Odonatological Abstracts 1985 1987
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dragonfly Survey Report
Moorebank Precinct West Threatened Dragonfly Species Survey Plan Report Part 4, Division 4.1, State Significant Development September 2016 TACTICAL GROUP MOOREBANK PRECINCT WEST Threatened Dragonfly Species Survey Plan Report Author Adam Costenoble Checker Kate Carroll Approver Ketan Patel Report No 001 Date 26/09/2016 Revision Text Final This report has been prepared for Tactical Group in accordance with the terms and conditions of appointment for AA009335 dated July 2016. Arcadis Australia Pacific Pty Limited (ABN 76 104 485 289) cannot accept any responsibility for any use of or reliance on the contents of this report by any third party. REVISIONS Prepared Approved Revision Date Description by by Adam 001 26/09/16 For submission to DPI Fisheries Ketan Patel Costenoble V i CONTENTS EXECUTIVE SUMMARY ............................................................................................................ 1 1 INTRODUCTION ...................................................................................................................... 2 1.1 Project Overview ................................................................................................................. 2 1.2 Purpose of this report ......................................................................................................... 3 1.3 Aims of this Report ............................................................................................................. 3 1.4 Consultation ....................................................................................................................... -
Publisher Version
Diversity and Distributions, (Diversity Distrib.) (2014) 20, 1016–1028 BIODIVERSITY Testing for taxonomic bias in the future RESEARCH diversity of Australian Odonata Alex Bush1*, David A. Nipperess1, Gunther Theischinger2,3, Eren Turak2,3 and Lesley Hughes1 1Macquarie University, Sydney, NSW, ABSTRACT Australia, 2Office of Environment and Aim Invertebrates are often overlooked in assessments of climate change Heritage NSW, Sydney, NSW, Australia, 3 impacts. Odonata (dragonflies and damselflies) are a significant component of Australian Museum, 6 College Street, Sydney, NSW 2010, Australia freshwater macroinvertebrate diversity and are likely to be highly responsive to a changing climate. We investigate whether climate change could lead to signif- icant alteration of continental patterns of diversity and whether vulnerable species are taxonomically clustered. Location Australia. Methods Habitat suitability of 270 odonate species was modelled, and a sim- plified phylogeny was developed based on taxonomic relationships and expert A Journal of Conservation Biogeography opinion. These maps were then combined to compare species richness, ende- mism, taxonomic diversity (TD) and taxonomic endemism (TE) under climate change scenarios, and estimate turnover in species composition. Based on the concentration of vulnerable species in regions associated with Gondwanan re- licts, we tested the possibility that a focus on species loss would underestimate loss of evolutionary diversity. Results Species richness of Australian Odonata is concentrated in the Wet Tro- pics, central-north Australia and south-east Queensland. Several additional regions support endemic assemblages, including the Victorian alpine region, the Pilbara and far south-western Australia. Major shifts in composition are expected across most of the east coast in response to climate change, and Tas- mania has the potential to become a major refuge for mainland species. -
Adam's Emerald Dragonfly
Adam’s Emerald Dragonfly - Archaeophya adamsi December 2013, Primefact 187, Third edition Fisheries Ecosystems Unit, Port Stephens Fisheries Institute Description The Adam’s Emerald Dragonfly (also called Horned Urfly) is a moderately large, robust Dragonfly. Larvae grow to about 23mm in length and have a large two-lobed frontal plate on the head (see Figure 1), which distinguishes them from any other species found in NSW. The adults have a brown-black body with yellow markings, and a slight green or bluish metallic reflection on some parts. The abdomen length is around 46 mm and wingspan around 75 mm. Habitat and ecology Adam’s Emerald Dragonfly larvae have been Figure 1: Adult Adam’s Emerald Dragonfly (Photo: found in narrow, shaded riffle zones with CSIRO Entomology) and larva (Photo: J. Hawking, moss and abundant riparian vegetation (often Line drawing: G. Theischinger) closed canopy) in small to moderate sized creeks with gravel or sandy bottoms. Introduction All dragonflies are predatory. The larvae stalk or ambush aquatic prey while the adults The Adam’s Emerald Dragonfly (Archaeophya capture prey while flying. adamsi Fraser) is one of Australia’s rarest Adam’s Emerald Dragonfly larvae may live, in dragonflies. Only a small number of adults have particular cases, up to 7 years and undergo ever been collected, and the species is only various moults before metamorphosing into known from a few sites in the greater Sydney adults. Adults are thought to live for a few region. Some remaining areas of habitat are months at most. under threat from urban, industrial and agricultural development. -
An Overview of Molecular Odonate Studies, and Our Evolutionary Understanding of Dragonfly and Damselfly (Insecta: Odonata) Behavior
International Journal of Odonatology Vol. 14, No. 2, June 2011, 137–147 Dragons fly, biologists classify: an overview of molecular odonate studies, and our evolutionary understanding of dragonfly and damselfly (Insecta: Odonata) behavior Elizabeth F. Ballare* and Jessica L. Ware Department of Biological Sciences, Rutgers, The State University of New Jersey, 195 University Ave., Boyden Hall, Newark, NJ, 07102, USA (Received 18 November 2010; final version received 3 April 2011) Among insects, perhaps the most appreciated are those that are esthetically pleasing: few capture the interest of the public as much as vibrantly colored dragonflies and damselflies (Insecta: Odonata). These remarkable insects are also extensively studied. Here, we review the history of odonate systematics, with an emphasis on discrepancies among studies. Over the past century, relationships among Odonata have been reinterpreted many times, using a variety of data from wing vein morphology to DNA. Despite years of study, there has been little consensus about odonate taxonomy. In this review, we compare odonate molecular phylogenetic studies with respect to gene and model selection, optimality criterion, and dataset completeness. These differences are discussed in relation to the evolution of dragonfly behavior. Keywords: Odonata; mitochondrion; nuclear; phylogeny; systematic; dragonfly; damselfly Introduction Why study Odonata? The order Odonata comprises three suborders: Anisozygoptera, Anisoptera, and Zygoptera. There are approximately 6000 species of Odonata described worldwide (Ardila-Garcia & Gregory, 2009). Of the three suborders Anisoptera and Zygoptera are by far the most commonly observed and collected, because there are only two known species of Anisozygoptera under the genus Epiophlebia. All odonate nymphs are aquatic, with a few rare exceptions such as the semi-aquatic Pseudocordulia (Watson, 1983), and adults are usually found near freshwater ponds, marshes, rivers (von Ellenrieder, 2010), streams, and lakes (although some species occur in areas of mild salinity; Corbet, 1999). -
Evolution, Taxonomy, Libelluloides
Odonalologica24(4): 383-424 December I. 1995 Evolution, taxonomy, and biogeography ofancient Gondwanianlibelluloides, with comments on anisopteroidevolution and phylogenetic systematics (Anisoptera: Libelluloidea)* F.L. Carle¹ Department of Entomology,Cook College, New Jersey Agricultural ExperimentStation, Rutgers University, New Brunswick, NJ 08903, United States Received October 14, 1994 / Reviewed and Accepted April 4, 1995 /Final additions and modificatons received May 17, 1995 New phylogenetic systematic methodologies are presented and the terms ‘neapomorphy’, ‘coapomorphy’, ‘exapomorphy’ and ‘apophyletic’ introduced. Re- sults are presented in sorted character state matrices which show the outcome of char- acter state evaluation while depicting phylogenetic arrangement. Higher classifica- tion, phylogeny, and biogeography of Anisoptera are reviewed and keys provided for superfamilies and families. The pattern of anisopteroid neapomorphy supports the superfamily arrangement proposed by F.L. CARLE (1986, Odonatologica 15: 275- -326), whileindicatingpolyphyly for Cordulegasteroidea[sic] ofEC. FRASER (1957, A reclassification of the order Odonata, R. Zool. Soc NSW, Sydney) and both “Neanisoptera”and“Petaluroidea”ofH.-K.PFAU (1991, Adv. Odonalol. 5: 109-141). Paraphyletic groupingsinclude Aeschnidae [sic] of R.J. TILLYARD (1917, The biol- D. DAY1ES ogy of dragonflies,Cambridge Univ. Press), and Cordulegastroideaof A.L. int. Nothomacromia (1981, Soc. odonatol. rapid Comm. 3: 1-60). nom.n.is proposed as areplacement for Pseudomacromia Carle & Wighton, 1990,nec. Pseudomacromia Kirby, 1890. Congruence between phylogenetic and biogeographicpatterns indicates two or more distinct mesozoic utilizations of a trans-pangaeian montane dispersal Incorrect association of with for the 137 route. Neopetalia austropetaliids past years has obscured the gondwanianorigin and subsequent radiation of non-cordulegastrid which least 140 million the frozen Libelluloidea,a process began at years ago on now continent of Antarctica. -
Identification Guide to the Australian Odonata Australian the to Guide Identification
Identification Guide to theAustralian Odonata www.environment.nsw.gov.au Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW National Library of Australia Cataloguing-in-Publication data Theischinger, G. (Gunther), 1940– Identification Guide to the Australian Odonata 1. Odonata – Australia. 2. Odonata – Australia – Identification. I. Endersby I. (Ian), 1941- . II. Department of Environment and Climate Change NSW © 2009 Department of Environment, Climate Change and Water NSW Front cover: Petalura gigantea, male (photo R. Tuft) Prepared by: Gunther Theischinger, Waters and Catchments Science, Department of Environment, Climate Change and Water NSW and Ian Endersby, 56 Looker Road, Montmorency, Victoria 3094 Published by: Department of Environment, Climate Change and Water NSW 59–61 Goulburn Street Sydney PO Box A290 Sydney South 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131555 (information & publication requests) Fax: (02) 9995 5999 Email: [email protected] Website: www.environment.nsw.gov.au The Department of Environment, Climate Change and Water NSW is pleased to allow this material to be reproduced in whole or in part, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. ISBN 978 1 74232 475 3 DECCW 2009/730 December 2009 Printed using environmentally sustainable paper. Contents About this guide iv 1 Introduction 1 2 Systematics -
Critical Species of Odonata in Australia
---Guardians of the watershed. Global status of Odonata: critical species, threat and conservation --- Critical species of Odonata in Australia John H. Hawking 1 & Gunther Theischinger 2 1 Cooperative Research Centre for Freshwater Ecology, Murray-Darling Freshwater Research Centre, PO Box 921, Albury NSW, Australia 2640. <[email protected]> 2 Environment Protection Authority, New South Wales, 480 Weeroona Rd, Lidcombe NSW, Australia 2141. <[email protected]> Key words: Odonata, dragonfly, IUCN, critical species, conservation, Australia. ABSTRACT The Australian Odonata fauna is reviewed. The state of the current taxonomy and ecology, studies on biodiversity, studies on larvae and the all identification keys are reported. The conservation status of the Australian odonates is evaluated and the endangered species identified. In addition the endemic species, species with unusual biology and species, not threatened yet, but maybe becoming critical in the future are discussed and listed. INTRODUCTION Australia has a diverse odonate fauna with many relict (most endemic) and most of the modern families (Watson et al. 1991). The Australian fauna is now largely described, but the lack of organised surveys resulted in limited distributional and ecological information. The conservation of Australian Odonata also received scant attention, except for Watson et al. (1991) promoting the awareness of Australia's large endemic fauna, the listing of four species as endangered (Moore 1997; IUCN 2003) and the suggesting of categories for all Australian species (Hawking 1999). This conservation report summarizes the odonate studies/ literature for species found in Continental Australia (including nearby smaller and larger islands) plus Lord Howe Island and Norfolk Island. Australia encompasses tropical, temperate, arid, alpine and off shore island climatic regions, with the land mass situated between latitudes 11-44 os and 113-154 °E, and flanked on the west by the Indian Ocean and on the east by the Pacific Ocean. -
The Classification and Diversity of Dragonflies and Damselflies (Odonata)*
Zootaxa 3703 (1): 036–045 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3703.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:9F5D2E03-6ABE-4425-9713-99888C0C8690 The classification and diversity of dragonflies and damselflies (Odonata)* KLAAS-DOUWE B. DIJKSTRA1, GÜNTER BECHLY2, SETH M. BYBEE3, RORY A. DOW1, HENRI J. DUMONT4, GÜNTHER FLECK5, ROSSER W. GARRISON6, MATTI HÄMÄLÄINEN1, VINCENT J. KALKMAN1, HARUKI KARUBE7, MICHAEL L. MAY8, ALBERT G. ORR9, DENNIS R. PAULSON10, ANDREW C. REHN11, GÜNTHER THEISCHINGER12, JOHN W.H. TRUEMAN13, JAN VAN TOL1, NATALIA VON ELLENRIEDER6 & JESSICA WARE14 1Naturalis Biodiversity Centre, PO Box 9517, NL-2300 RA Leiden, The Netherlands. E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany. E-mail: [email protected] 3Department of Biology, Brigham Young University, 401 WIDB, Provo, UT. 84602 USA. E-mail: [email protected] 4Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium. E-mail: [email protected] 5France. E-mail: [email protected] 6Plant Pest Diagnostics Branch, California Department of Food & Agriculture, 3294 Meadowview Road, Sacramento, CA 95832- 1448, USA. E-mail: [email protected]; [email protected] 7Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa, 250-0031 Japan. E-mail: [email protected] 8Department of Entomology, Rutgers University, Blake Hall, 93 Lipman Drive, New Brunswick, New Jersey 08901, USA. -
Bibliografie Der Wirbellosen Tiere (Evertebrata) Oberösterreichs (2003-2012) 841-921 841
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Beiträge zur Naturkunde Oberösterreichs Jahr/Year: 2013 Band/Volume: 0023_2 Autor(en)/Author(s): Gusenleitner Fritz Josef [Friedrich], Aescht Erna, Schwarz Martin Artikel/Article: Bibliografie der Wirbellosen Tiere (Evertebrata) Oberösterreichs (2003-2012) 841-921 841 Beitr. Naturk. Oberösterreichs 23/2 841-921 14.6.2013 Bibliografie der Wirbellosen Tiere (Evertebrata) Oberösterreichs (2003-2012) F. GUSENLEITNER, E. AESCHT & M. SCHWARZ Anschließend an die Bibliografien 1930-1980 (GUSENLEITNER F. & J. GUSENLEITNER 1983), 1981-1990 (GUSENLEITNER F. 1992) sowie 1991-2002 (GUSENLEITNER F. & E. AESCHT 2003) wurde auch hier die Einteilung der Zitate nach systematischen Kriterien gewählt. Die Titel der Arbeiten enthalten oft keinen Hinweis auf die Landesbezogenheit, es wurden jedoch auch Zitate ausgewählt, die nur wenige Angaben zur oberösterreichi- schen Fauna enthalten. Zusätzlich wurden auch Gesamtbibliografien von bedeutenden Oberösterreichern aufgenommen. Ein Oberösterreichbezug ist durch ein vorgestelltes "" erkennbar. Vereinzelt wurden Arbeiten außerhalb des definierten Zeitabschnittes als Nachträge aufgenommen. Inhalt Seite Anzahl Seite Anzahl der der Zitate Zitate Protozoa 842 222 Plecoptera 867 7 Diverse Evertebrata- 853 4 Mantodea 868 1 Stämme Orthoptera 868 18 Nematoda 855 2 Thysanoptera 869 1 Annelida 855 4 Hemiptera 869 17 Mollusca 855 71 Coleoptera 870 83 Tentaculata 859 6 Mecoptera 874 1 Arthropoda Neuropterida 875 108 Arachnida 859 18 Hymenoptera 882 169 Acari 860 6 Diptera 890 24 Araneae 861 11 Trichoptera 892 2 Crustacea 861 23 Lepidoptera 892 102 Myriapoda 863 6 Mehrere Taxa betreffend 897 96 Insecta Parasitologie 902 208 Diplura 863 1 Personalia 916 51 Protura 863 1 Allgemeine und 918 62 Collembola 864 6 historische Arbeiten Ephemeroptera 864 5 Zitierte Bibliografien 921 5 Odonata 864 62 842 Protozoa AESCHT E. -
Phylogeny of the Higher Libelluloidea (Anisoptera: Odonata): an Exploration of the Most Speciose Superfamily of Dragonflies
Molecular Phylogenetics and Evolution 45 (2007) 289–310 www.elsevier.com/locate/ympev Phylogeny of the higher Libelluloidea (Anisoptera: Odonata): An exploration of the most speciose superfamily of dragonflies Jessica Ware a,*, Michael May a, Karl Kjer b a Department of Entomology, Rutgers University, 93 Lipman Drive, New Brunswick, NJ 08901, USA b Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA Received 8 December 2006; revised 8 May 2007; accepted 21 May 2007 Available online 4 July 2007 Abstract Although libelluloid dragonflies are diverse, numerous, and commonly observed and studied, their phylogenetic history is uncertain. Over 150 years of taxonomic study of Libelluloidea Rambur, 1842, beginning with Hagen (1840), [Rambur, M.P., 1842. Neuropteres. Histoire naturelle des Insectes, Paris, pp. 534; Hagen, H., 1840. Synonymia Libellularum Europaearum. Dissertation inaugularis quam consensu et auctoritate gratiosi medicorum ordinis in academia albertina ad summos in medicina et chirurgia honores.] and Selys (1850), [de Selys Longchamps, E., 1850. Revue des Odonates ou Libellules d’Europe [avec la collaboration de H.A. Hagen]. Muquardt, Brux- elles; Leipzig, 1–408.], has failed to produce a consensus about family and subfamily relationships. The present study provides a well- substantiated phylogeny of the Libelluloidea generated from gene fragments of two independent genes, the 16S and 28S ribosomal RNA (rRNA), and using models that take into account non-independence of correlated rRNA sites. Ninety-three ingroup taxa and six outgroup taxa were amplified for the 28S fragment; 78 ingroup taxa and five outgroup taxa were amplified for the 16S fragment. -
BIO-ECOLOGICAL STUDIES of MALAYSIAN ODONATES and an INTEGRATED TAXONOMIC STUDY on the GENUS Rhinocypha
BIO-ECOLOGICAL STUDIES OF MALAYSIAN ODONATES AND AN INTEGRATED TAXONOMIC STUDY ON THE GENUS Rhinocypha NOORHIDAYAH BINTI MAMATMalaya of FACULTY OF SCIENCE UNIVERSITY OF MALAYA UniversityKUALA LUMPUR 2018 BIO-ECOLOGICAL STUDIES OF MALAYSIAN ODONATES AND AN INTEGRATED TAXONOMIC STUDY ON THE GENUS Rhinocypha NOORHIDAYAH BINTI MAMAT Malaya THESIS SUBMITTED IN FULFILMENTof OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA UniversityKUALA LUMPUR 2018 UNIVERSITY OF MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate : NOORHIDAYAH BINTI MAMAT Matric No : SHC 140084 Name of Degree : DOCTOR OF PHILOSOPHY Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): BIO-ECOLOGICAL STUDIES OF MALAYSIAN ODONATES AND AN INTEGRATED TAXONOMIC STUDY ON THE GENUS Rhinocypha Field of Study: ECOLOGY & BIODIVERSITY (BIOLOGY & BIOCHEMISTRY) I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work; (2) This Work is original; (3) Any use of any work in which copyrightMalaya exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and theof title of the Work and its authorship have been acknowledged in this Work; (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM. -
Of the Anisopteran Vesica Spermalis (Odonata)
------- Received 08 November 2004; revised and accepted 29 june 2005 ------- Structure, function and evolution of the 'glans' of the anisopteran vesica spermalis (Odonata) Hans Klaus Pfau Rathenaustra&e 14, D-65326 Aarbergen, Germany. <[email protected]> Key words: Odonata, dragonfly, functional morphology, secondary copulatory apparatus, sperm-transfer, sperm displacement, evolution, phylogenetic systematics. ABSTRACT Comparative investigations of the distal part of the vesica spermalis ('glans') of the anisopteran male secondary copulatory apparatus reveal three different 'solutions' of combining the emptying-mechanism of the sperm-reservoir with a 'washing out' of sperm of the male predecessor. The responsible apparatus of the glans - actually driven by pressure-changes inside the erectile organ, which is a part of the whole vesica spermalis - is shortly apostrophized as 'two-way tap' (Gomphaeschnidae, Aeshnidae), pressure-suction pump (Austropetaliidae, Gomphidae, Petaluridae, Chlorogomphidae, Neopetaliidae, Cordulegastridae) and suction-pressure pump ('Corduliidae', Cordulephyidae, Gomphomacromiidae, Synthemistidae, Libelluli dae). The two types of sperm-pump are interpreted to effectuate an intensification of the sperm-jet and to serve as auxiliary devices in emptying the sperm-reservoir. On account of the opposite co-ordination of extension and compression, the two types of sperm-pump are interpreted as alternative; no possibility could be detec ted to form evolutionary transitions without total loss of functions. This indicates two monophyletic groups: Petaluroidea and Libelluloidea. The phylogenetic relation ships between these groups and the Gomphaeschnidae and Aeshnidae remained questionable. The different stages of evolution of the glans, which reflect phylo genetic splittings, are reconstructed. It is assumed that at the beginning a pre gomphaeschnoid glans (or a gomphaeschnoid 'two-way tap' with tongue?) used two functional pores of ejaculation and scattered sperm on account of the erectile organ-coupled movements of the glans.