study
    TOOLS AND RESOURCES Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease Niklas Schwarz1, Betu¨ l Uysal1, Marc Welzer2,3, Jacqueline C Bahr1, Nikolas Layer1, Heidi Lo¨ ffler1, Kornelijus Stanaitis1, Harshad PA1, Yvonne G Weber1,4, Ulrike BS Hedrich1, Ju¨ rgen B Honegger4, Angelos Skodras2,3, Albert J Becker5, Thomas V Wuttke1,4†*, Henner Koch1†* 1Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tu¨ bingen, Tu¨ bingen, Germany; 2Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tu¨ bingen, Tu¨ bingen, Germany; 3German Center for Neurodegenerative Diseases (DZNE), Tu¨ bingen, Germany; 4Department of Neurosurgery, University of Tu¨ bingen, Tu¨ bingen, Germany; 5Department of Neuropathology, Section for Translational Epilepsy Research, University Bonn Medical Center, Bonn, Germany Abstract Most of our knowledge on human CNS circuitry and related disorders originates from model organisms. How well such data translate to the human CNS remains largely to be determined. Human brain slice cultures derived from neurosurgical resections may offer novel avenues to approach this translational gap. We now demonstrate robust preservation of the complex neuronal cytoarchitecture and electrophysiological properties of human pyramidal neurons *For correspondence: in long-term brain slice cultures. Further experiments delineate the optimal conditions for efficient [email protected] viral transduction of cultures, enabling ‘high throughput’ fluorescence-mediated 3D reconstruction tuebingen.de (TVW); of genetically targeted neurons at comparable quality to state-of-the-art biocytin fillings, and [email protected] demonstrate feasibility of long term live cell imaging of human cells in vitro.
    [Show full text]
  • Dendritic Development of Gabaergic Cortical Interneurons Revealed by Biolistic Transfection with GFP
    Graduate Theses, Dissertations, and Problem Reports 2002 Dendritic development of GABAergic cortical interneurons revealed by biolistic transfection with GFP Xiaoming Jin West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Jin, Xiaoming, "Dendritic development of GABAergic cortical interneurons revealed by biolistic transfection with GFP" (2002). Graduate Theses, Dissertations, and Problem Reports. 1708. https://researchrepository.wvu.edu/etd/1708 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Dendritic Development of GABAergic Cortical Interneurons Revealed by Biolistic Transfection with GFP Xiaoming Jin Dissertation submitted to the School of Medicine at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Anatomy Ariel Agmon, Ph.D., Chair Albert Berrebi, Ph.D. Richard Dey, Ph.D. Peter Mathers, Ph.D. Adrienne Salm, Ph.D. Department of Neurobiology and Anatomy Morgantown, West Virginia 2002 Keywords: neocortex, GAD, gene gun, dendrite, growth, BDNF, neuronal activity, organotypic, brain slice, culture.
    [Show full text]
  • Biophysically Realistic Neuron Models for Simulation of Cortical Stimulation
    bioRxiv preprint doi: https://doi.org/10.1101/328534; this version posted August 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Biophysically Realistic Neuron Models for Simulation of Cortical Stimulation Authors: Aman S. Aberra1, Angel V. Peterchev1,2,3,4, Warren M. Grill1,3,4,5,* 1 Dept. of Biomedical Engineering, School of Engineering, Duke University, NC 2 Dept. of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, NC 3 Dept. of Electrical and Computer Engineering, School of Engineering, Duke University, NC 4 Dept. of Neurosurgery, School of Medicine, Duke University, NC 5 Dept. of Neurobiology, School of Medicine, Duke University, NC * Corresponding Author: Warren M. Grill Keywords: neuron model, cortex, myelination, simulation, electric field, stimulation, axon bioRxiv preprint doi: https://doi.org/10.1101/328534; this version posted August 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 1. Abstract Objective. We implemented computational models of human and rat cortical neurons for simulating the neural response to cortical stimulation with electromagnetic fields. Approach. We adapted model neurons from the library of Blue Brain models to reflect biophysical and geometric properties of both adult rat and human cortical neurons and coupled the model neurons to exogenous electric fields (E-fields). The models included 3D reconstructed axonal and dendritic arbors, experimentally-validated electrophysiological behaviors, and multiple, morphological variants within cell types.
    [Show full text]
  • Neurotrophins Regulate Dendritic Growth in Developing Visual Codex
    Neuron, Vol. 15, 791-803, October, 1995, Copyright © 1995 by Cell Press Neurotrophins Regulate Dendritic Growth in Developing Visual Codex A. Kimberley McAllister, Donald C. Lo, al., 1988; Snider, 1988; Ruit et al., 1990; Ruit and Snider, and Lawrence C. Katz 1991). The neurotrophins comprise at least four structur- Department of Neurobiology ally related proteins: NGF, brain-derived neurotrophic fac- Duke University Medical Center tor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/ Durham, North Carolina 27710 neurotrophin-5 (NT-4) (for review, see Lindsay et al., 1994; NT-6 has recently been cloned in fish [Gotz et al., 1994]). Summary Also, neurotrophins exert their effects through activation of members of the Trk family of tyrosine kinase receptors Although dendritic growth and differentiation are criti- (for review, see Chao, 1992). These factors and their re- cal for the proper development and function of neocor- ceptors are expressed in discrete layers of neocortex dur- tex, the molecular signals that regulate these pro- ing the time dendrites develop (Allendoerfer, et al., 1990; cesses are largely unknown. The potential role of Merlio et al., 1992; Cabelli et al., 1993, Soc. Neurosci., neurotrophins was tested by treating slices of devel- abstract; Ringstedt et al., 1993; Lindsay et al., 1994). How- oping visual cortex with NGF, BDNF, NT-3, or NT-4 and ever, assigning specific biological functions to neurotroph- by subsequently visualizing the dendrites of pyramidal ins has been hampered by the difficulty of manipulating neurons using particle-mediated gene transfer. Spe- the cortical environment in vivo and by the loss of laminar cific neurotrophins increased the length and complex- identity and cell polarity in dissociated tissue culture.
    [Show full text]
  • Contribution of Apical and Basal Dendrites of L2/3 Pyramidal Neurons to Orientation Encoding in Mouse V1 Jiyoung Park1,4*†, Athanasia Papoutsi3†, Ryan T
    bioRxiv preprint doi: https://doi.org/10.1101/566588; this version posted March 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Contribution of Apical and Basal Dendrites of L2/3 Pyramidal Neurons to Orientation Encoding in Mouse V1 Jiyoung Park1,4*†, Athanasia Papoutsi3†, Ryan T. Ash2,4, Miguel A. Marin2, Panayiota Poirazi3* & Stelios M. Smirnakis4* 1Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 2Department of Neuroscience, Baylor College of Medicine, Houston, Texas 3Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology Hellas (FORTH), Vassilika Vouton, Heraklion, Crete, Greece 4Brigham and Women’s Hospital and Jamaica Plain VA Hospital, Harvard Medical School, Boston, MA †Equal contribution. * Correspondence: [email protected], [email protected], [email protected] Abstract: Pyramidal neurons integrate synaptic inputs from basal and apical dendrites to generate stimulus-specific responses. It has been proposed that feed-forward inputs to basal dendrites drive a neuron’s stimulus preference, while feedback inputs to apical dendrites sharpen selectivity. However, how a neuron’s dendritic domains relate to its functional selectivity has not been demonstrated experimentally. We performed 2-photon dendritic micro-dissection on layer- 2/3 pyramidal neurons in mouse primary visual cortex. We found that removing the apical dendritic tuft did not alter orientation-tuning. Furthermore, orientation-tuning curves were remarkably robust to the removal of basal dendrites: ablation of 2-3 basal dendrites was needed to cause a small shift in orientation preference, without significantly altering tuning width.
    [Show full text]
  • Morphological Characteristics of Electrophysiologically Characterized Layer Vb Pyramidal Cells in Rat Barrel Cortex
    RESEARCH ARTICLE Morphological Characteristics of Electrophysiologically Characterized Layer Vb Pyramidal Cells in Rat Barrel Cortex Jochen F. Staiger1*, Alexandre J. C. Loucif2¤, Dirk Schubert3, Martin MoÈ ck1 1 Institute for Neuroanatomy, University Medical Center, Georg-August-University, GoÈttingen, Germany, 2 Institute of Neuroanatomy, Albert-Ludwigs-University, Freiburg, Germany, 3 Donders Institute for Brain, Cognition & Behavior, Centre for Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands a11111 ¤ Current address: Neuroscience and Pain Research, Pfizer Worldwide Research and Development; Portway Building, Granta Park, Great Abington, Cambridge, United Kingdom * [email protected] Abstract Layer Vb pyramidal cells are the major output neurons of the neocortex and transmit the OPEN ACCESS outcome of cortical columnar signal processing to distant target areas. At the same time Citation: Staiger JF, Loucif AJC, Schubert D, MoÈck they contribute to local tactile information processing by emitting recurrent axonal collater- M (2016) Morphological Characteristics of Electrophysiologically Characterized Layer Vb als into the columnar microcircuitry. It is, however, not known how exactly the two types of Pyramidal Cells in Rat Barrel Cortex. PLoS ONE 11 pyramidal cells, called slender-tufted and thick-tufted, contribute to the local circuitry. (10): e0164004. doi:10.1371/journal. Here, we investigated in the rat barrel cortex the detailed quantitative morphology of biocy- pone.0164004 tin-filled layer Vb pyramidal cells in vitro, which were characterized for their intrinsic Editor: Gennady Cymbalyuk, Georgia State electrophysiology with special emphasis on their action potential firing pattern. Since we University, UNITED STATES stained the same slices for cytochrome oxidase, we could also perform layer- and column- Received: September 17, 2015 related analyses.
    [Show full text]
  • Neuronal Organization of Olfactory Bulb Circuits
    REVIEW ARTICLE published: 03 September 2014 doi: 10.3389/fncir.2014.00098 Neuronal organization of olfactory bulb circuits Shin Nagayama 1*, Ryota Homma1 and Fumiaki Imamura 2 1 Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, TX, USA 2 Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA Edited by: Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is Benjamin R. Arenkiel, Baylor College dedicated to odor information processing.The olfactory bulb is divided into multiple layers, of Medicine, USA with different types of neurons found in each of the layers. Therefore, neurons in the Reviewed by: olfactory bulb have conventionally been categorized based on the layers in which their cell Kazushige Touhara, University of Tokyo, Japan bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the Veronica Egger, external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule Ludwig-Maximilians-Universität, cell layer. More recently, numerous studies have revealed the heterogeneous nature of each Germany Kathleen Quast, Baylor College of of these cell types, allowing them to be further divided into subclasses based on differences Medicine, USA in morphological, molecular, and electrophysiological properties. In addition, technical *Correspondence: developments and advances have resulted in an increasing number of studies regarding Shin Nagayama, Department of cell types other than the conventionally categorized ones described above, including short- Neurobiology and Anatomy, The axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the University of Texas Medical School at Houston, 6431 Fannin Street, olfactory bulb is now being acknowledged.
    [Show full text]
  • On the Integration of Subthreshold Inputs from Perforant Path and Schaffer Collaterals in Hippocampal CA1 Pyramidal Neurons
    Journal of Computational Neuroscience 14, 185–192, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. On the Integration of Subthreshold Inputs from Perforant Path and Schaffer Collaterals in Hippocampal CA1 Pyramidal Neurons MICHELE MIGLIORE Section of Neurobiology, Yale University School of Medicine, New Haven, CT, USA; Institute of Biophysics, Nat. Res. Council, Palermo, Italy [email protected] Received October 15, 2001; Revised September 6, 2002; Accepted September 6, 2002 Action Editor: E. Bard Ermentrout Abstract. Using a realistic model of a CA1 hippocampal pyramidal neuron, we make experimentally testable predictions on the roles of the non-specific cation current, Ih, and the A-type Potassium current, IA, in modulating the temporal window for the integration of the two main excitatory afferent pathways of a CA1 neuron, the Schaffer Collaterals and the Perforant Path. The model shows that the experimentally observed increase in the dendritic density of Ih and IA could have a major role in constraining the temporal integration window for these inputs, in such a way that a somatic action potential (AP) is elicited only when they are activated with a relative latency consistent with the anatomical arrangement of the hippocampal circuitry. Keywords: dendritic integration, IA, Ih, CA1, modeling Introduction these two conductances between pyramidal neurons of hippocampus and neocortex. The gKA increases with Although important details on how dendrites and their distance from the soma in CA1, whereas in neocor- active properties are involved in neural computation tical neurons it is constant (Korngreen and Sakmann, have been elucidated, the rules according to which 2000; Bekkers, 2000), and it does not seem to play the dendritic trees and, especially, ionic conductances are same role as in CA1 (Stuart and H¨ausser, 2001).
    [Show full text]
  • Action Potentials in Basal and Oblique Dendrites of Rat Neocortical Pyramidal Neurons Srdjan D
    Physiology in Press; published online on May 9, 2003 as 10.1113/jphysiol.2002.033746 J Physiol (2003), xxx.x, pp. 000–000 DOI: 10.1113/jphysiol.2002.033746 © The Physiological Society 2003 www.jphysiol.org Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons Srdjan D. Antic Department of Cellular and Molecular Physiology, and Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA Basal and oblique dendrites comprise ~2/3 of the total excitable membrane in the mammalian cerebral cortex, yet they have never been probed with glass electrodes, and therefore their electrical properties and overall impact on synaptic processing are unknown. In the present study, fast multi- site voltage-sensitive dye imaging combined with somatic recording was used to provide a detailed description of the membrane potential transients in basal and oblique dendrites of pyramidal neurons during single and trains of action potentials (APs). The optical method allowed simultaneous measurements from several dendrites in the visual field up to 200 mm from the soma, thus providing a unique report on how an AP invades the entire dendritic tree. In contrast to apical dendrites, basal and oblique branches: (1) impose very little amplitude and time course modulation on backpropagating APs; (2) are strongly invaded by the somatic spike even when somatic firing rates reach 40 Hz (activity-independent backpropagation); and (3) do not exhibit signs of a ‘calcium shoulder’ on the falling phase of the AP. A compartmental model incorporating AP peak latencies and half-widths obtained from the apical, oblique and basal dendrites indicates that the specific intracellular resistance (Ri) is less than 100 V cm.
    [Show full text]
  • Transient Hypoxemia Chronically Disrupts Maturation of Preterm Fetal Ovine Subplate Neuron Arborization and Activity
    11912 • The Journal of Neuroscience, December 6, 2017 • 37(49):11912–11929 Development/Plasticity/Repair Transient Hypoxemia Chronically Disrupts Maturation of Preterm Fetal Ovine Subplate Neuron Arborization and Activity XEvelyn McClendon,1 Daniel C. Shaver,1 Kiera Degener-O’Brien,1 Xi Gong,1 Thuan Nguyen,2 Anna Hoerder-Suabedissen,3 Zolta´n Molna´r,3 Claudia Mohr,4 XBen D. Richardson,4 David J. Rossi,4 and Stephen A. Back1,5 1Department of Pediatrics and 2Public Health and Preventive Medicine, Oregon Health & Science University, Portland, Oregon 97239, 3Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom OX1 3QX, 4Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164, and 5Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239 Preterm infants are at risk for a broad spectrum of neurobehavioral disabilities associated with diffuse disturbances in cortical growth and development. During brain development, subplate neurons (SPNs) are a largely transient population that serves a critical role to establish functional cortical circuits. By dynamically integrating into developing cortical circuits, they assist in consolidation of intra- cortical and extracortical circuits. Although SPNs reside in close proximity to cerebral white matter, which is particularly vulnerable to oxidative stress, the susceptibility of SPNs remains controversial. We determined SPN responses to two common insults to the preterm brain: hypoxia-ischemia and hypoxia. We used a preterm fetal sheep model using both sexes that reproduces the spectrum of human cerebral injury and abnormal cortical growth. Unlike oligodendrocyte progenitors, SPNs displayed pronounced resistance to early or delayed cell death from hypoxia or hypoxia-ischemia.
    [Show full text]
  • Autism Spectrum Disorder Susceptibility Gene TAOK2 Affects
    ART ic LE s Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex Froylan Calderon de Anda1,2, Ana Lucia Rosario1,2, Omer Durak1–3, Tracy Tran2,4,5, Johannes Gräff1,2, Konstantinos Meletis1–3,5, Damien Rei1,2, Takahiro Soda1,2, Ram Madabhushi1,2, David D Ginty2,4, Alex L Kolodkin2,4 & Li-Huei Tsai1–3 How neurons develop their morphology is an important question in neurobiology. Here we describe a new pathway that specifically affects the formation of basal dendrites and axonal projections in cortical pyramidal neurons. We report that thousand-and-one- amino acid 2 kinase (TAOK2), also known as TAO2, is essential for dendrite morphogenesis. TAOK2 downregulation impairs basal dendrite formation in vivo without affecting apical dendrites. Moreover, TAOK2 interacts with Neuropilin 1 (Nrp1), a receptor protein that binds the secreted guidance cue Semaphorin 3A (Sema3A). TAOK2 overexpression restores dendrite formation in cultured cortical neurons from Nrp1Sema− mice, which express Nrp1 receptors incapable of binding Sema3A. TAOK2 overexpression also ameliorates the basal dendrite impairment resulting from Nrp1 downregulation in vivo. Finally, Sema3A and TAOK2 modulate the formation of basal dendrites through the activation of the c-Jun N-terminal kinase (JNK). These results delineate a pathway whereby Sema3A and Nrp1 transduce signals through TAOK2 and JNK to regulate basal dendrite development in cortical neurons. Pyramidal neurons are abundant in brain regions associated with through the activation of JNK11. TAOK2 is subjected to alternative complex cognitive functions, including the cortex, hippocampus and splicing to produce the TAOK2α (140 kDa) and TAOK2β (120 kDa) amygdala1.
    [Show full text]
  • Down-Regulation of Dendritic Spine and Glutamic Acid Decarboxylase 67 Expressions in the Reelin Haploinsufficient Heterozygous Reeler Mouse
    Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse Wen Sheng Liu*, Christine Pesold*, Miguel A. Rodriguez*, Giovanni Carboni*, James Auta*, Pascal Lacor*, John Larson*, Brian G. Condie†, Alessandro Guidotti*, and Erminio Costa*‡ *Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, IL 60612; and †Institute of Molecular Medicine and Genetics, Departments of Medicine and Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912 Contributed by Erminio Costa, December 22, 2000 Heterozygous reeler mice (HRM) haploinsufficient for reelin ex- heterozygote reeler mice (HRM) and in heterozygote GAD67 Ϸ press 50% of the brain reelin content of wild-type mice, but are knockout mice (HG67M) and compared them to their respective phenotypically different from both wild-type mice and homozy- wild-type background mice (WTM). In the present study, we gous reeler mice. They exhibit, (i) a down-regulation of glutamic have also quantified the number of neurons immunopositive for acid decarboxylase 67 (GAD67)-positive neurons in some but not reelin in the motor area of the frontoparietal cortex (FPC) of every cortical layer of frontoparietal cortex (FPC), (ii) an increase of HRM, as well as the total number of neurons immunopositive for neuronal packing density and a decrease of cortical thickness NeuN and the number of glial cells stained by Nissl (13) because of neuropil hypoplasia, (iii) a decrease of dendritic spine expressed in each of the six layers of this cortical area. In WTM, expression density on basal and apical dendritic branches of motor HRM, and HG67M, we have also quantified the laminar expres- FPC layer III pyramidal neurons, and (iv) a similar decrease in sion of GAD67-immunopositive neurons and the dendritic spine dendritic spines expressed on the basal dendrite branches of CA1 density expressed by pyramidal neurons of layer III FPC and of pyramidal neurons of the hippocampus.
    [Show full text]