Redalyc.Leaf-Rollers from New Caledonia (Lepidoptera: Tortricidae)

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Leaf-Rollers from New Caledonia (Lepidoptera: Tortricidae) SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Razowski, J. Leaf-rollers from New Caledonia (Lepidoptera: Tortricidae) SHILAP Revista de Lepidopterología, vol. 41, núm. 161, marzo, 2013, pp. 69-93 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45528755004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 69-93 Leaf-rollers from New Cal 14/3/13 19:10 Página 69 SHILAP Revta. lepid., 41 (161), marzo 2013: 69-93 CODEN: SRLPEF ISSN: 0300-5267 Leaf-rollers from New Caledonia (Lepidoptera: Tortricidae) J. Razowski Abstract Twenty-five genera and thirty-eight species are known from New Caledonia. Twenty-seven species are discus- sed in this paper. Eigthteen species (Williella picdupina Razowski, sp. n., Aoupinieta setaria Razowski, sp. n., A. mountpanieae Razowski, sp. n., A. silacea Razowski, sp. n., A. obesa Razowski, sp. n., Xenothictis sympaestra Ra- zowski, sp. n., X. dagnyana Razowski, sp. n., X. oncodes Razowski, sp. n., Homona blaiki Razowski, sp. n., Archilo- besia doboszi Razowski, sp. n., Megalota ouentoroi Razowski, sp. n., Statherotis ateuches Razowski, sp. n., Pterni- dora koghisiana Razowski, sp. n., Rhopobota mou Razowski, sp. n., Noduliferola anepsia Razowski, sp. n., Spilonota grandlacia Razowski, sp. n., Herpystis esson Razowski, sp. n., Cryptophlebia omphala Razowski, sp. n.) are described as new. Xeneda Diakonoff is synonymized with Xenothictis Meyrick, and Xeneda coena is transferred to Xenothictis, resulting in a new combination. The geographic distributions of New Caledonia genera and species are discussed in the context of their affinities to the faunas of the general region. KEY WORDS: Lepidoptera, Tortricidae, new species, New Caledonia. Tortrícidos de Nueva Caledonia (Lepidoptera: Tortricidae) Resumen Son conocidos veinticinco géneros y treinta y ocho especies de Nueva Caledonia. Se discuten veintisiete especies en este trabajo. Se describen dieciocho nuevas especies (Williella picdupina Razowski, sp. n., Aoupinieta setaria Razowski, sp. n., A. mountpanieae Razowski, sp. n., A. silacea Razowski, sp. n., A. obesa Razowski, sp. n., Xenothictis sympaestra Razowski, sp. n., X. dagnyana Razowski, sp. n., X. oncodes Razowski, sp. n., Homona blaiki Razowski, sp. n., Archilobesia doboszi Razowski, sp. n., Megalota ouentoroi Razowski, sp. n., Statherotis ateuches Razowski, sp. n., Pternidora koghisiana Razowski, sp. n., Rhopobota mou Razowski, sp. n., Noduliferola anepsia Razowski, sp. n., Spilonota grandlacia Razowski, sp. n., Herpystis esson Razowski, sp. n., Cryptophlebia omphala Razowski, sp. n.). Se sinonimiza Xeneda Diakonoff con Xenothictis Meyrick y Xeneda coena es transferida a Xenothictis, resultando una nueva combinación. Se discute la distribución geográfica de los géneros y especies de Nueva Caledonia en el contexto de sus afinidades a la fauna en general de la región. PALABRAS CLAVE: Lepidoptera, Tortricidae, nuevas especies, Nueva Caledonia. Introduction Prior to this study ten tortricines were described from New Caledonia (Tracholena nigrilinea Dugdale, 2005; Tracholena liparodes Dugdale, 2005; Tracholena paniense Dugdale, 2005; Williella angulata Horak, 1984; Williella sauteri Horak, 1984; Aoupinieta hollowayi Razowski, 2012; A. novaecaledoniae Razowski, 2012; Xenothictis coena (Diakonoff, 1961), (all Tortricinae); Iconostigma morosa Tuck, 1981; and Iconostigma tryphaena Tuck, 1981 (both Chlidanotinae). HOLLOWAY (1979) characterized the tortricid fauna based on personal communication of Dr. J. 69 69-93 Leaf-rollers from New Cal 10/3/13 18:42 Página 70 J. RAZOWSKI S. Dugdale who suggested that there was a general relationship among the faunas of New Caledonia, New Guinea, and Queensland, Australia, but not New Zealand. HOLLOWAY (1979) also realized that Xenothictis radiated within New Caledonia. In the present study 25 genera and 38 species belonging to Tortricinae and Olethreutinae are reported. The New Caledonian genera may be characterized as follows (arranged systematically). Two genera Williella and Aoupinieta, are putatively endemic to New Caledonia. Xenothictis, Atriscripta, Pternidora and Icelita are distributed in Australia and Oceania. Twelve genera are more wide spread, recorded from the Oriental region and Australian region, and Oceania (Sorolopha, Archilobesia, Diakonoffiana, Statherotis, Noduliferola, Holocola), or recorded also from the Palaearctic region (Homona, Cryptophlebia, Dudua, Spilonota, Herpystis, Thaumatotibia). Two genera (Rhopobota and Strepsicrates) also range to the Nearctic; two genera (Cryptaspasma and Megalota) are Pantropical; and two genera (Bactra, Crocidosema) are cosmopolitan. List of genera and their affinities Williella Horak, 1984 is most probably endemic to New Caledonia. It is represented by three species. Aoupinieta Razowski, 2012 is described from New Caledonia and is probably endemic. An additional three species are reported herein. Xenothictis Meyrick, 1930 is known from Papua New Guinea, Australia, New Caledonia, Loyalty Islands, New Hebrides, and Fiji Islands. Homona Walker, 1863 is widely distributed from India to New Caledonia; over 30 species are distributed from Sri Lanka, India, Nepal, Japan, China, Vietnam, Malaya, Indonesia (Sumatra to Sumba), Philippine Islands, New Guinea and adjacent islands; it is also present in Australia and Solomon Islands. One species is described here from New Caledonia. Cryptaspasma Walsingham, 1900 is represented by one species from New Caledonia. Of 30 described species range from the eastern part of Palaearctic region, Africa, North America, South America, Taiwan, India, Philippine Islands, Indonesia to Celebes, Micronesia (Guam, New Hebrides), Australia and New Zealand. Sorolopha Lower, 1901 includes 62 species from China, Nepal, Sri Lanka, Taiwan to Indonesia, New Guinea, and Australia. It is also known from the Salomon Islands and reported here from New Caledonia. Atriscripta Horak, 2006 is known from Australia (Queensland) and is now reported from New Caledonia. Dudua Walker, 1864 is distributed from Madagascar and the Seychelles, Sri Lanka through China to the Philippine Islands. New Guinea, and New Caledonia. HORAK (2006) mentioned reported from Vanuatu, Fiji, Tonga, Niue, Cook Is, Tahiti, Rapa, Marquesas, and Australia. Archilobesia Diakonoff, 1966 includes five species distributed from the Oriental region (Taiwan, Indonesia: Java) to New Guinea and Australia; it is reported herein from New Caledonia. Diakonoffiana Koçak, 1981 includes six species distributed from Sulawesi (HORAK 2006), Moluccas Islands, New Guinea, Australia, and Micronesia; it is reported as new to New Caledonia. Megalota Diakonoff, 1966 includes about 30 species chiefly Afrotropical and Neotropical. Oriental species are distributed from Sri Lanka and India to Indonesia: Bali, Sulawesi. It is also known from New Guinea, Bismarck Archipelago, Australia, Solomon Islands and now from New Caledonia. Statherotis Meyrick, 1909 includes 30 species distributed in the Oriental region from Sri Lanka to China, Philippine Islands, and Indonesia, ranging eastward to New Guinea, Australia, Micronesia, Salomon Islands and Fiji. One species was found now in New Caledonia. Bactra Stephens, 1829 includes over 100 species distributed worldwide. Two species are reported from New Caledonia. Ancylis Hübner, [1825] includes about 150 described species. It is known from the Palaearctic, 70 SHILAP Revta. lepid., 41 (161), marzo 2013 69-93 Leaf-rollers from New Cal 10/3/13 18:42 Página 71 LEAF-ROLLERS FROM NEW CALEDONIA Nearctic, Oriental, and Australian regions. HORAK (2006) recorded 24 Australian species. One species was found now in New Caledonia, but it is not identified. Pternidora Meyrick, 1911 is a monotypic genus. According to HORAK (2006) it is known from Papua New Guinea and Australia. One new species is described herein from New Caledonia. Crocidosema Zeller, 1847 is a cosmopolitan genus or about 25 described species¸ two species are known from Australia. A widely distributed species, C. plebejana Zeller, 1847 is now recorded from New Caledonia. Rhopobota Lederer, 1859 is comprised of 41 named species, including one from Australian and two are recorded from New Caledonia herein. Rhopobota is recorded from the Holarctic, Oriental and Neotropical regions. Noduliferola Kuznetzov, 1973 includes nine species occurring in the Oriental and Australian regions (one species in Australia), the Marquesas, and Micronesia. One species is described herein from New Caledonia. Spilonota Stephens, 1829 is comprised of 29 described species from the Palaearctic, Oriental, Afrotropical, and Australian regions. It also is recorded from New Guinea, Samoa Islands, and Solomon Islands. Four species are reported from Australia, and one new one is described from New Caledonia herein. Strepsicrates Meyrick, 1866 is widely distributed from the Canary Islands and Madagascar to the Philippines and Indonesia; apart New Guinea it is known from Polynesia, Melanesia and New Zealand; HORAK (2006) recorded ten species in Australia. In addition, the genus is known from the New World and Hawaii. Two species are recorded from New Caledonia herein. Holocola Meyrick, 1881 includes numerous species distributed
Recommended publications
  • 1 1 DNA Barcodes Reveal Deeply Neglected Diversity and Numerous
    Page 1 of 57 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. 12 3Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, 13 CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France. 14 4 Landesmuseum für Kärnten, Abteilung Zoologie, Museumgasse 2, 9020 Klagenfurt, Austria 15 5 Department of Entomology, University of Antananarivo, Antananarivo 101, Madagascar 16 6 Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E., Guelph, ON 17 N1G2W1, Canada 18 7Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Genome Downloaded from www.nrcresearchpress.com by UNIV GUELPH on 10/03/18 19 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 20 Montpellier, France. 21 8Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, UK. 22 23 24 Email for correspondence: [email protected] For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 1 Page 2 of 57 25 26 Abstract 27 Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, 28 essentially from anthropogenic disturbance.
    [Show full text]
  • DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
    Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France.
    [Show full text]
  • Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009
    Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009 Fauna Conservation Department Kadoorie Farm & Botanic Garden 29 June 2010 Kadoorie Farm and Botanic Garden Publication Series: No 6 Fung Yuen SSSI & Butterfly Reserve moth survey 2009 Fung Yuen SSSI & Butterfly Reserve Moth Survey 2009 Executive Summary The objective of this survey was to generate a moth species list for the Butterfly Reserve and Site of Special Scientific Interest [SSSI] at Fung Yuen, Tai Po, Hong Kong. The survey came about following a request from Tai Po Environmental Association. Recording, using ultraviolet light sources and live traps in four sub-sites, took place on the evenings of 24 April and 16 October 2009. In total, 825 moths representing 352 species were recorded. Of the species recorded, 3 meet IUCN Red List criteria for threatened species in one of the three main categories “Critically Endangered” (one species), “Endangered” (one species) and “Vulnerable” (one species” and a further 13 species meet “Near Threatened” criteria. Twelve of the species recorded are currently only known from Hong Kong, all are within one of the four IUCN threatened or near threatened categories listed. Seven species are recorded from Hong Kong for the first time. The moth assemblages recorded are typical of human disturbed forest, feng shui woods and orchards, with a relatively low Geometridae component, and includes a small number of species normally associated with agriculture and open habitats that were found in the SSSI site. Comparisons showed that each sub-site had a substantially different assemblage of species, thus the site as a whole should retain the mosaic of micro-habitats in order to maintain the high moth species richness observed.
    [Show full text]
  • RECORDS of the HAWAII BIOLOGICAL SURVEY for 1995 Part 2: Notes1
    RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1995 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1995 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more compre- hensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 45]. New Hawaiian Pest Plant Records for 1995 PATRICK CONANT (Hawaii Dept. of Agriculture, Plant Pest Control Branch, 1428 S King St, Honolulu, HI 96814) Fabaceae Ulex europaeus L. New island record On 6 October 1995, Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife employee C. Joao submitted an unusual plant he found while work- ing in the Molokai Forest Reserve. The plant was identified as U. europaeus and con- firmed by a Hawaii Department of Agriculture (HDOA) nox-A survey of the site on 9 October revealed an infestation of ca. 19 m2 at about 457 m elevation in the Kamiloa Distr., ca. 6.2 km above Kamehameha Highway. Distribution in Wagner et al. (1990, Manual of the flowering plants of Hawai‘i, p. 716) listed as Maui and Hawaii. Material examined: MOLOKAI: Molokai Forest Reserve, 4 Dec 1995, Guy Nagai s.n. (BISH). Melastomataceae Miconia calvescens DC. New island record, range extensions On 11 October, a student submitted a leaf specimen from the Wailua Houselots area on Kauai to PPC technician A. Bell, who had the specimen confirmed by David Lorence of the National Tropical Botanical Garden as being M.
    [Show full text]
  • Contrasting Patterns of Karyotype and Sex Chromosome Evolution in Lepidoptera
    School of Doctoral Studies in Biological Sciences University of South Bohemia in České Budějovice Faculty of Science Contrasting patterns of karyotype and sex chromosome evolution in Lepidoptera Ph.D. Thesis Mgr. Jindra Šíchová Supervisor: Prof. RNDr. František Marec, CSc. Biology Centre of the Czech Academy of Sciences, Institute of Entomology České Budějovice 2016 This thesis should be cited as: Šíchová J (2016) Contrasting patterns of karyotype and sex chromosome evolution in Lepidoptera. Ph.D. Thesis. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 91 pp. Annotation It is known that chromosomal rearrangements play an important role in speciation by limiting gene flow within and between species. Furthermore, this effect may be enhanced by involvement of sex chromosomes that are known to undergo fast evolution compared to autosomes and play a special role in speciation due to their engagement in postzygotic reproductive isolation. The work presented in this study uses various molecular- genetic and cytogenetic techniques to describe karyotype and sex chromosome evolution of two groups of Lepidoptera, namely selected representatives of the family Tortricidae and Leptidea wood white butterflies of the family Pieridae. The acquired knowledge points to unexpected evolutionary dynamics of lepidopteran karyotypes including the presence of derived neo-sex chromosome systems that originated as a result of chromosomal rearrangements. We discuss the significance of these findings for radiation and subsequent speciation of both lepidopteran groups. Declaration [in Czech] Prohlašuji, že svoji disertační práci jsem vypracovala samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury. Prohlašuji, že v souladu s § 47b zákona č.
    [Show full text]
  • Pest and Diseases in Mango (Mangifera Indica L.) J
    PEST AND DISEASES IN MANGO (MANGIFERA INDICA L.) J. González-Fernández, J.I. Hormaza IHSM la Mayora CSIC-UMA, 29750 Algarrobo, Malaga, Spain EXECUTIVE SUMMARY In this work, we review the most important pests and diseases that affect mango production worldwide as well as the main measures implemented to control them. Pests and diseases are the main factors that can impact sustainable mango fruit production in the tropics and subtropics worldwide. Commercial cultivation of mango, characterized by expansion to new areas, changing crop management, replacement of varieties and increased chemical interventions, has altered significantly the pest and disease community structure in this crop in the different mango producing regions. In addition, climate change is inducing the emergence of new pests and, whereas globalization and trade liberalization have created wide opportunities for mango commercialization growth, at the same time, this can result in faster dispersion of pests and diseases among different mango growing areas if proper sanitary measures are not implemented. This review covers different topics related to pests and diseases in mango. First, a thorough description of the main pests and diseases that affect mango is provided. Second, the different approaches used in different mango producing countries for chemical and biological control are described. Third, recommendations for appropriate mango management techiques that include integrated pest and disease management, reduction in the use of chemicals and the implementation of a good monitoring and surveillance system to help control the main pests and diseases, are also discussed. Finally, the current knowledge on agrohomeopathy and Korean Natural Farming is analyzed and recommendations on future lines of research to optimize mango pest and disease control are discussed.
    [Show full text]
  • Report on the Badlands/Parkland Lepidoptera Survey 2017 by the Alberta Lepidopterists' Guild, Under Research Permit #17-171
    Report on the Badlands/Parkland Lepidoptera Survey 2017 by the Alberta Lepidopterists' Guild, under research permit #17-171 Report to Alberta Tourism, Park and Recreation, Parks Division November 2017 by Gregory R. Pohl Gregory Pohl and other members of the Alberta Lepidopterists' Guild were granted a research permit (#17-171) for moth and butterfly (Lepidoptera) observation and collection in the Tolman - Rumsey area of central Alberta in the summer of 2017. This is our report of the species observed and collected in the area. Study Sites: The following sites were visited and sampled for Lepidoptera: 1. Rowley townsite (Figure 1). 51.760°N 112.786°W. July 14-16, 2017. Abandoned home sites and field margins; disturbed area along train tracks. Although not a protected area requiring a permit, this was our base of operations and camping area, it was convenient to observe and collect moths and butterflies here. Most of the species encountered here are expected to occur in nearby parks and natural areas. Collecting methods - daytime observation and netting; UV light traps; mercury vapour lights. 2. "North Rumsey": Township Road 589, vicinity of Rumsey Natural Area. 51.965°N 112.625°W. July 15, 2017. Rolling parkland with small sloughs. Although not technically within the Rumsey Natural Area, this site is very near and is comprised of similar habitat. The species seen here are all expected within the natural area. Collecting methods - daytime observation and netting. 3. "West Rumsey": Western edge of Rumsey Natural Area (Figure 2). 51.882°N 112.691°W. July 15, 2017. Rolling parkland and grassland.
    [Show full text]
  • From Field Courses to DNA Barcoding Data Release for West Papua - Making Specimens and Identifications from University Courses More Sustainable
    Biodiversity Data Journal 6: e25237 doi: 10.3897/BDJ.6.e25237 Short Communications From field courses to DNA barcoding data release for West Papua - making specimens and identifications from university courses more sustainable Bruno Cancian de Araujo‡, Stefan Schmidt‡‡, Olga Schmidt , Thomas von Rintelen§, Agustinus Kilmaskossu|, Rawati Panjaitan|, Michael Balke ‡ ‡ SNSB-Zoologische Staatssammlung München, Munich, Germany § Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany | Department of Biology, Faculty of Sciences and Mathematics, State University of Papua (UNIPA), Jalan Gunung Salju Amban, Manokwari, Indonesia Corresponding author: Bruno Cancian de Araujo ([email protected]) Academic editor: Dmitry Schigel Received: 23 Mar 2018 | Accepted: 29 May 2018 | Published: 05 Jun 2018 Citation: Cancian de Araujo B, Schmidt S, Schmidt O, von Rintelen T, Kilmaskossu A, Panjaitan R, Balke M () From field courses to DNA barcoding data release for West Papua - making specimens and identifications from university courses more sustainable. https://doi.org/ ZooBank: urn:lsid:zoobank.org:pub:FC529346-029B-49FE-8E23-B2483CB61D4B Abstract The diversity of insects collected during entomological field courses at the University of West Papua (UNIPA), Indonesia, is studied using DNA barcoding tools. The results were compared with public data available for West Papua in the Barcode of Life Data System. During two training courses in 2013 and 2015, 1,052 specimens of insects were collected at eight sites near Manokwari in northern West Papua. The DNA sequences obtained from these specimens were assigned to 311 Barcode Index Numbers (BINs) and represent species in 27 families of Lepidoptera, Hymenoptera and Coleoptera. Of those BINs, 294 (95%) were new to West Papua.
    [Show full text]
  • The Microlepidopterous Fauna of Sri Lanka, Formerly Ceylon, Is Famous
    ON A COLLECTION OF SOME FAMILIES OF MICRO- LEPIDOPTERA FROM SRI LANKA (CEYLON) by A. DIAKONOFF Rijksmuseum van Natuurlijke Historie, Leiden With 65 text-figures and 18 plates CONTENTS Preface 3 Cochylidae 5 Tortricidae, Olethreutinae, Grapholitini 8 „ „ Eucosmini 23 „ „ Olethreutini 66 „ Chlidanotinae, Chlidanotini 78 „ „ Polyorthini 79 „ „ Hilarographini 81 „ „ Phricanthini 81 „ Tortricinae, Tortricini 83 „ „ Archipini 95 Brachodidae 98 Choreutidae 102 Carposinidae 103 Glyphipterigidae 108 A list of identified species no A list of collecting localities 114 Index of insect names 117 Index of latin plant names 122 PREFACE The microlepidopterous fauna of Sri Lanka, formerly Ceylon, is famous for its richness and variety, due, without doubt, to the diversified biotopes and landscapes of this beautiful island. In spite of this, there does not exist a survey of its fauna — except a single contribution, by Lord Walsingham, in Moore's "Lepidoptera of Ceylon", already almost a hundred years old, and a number of small papers and stray descriptions of new species, in various journals. The authors of these papers were Walker, Zeller, Lord Walsingham and a few other classics — until, starting with 1905, a flood of new descriptions 4 ZOOLOGISCHE VERHANDELINGEN I93 (1982) and records from India and Ceylon appeared, all by the hand of Edward Meyrick. He was almost the single specialist of these faunas, until his death in 1938. To this great Lepidopterist we chiefly owe our knowledge of all groups of Microlepidoptera of Sri Lanka. After his death this information stopped abruptly. In the later years great changes have taken place in the tropical countries. We are now facing, alas, the disastrously quick destruction of natural bio- topes, especially by the reckless liquidation of the tropical forests.
    [Show full text]
  • Coleoptera: Byrrhoidea
    P O L I S H JOU R NAL OF ENTOM O LOG Y POL SKIE PISMO ENTOMOL OGICZ N E VOL. 84: 145–154 Lublin 30 September 2015 DOI: 10.1515/pjen-2015-0012 Notes on Neotropical Microcorsini and Enarmoniini (Lepidoptera: Tortricidae) 1 2 JÓZEF RAZOWSKI , VITOR O. BECKER 1Institute of Systematic and Experimental Zoology, Polish Academy of Sciences, Kraków, 31-016 Sławkowska 17, Poland, e-mail: [email protected] 2Reserve Serra Bonita PO Box 01, 45 880 Camacan BA, Brazil, e-mail: [email protected] ABSTRACT. One genus – Auchenancylis gen. n. – and the following species are described as new: Cryptaspasma sanvito sp. n., Pseudancylis sphensaccula sp. n., Aglaopollex niveofascia sp. n., Aglaopollex gana sp. n., Auchenancylis macrauchenia sp. n. Hemimene sevocata is transferred to Auchancylis. KEY WORDS: Lepidoptera, Tortricidae, Microcorsini, Enarmoniini, Neotropical, new taxa. INTRODUCTION The Neotropical olethreutine tribes Microcorsini and Enarmoniini are little known. The Microcorsini are represented by six species of Cryptaspasma, described chiefly from Brazil. We have practically no data on their distribution except for the type localities. One species (C. anaphorana WALSINGHAM, 1914) and another described below are known from Central America, Panama and Costa Rica, which are the most northerly known localities of the genus. Enarmoniini have a world-wide distribution with an Oriental-Australian centre. In the New World there occur Ancylis HÜBNER, 1825 (35 Nearctic and 8 Neotropical species), Hystrichophora WALSINGHAM, 1879 (11 Nearctic species), Eucosmomorpha OBRAZTSOV, 1951 (one Nearctic species), Aglaopollex RAZOWSKI & PELZ, 2011 (Neotropical, 9 species) and the monotypical, Neotropical Auchenancylis gen. n. 146 Polish Journal of Entomology 84 (3) Acknowledgements The authors thank Artur CZEKAJ, Witold ZAJDA and Łukasz PRZYBYŁOWICZ, Kraków, for taking the photographs and arranging the plates.
    [Show full text]
  • Y Epinotia Subocellana (Donovan, [1806]), Dos Nueva Sespecies Para La Península Ibérica (Lepidoptera: Tortricidae) SHILAP Revista De Lepidopterología, Vol
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Ylla, J.; Groenen, F.; Maciá, R. Gravitarmata margarotana (Heinemann, 1863) y Epinotia subocellana (Donovan, [1806]), dos nueva sespecies para la Península Ibérica (Lepidoptera: Tortricidae) SHILAP Revista de Lepidopterología, vol. 35, núm. 138, junio, 2007, pp. 261-264 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Disponible en: http://www.redalyc.org/articulo.oa?id=45513810 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto 261-264 Gravitarmata margarota 23/6/07 18:13 Página 261 SHILAP Revta. lepid., 35 (138), 2007: 261-264 SRLPEF ISSN:0300-5267 Gravitarmata margarotana (Heinemann, 1863) y Epinotia subocellana (Donovan, [1806]), dos nuevas especies para la Península Ibérica (Lepidoptera: Tortricidae) J. Ylla, F. Groenen & R Macià Resumen Los autores citan a los tortrícidos Gravitarmata margarotana (Heinemann, 1863) y Epinotia subocellana (Do- novan, [1806]) por primera vez para la Península Ibérica. PALABRAS CLAVE: Lepidoptera, Tortricidae, Gravitarmata margarotana, Epinotia subocellana, nuevas citas, Pe- nínsula Ibérica. Gravitarmata margarotana (Heinemann, 1863) and Epinotia subocellana (Donovan, [1806]), two new species for the Iberian Peninsula. (Lepidoptera: Tortricidae) Abstract The tortricids moths Gravitarmata margarotana (Heinemann, 1863), and Epinotia subocellana (Donovan, [1806]), are reported for the first time from the Iberian Peninsula. KEY WORDS: Lepidoptera, Tortricidae, Gravitarmata margarotana, Epinotia subocellana, new records, Iberian Peninsula. Introducción En el año 2005, el segundo de los autores fue requerido para examinar una caja que contenía va- rios ejemplares de tortrícidos procedentes de España.
    [Show full text]
  • Developing Biodiverse Green Roofs for Japan: Arthropod and Colonizer Plant Diversity on Harappa and Biotope Roofs
    20182018 Green RoofsUrban and Naturalist Urban Biodiversity SpecialSpecial Issue No. Issue 1:16–38 No. 1 A. Nagase, Y. Yamada, T. Aoki, and M. Nomura URBAN NATURALIST Developing Biodiverse Green Roofs for Japan: Arthropod and Colonizer Plant Diversity on Harappa and Biotope Roofs Ayako Nagase1,*, Yoriyuki Yamada2, Tadataka Aoki2, and Masashi Nomura3 Abstract - Urban biodiversity is an important ecological goal that drives green-roof in- stallation. We studied 2 kinds of green roofs designed to optimize biodiversity benefits: the Harappa (extensive) roof and the Biotope (intensive) roof. The Harappa roof mimics vacant-lot vegetation. It is relatively inexpensive, is made from recycled materials, and features community participation in the processes of design, construction, and mainte- nance. The Biotope roof includes mainly native and host plant species for arthropods, as well as water features and stones to create a wide range of habitats. This study is the first to showcase the Harappa roof and to compare biodiversity on Harappa and Biotope roofs. Arthropod species richness was significantly greater on the Biotope roof. The Harappa roof had dynamic seasonal changes in vegetation and mainly provided habitats for grassland fauna. In contrast, the Biotope roof provided stable habitats for various arthropods. Herein, we outline a set of testable hypotheses for future comparison of these different types of green roofs aimed at supporting urban biodiversity. Introduction Rapid urban growth and associated anthropogenic environmental change have been identified as major threats to biodiversity at a global scale (Grimm et al. 2008, Güneralp and Seto 2013). Green roofs can partially compensate for the loss of green areas by replacing impervious rooftop surfaces and thus, contribute to urban biodiversity (Brenneisen 2006).
    [Show full text]