Retrospective Analysis of the Two Sister Study Using Haplotype-Based Association Testing To

Total Page:16

File Type:pdf, Size:1020Kb

Retrospective Analysis of the Two Sister Study Using Haplotype-Based Association Testing To medRxiv preprint doi: https://doi.org/10.1101/2020.12.04.20244251; this version posted December 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Retrospective analysis of The Two Sister Study using haplotype-based association testing to 2 identify loci associated with early-onset breast cancer 3 James R. Gilbert, Ph.D. 1, James J. Cray, Ph.D. 2, Joseph E. Losee, M.D. 1, Gregory M. Cooper, 4 Ph.D. 1,3,4. 5 6 1. Department of Plastic Surgery, University of Pittsburgh/Children’s Hospital of Pittsburgh, 7 Pittsburgh, PA 15201. 8 2. Division of Anatomy, The Ohio State University College of Medicine, Columbus, OH 9 43210. 10 3. Department of Oral Biology, University of Pittsburgh/Children’s Hospital of Pittsburgh, 11 Pittsburgh, PA 15201. 12 4. Department of Bioengineering, University of Pittsburgh/Children’s Hospital of Pittsburgh, 13 Pittsburgh, PA 15201. 14 15 Email addresses: 16 [email protected] 17 [email protected] 18 [email protected] 19 [email protected] 20 21 Running Title: 22 23 Funding: The work described within this study was funded through the Children’s Fund of 24 Children’s Hospital of Pittsburgh of UPMC and through the Ross H. Musgrave Endowment 25 (J.E.L). 26 27 Conflicts of Interest: There are no conflicts of interest to disclose. 28 Corresponding Author: 29 Dr. Gregory M. Cooper 30 Department of Plastic Surgery 31 3533 Rangos Research Building 32 530 45th St, Pittsburgh, PA 15201 33 412/692-5384 (office) 34 [email protected] 35 36 Keywords: young-onset; early-onset; cancer; familial; breast cancer 37 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.04.20244251; this version posted December 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 38 ABSTRACT 39 Breast cancer is a polygenic disorder and is the leading cause of cancer related mortality among 40 women. Early-onset breast cancer (EOBC) is diagnosed in women prior to 45 years-of-age and is 41 associated with worse clinical outcomes, a more aggressive disease phenotype, and poor prognosis 42 for disease-free survival. While substantial progress has been made in defining the genetics of 43 breast cancer, EOBC remains less well understood. In the current study we perform a retrospective 44 analysis of data derived from The Two Sister Study. The use of alternate strategies for handling 45 age-at-diagnosis in conjunction with haplotype-based methods yielded novel findings that help to 46 explain the heritability of EOBC. These findings are validated through comparison against 47 discordant sibs from The Two Sister Study as well as using data derived The Cancer Genome Atlas 48 (TCGA). medRxiv preprint doi: https://doi.org/10.1101/2020.12.04.20244251; this version posted December 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 49 INTRODUCTION 50 Breast cancer is the most frequently diagnosed oncogenic malignancy and a leading cause 51 of cancer-related mortality among women worldwide (1, 2). Early-onset breast cancer (EOBC) 52 accounts for approximately 5-10% of all new female breast cancer cases and young age at 53 diagnosis correlates with worse clinical outcomes (3, 4). Germline variants play a prominent role 54 in the etiology of breast cancer and an estimated 10-15% of women who develop breast cancer 55 report a familial history of the disease. Germline variants in BRCA1 or BRCA2 are observed in 15- 56 20% of familial breast cancer cases (5). Direct evidence for genetic modifiers of breast and ovarian 57 cancer risk for BRCA1 and BRCA2 mutation carriers has been provided through genome-wide 58 association study (GWAS) (6). Patients affected by EOBC exhibit shared patterns of gene 59 expression that differ from their older counterparts (7). These combined observations suggest a 60 genetic component contributes to EOBC although only a fraction of the heritability of EOBC has 61 been explained. 62 Deciphering the genetic basis for phenotypic heterogeneity in complex diseases remains a 63 major challenge. Single marker association studies often lack sufficient statistical power to support 64 the discovery of rare variants or epistatic interactions within a polygenic architecture. Haplotype- 65 based analysis is thought to have greater power than single marker association tests in the study of 66 complex disease (8-10). Haplotypes, which consist of a series of sequentially ordered single 67 nucleotide variants (SNVs), are a potentially more informative format for association testing than 68 single markers and may have improved sensitivity and specificity for discovery (11, 12). 69 Haplotype-based analysis has been used to gain insight in a wide array of complex disease models 70 including mood disorders, multiple sclerosis, orofacial clefting, and cancer (13-18). Moreover, medRxiv preprint doi: https://doi.org/10.1101/2020.12.04.20244251; this version posted December 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 71 haplotype-based analysis has been effectively applied to investigate age-of-onset in human disease 72 although relatively few studies have specifically addressed EOBC (19-23). 73 Several approaches have been used to investigate the genetic regulation of breast cancer 74 age-of-onset. The Two Sister Study made use of a familial case-control design with affected cases 75 diagnosed ≤ 50 years-of-age and discordant sibs of EOBC patients defining a control population. 76 Parental samples were included in The Two Sister Study to allow for the identification of 77 maternally-mediated effects and Mendelian errors in transmission (24-26). Other studies have 78 instead used categorical thresholding with diagnosis at 35, 40, 45, and 50-years-of-age to define 79 EOBC populations contrasted against either unaffected familial controls or unrelated age-matched 80 controls (3, 27-29). Age-of-onset has further been evaluated in terms of phenotypic extremes by 81 comparing individuals diagnosed at ≤ 35 years-of-age against cancer-free controls at age ≥ 60 or 82 against an age-specific cohort diagnosed with breast cancer at ≥ 65 years-of-age (30, 31). Still 83 others have investigated breast cancer in terms of age-stratified risk or using quantitative trait 84 analysis to support discovery. Internally consistent logic has justified the use of these and other 85 study designs. Yet the genetic basis for EOBC remains poorly understood and more recent studies 86 have turned towards meta-analyses aimed at achieving sufficient statistical power to identify rare 87 variants with small effect size (32-34). 88 Design considerations for the study of complex polygenic disorders have been evaluated 89 across a range of disease models. For example, Peyrot and colleagues have convincingly argued 90 against familial trio designs when investigating complex disease traits with a polygenic 91 architecture or a lifetime risk ≥ 1% (35). Reasons given included a potential for reduced statistical 92 power, ascertainment bias, and a significant underestimation of SNV heritability. Additional 93 considerations in sib pair study design include the potential for misclassification and/or medRxiv preprint doi: https://doi.org/10.1101/2020.12.04.20244251; this version posted December 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 94 overmatching (36). Misclassification of discordant sibs presents a challenge primarily in cases 95 associated with pronounced variation in age-of-onset. Overmatching presents a more significant 96 challenge in complex disease models where discordant sibs are likely to share an indeterminate 97 number of disease-related alleles. As a result, allele-frequency differences between affected and 98 unaffected sibs are generally underestimated relative to randomly selected affected and unaffected 99 individuals (36). Recent investigation of polygenic risk in multiplex melanoma families indicated 100 that familial controls may carry a significantly elevated polygenic load relative to unrelated cases 101 or healthy controls and thereby introduce bias (37). Kerber and colleagues likewise argued that 102 familial studies should be approached with caution, particularly when investigating complex 103 diseases such as cancer where variable onset, incomplete genetic penetrance, gene-environment 104 interactions, and environmental phenocopies have a dramatic potential to impact disease 105 occurrence and phenotype (38). The authors further argued in favor of a case-only analysis for an 106 initial scan followed by more comprehensive analysis of regions surrounding initial hits using both 107 affected and unaffected study participants. In keeping with this reasoning, we speculated that a 108 comparison of younger and older patients diagnosed with breast cancer might provide insight into 109 the genetic architecture of breast cancer age-of-onset. 110 We performed a retrospective analysis of “The Two Sister Study: A Family-Based Study of 111 Genes and Environment in Young-Onset Breast Cancer,” hereafter referred to as “The Two Sister 112 Study.” The Two Sister Study is one of the longest standing and best characterized studies of early- 113 onset breast cancer and hence was chosen to establish proof-of-principle.
Recommended publications
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Rabbit Anti-LYPD6B/CT116/FITC Conjugated Antibody-SL18576R-FITC
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-LYPD6B/CT116/FITC Conjugated antibody SL18576R-FITC Product Name: Anti-LYPD6B/CT116/FITC Chinese Name: FITC标记的LYPD6B蛋白抗体 Cancer/testis antigen 116; CT116; LY6/PLAUR domain containing 6B; Ly6/PLAUR Alias: domain containing protein 6B; LYPD6B; LYPD7. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Dog,Cow,Rabbit,Sheep, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 14kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human LYPD6B/CT116 Lsotype: IgG Purification: affinitywww.sunlongbiotech.com purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 ℃ for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20℃. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 ℃. background: The second largest human chromosome, 2 consists of 237 million bases encoding over 1,400 genes and making up approximately 8% of the human genome. A number of Product Detail: genetic diseases are linked to genes on chromosome 2. Harlequin icthyosis, a rare and morbid skin deformity, is associated with mutations in the ABCA12 gene. The lipid metabolic disorder sitosterolemia is associated with ABCG5 and ABCG8.
    [Show full text]
  • Organization, Evolution and Functions of the Human and Mouse Ly6/Upar Family Genes Chelsea L
    Loughner et al. Human Genomics (2016) 10:10 DOI 10.1186/s40246-016-0074-2 GENE FAMILY UPDATE Open Access Organization, evolution and functions of the human and mouse Ly6/uPAR family genes Chelsea L. Loughner1, Elspeth A. Bruford2, Monica S. McAndrews3, Emili E. Delp1, Sudha Swamynathan1 and Shivalingappa K. Swamynathan1,4,5,6,7* Abstract Members of the lymphocyte antigen-6 (Ly6)/urokinase-type plasminogen activator receptor (uPAR) superfamily of proteins are cysteine-rich proteins characterized by a distinct disulfide bridge pattern that creates the three-finger Ly6/uPAR (LU) domain. Although the Ly6/uPAR family proteins share a common structure, their expression patterns and functions vary. To date, 35 human and 61 mouse Ly6/uPAR family members have been identified. Based on their subcellular localization, these proteins are further classified as GPI-anchored on the cell membrane, or secreted. The genes encoding Ly6/uPAR family proteins are conserved across different species and are clustered in syntenic regions on human chromosomes 8, 19, 6 and 11, and mouse Chromosomes 15, 7, 17, and 9, respectively. Here, we review the human and mouse Ly6/uPAR family gene and protein structure and genomic organization, expression, functions, and evolution, and introduce new names for novel family members. Keywords: Ly6/uPAR family, LU domain, Three-finger domain, uPAR, Lymphocytes, Neutrophils Introduction an overview of the Ly6/uPAR gene family and their gen- The lymphocyte antigen-6 (Ly6)/urokinase-type plas- omic organization, evolution, as well as functions, and minogen activator receptor (uPAR) superfamily of struc- provide a nomenclature system for the newly identified turally related proteins is characterized by the LU members of this family.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • 35Th International Society for Animal Genetics Conference 7
    35th INTERNATIONAL SOCIETY FOR ANIMAL GENETICS CONFERENCE 7. 23.16 – 7.27. 2016 Salt Lake City, Utah ABSTRACT BOOK https://www.asas.org/meetings/isag2016 INVITED SPEAKERS S0100 – S0124 https://www.asas.org/meetings/isag2016 epigenetic modifications, such as DNA methylation, and measuring different proteins and cellular metab- INVITED SPEAKERS: FUNCTIONAL olites. These advancements provide unprecedented ANNOTATION OF ANIMAL opportunities to uncover the genetic architecture GENOMES (FAANG) ASAS-ISAG underlying phenotypic variation. In this context, the JOINT SYMPOSIUM main challenge is to decipher the flow of biological information that lies between the genotypes and phe- notypes under study. In other words, the new challenge S0100 Important lessons from complex genomes. is to integrate multiple sources of molecular infor- T. R. Gingeras* (Cold Spring Harbor Laboratory, mation (i.e., multiple layers of omics data to reveal Functional Genomics, Cold Spring Harbor, NY) the causal biological networks that underlie complex traits). It is important to note that knowledge regarding The ~3 billion base pairs of the human DNA rep- causal relationships among genes and phenotypes can resent a storage devise encoding information for be used to predict the behavior of complex systems, as hundreds of thousands of processes that can go on well as optimize management practices and selection within and outside a human cell. This information is strategies. Here, we describe a multi-step procedure revealed in the RNAs that are composed of 12 billion for inferring causal gene-phenotype networks underly- nucleotides, considering the strandedness and allelic ing complex phenotypes integrating multi-omics data. content of each of the diploid copies of the genome.
    [Show full text]
  • Genomic and Transcriptome Analysis Revealing an Oncogenic Functional Module in Meningiomas
    Neurosurg Focus 35 (6):E3, 2013 ©AANS, 2013 Genomic and transcriptome analysis revealing an oncogenic functional module in meningiomas XIAO CHANG, PH.D.,1 LINGLING SHI, PH.D.,2 FAN GAO, PH.D.,1 JONATHAN RUssIN, M.D.,3 LIYUN ZENG, PH.D.,1 SHUHAN HE, B.S.,3 THOMAS C. CHEN, M.D.,3 STEVEN L. GIANNOTTA, M.D.,3 DANIEL J. WEISENBERGER, PH.D.,4 GAbrIEL ZADA, M.D.,3 KAI WANG, PH.D.,1,5,6 AND WIllIAM J. MAck, M.D.1,3 1Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; 2GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; 3Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; 4USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California; 5Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California; and 6Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California Object. Meningiomas are among the most common primary adult brain tumors. Although typically benign, roughly 2%–5% display malignant pathological features. The key molecular pathways involved in malignant trans- formation remain to be determined. Methods. Illumina expression microarrays were used to assess gene expression levels, and Illumina single- nucleotide polymorphism arrays were used to identify copy number variants in benign, atypical, and malignant me- ningiomas (19 tumors, including 4 malignant ones). The authors also reanalyzed 2 expression data sets generated on Affymetrix microarrays (n = 68, including 6 malignant ones; n = 56, including 3 malignant ones).
    [Show full text]
  • LYPD6B (F-13): Sc-243376
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . LYPD6B (F-13): sc-243376 BACKGROUND PRODUCT LYPD6B (LY6/PLAUR domain containing 6B), also known as CT116, is a 183 Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide amino acid GPI-anchor protein that exists as 2 alternatively spliced isoforms. and 0.1% gelatin. Containing one UPAR/Ly6, LYPD6B is encoded by a gene located on human Blocking peptide available for competition studies, sc-243376 P, (100 µg chromosome 2. The second largest human chromosome, 2 consists of 237 peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). million bases encoding over 1,400 genes and making up approximately 8% of the human genome. A number of genetic diseases are linked to genes on APPLICATIONS chromosome 2. Harlequin icthyosis, a rare and morbid skin deformity, is associated with mutations in the ABCA12 gene. The lipid metabolic disorder LYPD6B (F-13) is recommended for detection of LYPD6B of mouse, rat and sitosterolemia is associated with ABCG5 and ABCG8. An extremely rare human origin by Western Blotting (starting dilution 1:200, dilution range recessive genetic disorder, Alström syndrome is due to mutations in the 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range ALMS1 gene. Interestingly, chromosome 2 contains a vestigial second cen - 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range tromere and vestigial telomeres which gives credence to the hypothesis 1:30-1:3000); non cross-reactive with LYPD6.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Research2007herschkowitzetvolume Al
    Open Access Research2007HerschkowitzetVolume al. 8, Issue 5, Article R76 Identification of conserved gene expression features between comment murine mammary carcinoma models and human breast tumors Jason I Herschkowitz¤*†, Karl Simin¤‡, Victor J Weigman§, Igor Mikaelian¶, Jerry Usary*¥, Zhiyuan Hu*¥, Karen E Rasmussen*¥, Laundette P Jones#, Shahin Assefnia#, Subhashini Chandrasekharan¥, Michael G Backlund†, Yuzhi Yin#, Andrey I Khramtsov**, Roy Bastein††, John Quackenbush††, Robert I Glazer#, Powel H Brown‡‡, Jeffrey E Green§§, Levy Kopelovich, reviews Priscilla A Furth#, Juan P Palazzo, Olufunmilayo I Olopade, Philip S Bernard††, Gary A Churchill¶, Terry Van Dyke*¥ and Charles M Perou*¥ Addresses: *Lineberger Comprehensive Cancer Center. †Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. ‡Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA. reports §Department of Biology and Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. ¶The Jackson Laboratory, Bar Harbor, ME 04609, USA. ¥Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. #Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA. **Department of Pathology, University of Chicago, Chicago, IL 60637, USA. ††Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA. ‡‡Baylor College of Medicine, Houston, TX 77030, USA. §§Transgenic Oncogenesis Group, Laboratory of Cancer Biology and Genetics. Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, MD 20892, USA. Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA. Section of Hematology/Oncology, Department of Medicine, Committees on Genetics and Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
    [Show full text]
  • Nicotinic Signaling: Alpha3 Beta4 Heteromers, Alpha5 Subunits, and the Rp Ototoxin Lypd6b Vanessa Ochoa University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2015 Nicotinic Signaling: Alpha3 Beta4 Heteromers, Alpha5 Subunits, And The rP ototoxin Lypd6b Vanessa Ochoa University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Neuroscience and Neurobiology Commons Recommended Citation Ochoa, Vanessa, "Nicotinic Signaling: Alpha3 Beta4 Heteromers, Alpha5 Subunits, And The rP ototoxin Lypd6b" (2015). Graduate College Dissertations and Theses. 472. https://scholarworks.uvm.edu/graddis/472 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. NICOTINIC SIGNALING: ALPHA3 BETA4 HETEROMERS, ALPHA5 SUBUNITS, AND THE PROTOTOXIN LYPD6B A Dissertation Presented by Vanessa Ochoa to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Neuroscience October, 2015 Defense Date: July 15, 2015 Dissertation Examination Committee: Rae Nishi, Ph.D., Advisor Nicholas H. Heintz, Ph.D., Chairperson Victor May, Ph.D. Rodney Parsons, Ph.D. Anthony Morielli, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Prototoxin proteins have been identified as members of the Ly6/uPAR super family whose three-finger motif resembles that of α-bungarotoxin. Though they are known to modify the function of nAChRs, their specificity is still unclear. Our lab identified three prototoxin proteins in the chicken ciliary ganglion: Ch3ly, Ch5ly, and Ch6ly.
    [Show full text]
  • A Tale of Two Tails Eric M. Jennings Janezic
    Elucidating the role of unique structural features of the 1D-adrenergic receptor: A tale of two tails Eric M. Jennings Janezic A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2020 Reading Committee: Chris Hague, Chair Edith Wang Ning Zheng Program Authorized to Offer Degree: Pharmacology ©Copyright 2020 Eric M. Jennings Janezic University of Washington Abstract Elucidating the role of unique structural features of the 1D-adrenergic receptor: A tale of two tails Eric M. Jennings Janezic Chair of the Supervisory Committee: Christopher Hague Department of Pharmacology G protein-coupled receptors (GPCRs) are seven transmembrane domain proteins accounting for ~4% of the human genome, and the predicted target of ~30% FDA approved therapeutics. Often, drugs compete with endogenous ligands for orthosteric binding sites, giving rise to off-target interactions and deleterious side-effects – thus there is a need to identify novel potential ligand binding sites with increased specificity. Recent advances in the field suggest that targeting protein:protein interaction networks, or post-translational modifications that regulate GPCR expression, trafficking, and/or function, may be the key to improving ligand selectivity and decreasing unwanted toxicities. To this end, I devoted my Ph.D. studies to studying two unique structural features that regulate the function of the 1D-adrenergic receptor (1D-AR) – a GPCR vital for myriad peripheral and central nervous processes which has been implicated in the development and maintenance of hypertension, benign prostate hypertrophy, schizophrenia, and post-traumatic stress disorder – a distal C-terminal Type I PDZ (PSD95/Dlg/ZO-1) ligand and an unusual N-terminal domain.
    [Show full text]
  • Transcriptional and Spatial Resolution of Cell Types in the Mammalian Habenula
    bioRxiv preprint doi: https://doi.org/10.1101/772376; this version posted September 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Transcriptional and Spatial Resolution of Cell Types in the Mammalian Habenula Yoshiko Hashikawa1*, Koichi Hashikawa1*, Marcus L. Basiri1,2, Yuejia Liu1, Nathan L. Johnston1, Omar R. Ahmad1, Garret D. Stuber1# 1Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA 98195 2Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC 27599 *These authors contributed equally to this work. # Address Correspondence to: Garret D. Stuber, Ph.D. Professor Center for the Neurobiology of Addiction, Pain, and Emotion Department of Anesthesiology and Pain Medicine Department of Pharmacology University of Washington Seattle, WA 98195 Email: [email protected] Office: +1 (206) 685-5517 Lab: +1 (206) 221-2573 stuberlab.org 1 bioRxiv preprint doi: https://doi.org/10.1101/772376; this version posted September 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Summary The habenula complex is appreciated as a critical regulator of motivated and pathological behavioral states via its output to midbrain nuclei. Despite this, transcriptional definition of cell populations that comprise both the medial (MHb) and lateral habenular (LHb) subregions in mammals remain undefined.
    [Show full text]