Diadema Setosum

Total Page:16

File Type:pdf, Size:1020Kb

Diadema Setosum 1 Feeding preferences of the sea urchin Diadema 2 setosum (Leske, 1778) in Taklong Island National 3 Marine Reserve, Guimaras, Philippines 4 Jennelle Christianne S. Luza1, Maria Celia D. Malay1, 5 1 Division of Biological Sciences, College of Arts and Sciences, University of the Philippines 6 Visayas, Miagao, Iloilo, Philippines 7 8 Corresponding Author: 9 Jennelle Christianne Luza1 10 Brgy. Inzo Arnaldo Village, Roxas City, Capiz, 5800, Philippines 11 Email address: [email protected] 12 13 14 Abstract 15 Background. Sea urchins are keystone herbivores that greatly influence primary productivity, 16 algal abundance and scleractinian coral recruitment. The long-spined black sea urchin Diadema 17 setosum is widespread and abundant in reef flats throughout the Philippines. Prior studies 18 regarding the feeding preference of D. setosum have been conducted overseas, but little is known 19 about the impact of the echinoid herbivory on reef flat communities in the Philippines. Feeding 20 preferences of D. setosum on four common marine plant species, Halimeda macroloba, 21 Ceratodictyon spongiosum, Padina sp., and Enhalus acoroides were investigated at the 22 University of the Philippines Visayas Marine Biological Laboratory, located in Taklong Island 23 National Marine Reserve (TINMR), Guimaras. 24 Methods. Two food choice experiments were conducted; choice feeding and no-choice feeding. 25 The outcome of choice feeding experiments, expressed as consumption (in g) and percent 26 consumption (%), were used to determine its feeding preferences. The two most preferred feeds 27 determined were then used in no-choice feeding experiment to measure its consumption rate 28 (g⸱echinoid-1⸱hr-1). 29 Results. Results of the choice feeding experiment show that D. setosum significantly prefers C. 30 spongiosum (4.83 ± 2.56 g consumption or 32.2%) and H. macroloba (3.73 ± 2.27 g or 24.8%), 31 and avoids E. acoroides (only 0.17 ± 0.22 g or 1.13%) (F= 5.423, p < 0.05). The no-choice 32 feeding experiment between preferred feeds show H. macroloba was consumed more (0.22 ± 33 0.16 g⸱echinoid-1⸱hr-1) than C. spongiosum (0.15 ± 0.05 g⸱echinoid-1⸱hr-1) although there was no 34 significant difference (p > 0.05) in consumption rate. Results of the no-choice feeding 35 experiment may have been affected by poor water quality and are considered inconclusive. 36 Nevertheless, the study supports the ecological role of D. setosum as an important herbivore that 37 regulates certain macroalgal species in TINMR through its grazing activities. 38 39 Introduction 40 Sea urchins play a vital role in marine ecosystems especially in shallow tropical seas. They are 41 considered keystone herbivores as they effectively influence marine plant populations such as 42 algae and seagrasses, their primary productivity and abundance, and scleractinian coral 43 recruitment by grazing on algae that compete with corals (Shunula & Ndibalema, 1986; Alves et PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27733v1 | CC BY 4.0 Open Access | rec: 15 May 2019, publ: 15 May 2019 44 al., 2003). Studies about sea urchins peaked after a massive mortality event of Diadema 45 antillarum in the Caribbean in 1983 which caused drastic changes in the coral reef community 46 structure (Lessios et al., 1984). The disappearance of urchins in the area resulted in increased 47 density and diversity of algal species and led to higher algal cover (Solandt & Campbell, 2001). 48 In terms of feeding ecology, grazing urchins operate as either generalists or specialists in 49 a community (Stimson, Cunha & Philippoff, 2007). Some urchins feed on available algae in its 50 environment (Solandt & Campbell, 2001). In Hawaii, studies about the native sea urchin 51 Tripneustes gratilla showed that it can function as biocontrol agent for invasive algae (Stimson, 52 Cunha & Philippoff, 2007; Westbrook et al., 2015). However, Tomas, Box & Terrados et al. 53 (2011) suggested that some sea urchin species like Paracentrotus lividus do not function as 54 control agent of invasive algal species. Other studies report that different species of sea urchins 55 exhibit feeding preferences (Larson, Vadas & Keser, 1980; Hay, Lee & Guieb, 1986; Solandt & 56 Campbell, 2001; Tuya et al., 2001; Stimson, Cunha & Philippoff, 2007; Kasim, 2009; Lyimo et 57 al., 2011; Seymour et al., 2013). 58 Food preferences of sea urchins may be influenced by the distribution and abundance of 59 its food source (Seymour et al., 2013), the chemical and morphological properties (Shunula & 60 Ndibalema, 1986; Solandt & Campbell, 2001; Tuya et al., 2001; Erickson et al., 2006; Souza, de 61 Olivera & Pereira, 2008; Seymour et al., 2013), and caloric content (Larson, Vadas & Keser, 62 1980) of plant species, and the different stages of sea urchin development (Westbrook et al., 63 2015). Hay, Lee & Guieb (1986) also stated that chemotaxis correlated with daytime and 64 nighttime hours affect the feeding behavior of the urchin. Additionally, the preferred and non- 65 preferred feeds of sea urchin differ at different seasons of the year (Larson, Vadas & Keser, 66 1980; Seymour et al., 2013). 67 Diadema setosum, a black and long-spined sea urchin having distinct white dots on its 68 body, is widespread along Indo-Pacific regions including Philippines and is thought to be 69 ecologically important in shallow subtidal ecosystems. Their gonads serve as a delicacy in many 70 local communities and are targeted as wild fishery. Diadema setosum forages at night in the 71 tropics to avoid predators (Lawrence & Hughes-Games, 1972). Studies have reported feeding 72 preferences of D. setosum on a specific macroalgal species vary in different areas around the 73 world (Shunula & Ndibalema, 1986; Moore et al., 2019). Tatsuya, Miyuki & Akira (2016), also 74 reported that grazing and high densities of D. setosum control algal coverage and density on the 75 seaweed bed ecosystems along the central coast of Japan. However, in Singapore reefs, D. 76 setosum is not an important component of the herbivore guild (Goh & Lim, 2015). Seasonal 77 changes have also been reported in the size of the gut of some sea urchins related to changes in 78 food availability (Lawrence, Lawrence & Watts, 2013), there were no changes in D. setosum in 79 Red Sea or on Kenyan reefs (Pearse, 1974; Muthiga, 2003). Diadema setosum was also found 80 out to be a key symbiont of cardinalfish Pterapogon kauderni in Indonesia (Moore et al., 2019). 81 Interestingly, the work of Coppard & Campbell (2007) in Fiji show that sea urchins under the 82 same genus, Diadema setosum and D. savignyi exhibit selective grazing, with distinct feeding 83 preferences. 84 While many studies about the feeding ecology of D. setosum have been conducted in 85 different countries, very little research has been undertaken in Southeast Asia especially in the 86 Philippines. 87 The study was conducted to determine if D. setosum exhibits a preference for different 88 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27733v1 | CC BY 4.0 Open Access | rec: 15 May 2019, publ: 15 May 2019 89 feeds (seagrass and macroalgae species) presently dominating in Taklong Island National Marine 90 Reserve (TINMR), Guimaras. The study also determined the rate of consumption of D. setosum 91 for different feeds. Feeding preference assay was done by (a) determining the consumption (g) of 92 the urchins when offered a choice of feeds, to see what the sea urchin preferred, then present the 93 values in percent consumption (%), and (b) investigating how much of the preferred feeds can D. 94 setosum consume in a given amount of time (consumption rate) using single diet experiment. 95 Since sea urchins mainly feed on micro- and macroalge, and others on seagrasses, detrital 96 particles and corals (Cabanillas-Teran et al., 2016), these grazing herbivores can be implicated as 97 a driver of phase shifts in marine environments (Kriegsch et al., 2016). Ecologists are greatly 98 interested on the feeding preferences of sea urchins as it not only determines the phase shifts in 99 an ecosystem, such as shifting from a coral-dominated to macroalgal-dominated system, but can 100 also provide trophic links in community food webs. Aquaculturists also use feeding preferences 101 to determine the quantity and quality of food ingested to determine the optimal physiological 102 condition of sea urchins. Understanding the feeding preference and feeding rate of D. setosum 103 will help predict the impact of herbivory on coral and seagrass communities since feeding 104 preferences interact with plant competitive abilities, life histories, and physical tolerances in 105 determining the impact of a grazer on the marine benthic community (Coppard & Campbell, 106 2007). This study will also help in sustainable management of both the sea urchin and marine 107 plant species in an ecosystem. 108 109 Materials & Methods 110 Experimental organisms 111 Twenty (20) Diadema setosum sea urchins were collected from the rocky shore areas in the UPV 112 Channel separating Taklong Island from mainland Guimaras, located within the Taklong Island 113 National Marine Reserve (TINMR), Guimaras. Utmost care was taken in collecting D. setosum 114 since its long, black spines are fragile. A custom-made sea urchin scooper made from thin rebar 115 was designed for properly collecting the echinoids (Fig. 1). Animals were then placed in large 116 bins (450 l) with aerated sea water, held just outside the laboratory. The sea urchins were starved 117 for at least 48 hours prior to use in assays to acclimatize and to overcome any possible period of 118 ingestive conditioning (Solandt & Campbell, 2001). The tanks were shaded from direct sunlight 119 and were exposed to natural photoperiod. 120 121 122 Figure 1. Custom-made tool for scooping sea urchins (design provided by Harilaos Lessios). PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27733v1 | CC BY 4.0 Open Access | rec: 15 May 2019, publ: 15 May 2019 123 124 A preliminary survey was done on the forereef of UPV Channel to determine the most 125 common marine plant species by snorkeling around the area.
Recommended publications
  • 13914444D46c0aa91d02e31218
    2 Breeding of wild and some domestic animals at regional zoological institutions in 2013 3 РЫБЫ P I S C E S ВОББЕЛОНГООБРАЗНЫЕ ORECTOLOBIFORMES Сем. Азиатские кошачьи акулы (Бамбуковые акулы) – Hemiscyllidae Коричневополосая бамбуковая акула – Chiloscyllium punctatum Brownbanded bambooshark IUCN (NT) Sevastopol 20 ХВОСТОКОЛООБРАЗНЫЕ DASYATIFORMES Сем. Речные хвостоколы – Potamotrygonidae Глазчатый хвостокол (Моторо) – Potamotrygon motoro IUCN (DD) Ocellate river stingray Sevastopol - ? КАРПООБРАЗНЫЕ CYPRINIFORMES Сем. Цитариновые – Citharinidae Серебристый дистиход – Distichodusaffinis (noboli) Silver distichodus Novosibirsk 40 Сем. Пираньевые – Serrasalmidae Серебристый метиннис – Metynnis argenteus Silver dollar Yaroslavl 10 Обыкновенный метиннис – Metynnis schreitmuelleri (hypsauchen) Plainsilver dollar Nikolaev 4; Novosibirsk 100; Kharkov 20 Пятнистый метиннис – Metynnis maculatus Spotted metynnis Novosibirsk 50 Пиранья Наттерера – Serrasalmus nattereri Red piranha Novosibirsk 80; Kharkov 30 4 Сем. Харацидовые – Characidae Красноплавничный афиохаракс – Aphyocharax anisitsi (rubripinnis) Bloodfin tetra Киев 5; Perm 10 Парагвайский афиохаракс – Aphyocharax paraquayensis Whitespot tetra Perm 11 Рубиновый афиохаракс Рэтбина – Aphyocharax rathbuni Redflank bloodfin Perm 10 Эквадорская тетра – Astyanax sp. Tetra Perm 17 Слепая рыбка – Astyanax fasciatus mexicanus (Anoptichthys jordani) Mexican tetra Kharkov 10 Рублик-монетка – Ctenobrycon spilurus (+ С. spilurusvar. albino) Silver tetra Kharkov 20 Тернеция (Траурная тетра) – Gymnocorymbus
    [Show full text]
  • Echinoidea: Diadematidae) to the Mediterranean Coast of Israel
    Zootaxa 4497 (4): 593–599 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4497.4.9 http://zoobank.org/urn:lsid:zoobank.org:pub:268716E0-82E6-47CA-BDB2-1016CE202A93 Needle in a haystack—genetic evidence confirms the expansion of the alien echinoid Diadema setosum (Echinoidea: Diadematidae) to the Mediterranean coast of Israel OMRI BRONSTEIN1,2 & ANDREAS KROH1 1Natural History Museum Vienna, Geological-Paleontological Department, 1010 Vienna, Austria. E-mails: [email protected], [email protected] 2Corresponding author Abstract Diadema setosum (Leske, 1778), a widespread tropical echinoid and key herbivore in shallow water environments is cur- rently expanding in the Mediterranean Sea. It was introduced by unknown means and first observed in southern Turkey in 2006. From there it spread eastwards to Lebanon (2009) and westwards to the Aegean Sea (2014). Since late 2016 spo- radic sightings of black, long-spined sea urchins were reported by recreational divers from rock reefs off the Israeli coast. Numerous attempts to verify these records failed; neither did the BioBlitz Israel task force encounter any D. setosum in their campaigns. Finally, a single adult specimen was observed on June 17, 2017 in a deep rock crevice at 3.5 m depth at Gordon Beach, Tel Aviv. Although the specimen could not be recovered, spine fragments sampled were enough to genet- ically verify the visual underwater identification based on morphology. Sequences of COI, ATP8-Lysine, and the mito- chondrial Control Region of the Israel specimen are identical to those of the specimen collected in 2006 in Turkey, unambiguously assigning the specimen to D.
    [Show full text]
  • The Shallow-Water Macro Echinoderm Fauna of Nha Trang Bay (Vietnam): Status at the Onset of Protection of Habitats
    The Shallow-water Macro Echinoderm Fauna of Nha Trang Bay (Vietnam): Status at the Onset of Protection of Habitats Master Thesis in Marine Biology for the degree Candidatus scientiarum Øyvind Fjukmoen Institute of Biology University of Bergen Spring 2006 ABSTRACT Hon Mun Marine Protected Area, in Nha Trang Bay (South Central Vietnam) was established in 2002. In the first period after protection had been initiated, a baseline survey on the shallow-water macro echinoderm fauna was conducted. Reefs in the bay were surveyed by transects and free-swimming observations, over an area of about 6450 m2. The main area focused on was the core zone of the marine reserve, where fishing and harvesting is prohibited. Abundances, body sizes, microhabitat preferences and spatial patterns in distribution for the different species were analysed. A total of 32 different macro echinoderm taxa was recorded (7 crinoids, 9 asteroids, 7 echinoids and 8 holothurians). Reefs surveyed were dominated by the locally very abundant and widely distributed sea urchin Diadema setosum (Leske), which comprised 74% of all specimens counted. Most species were low in numbers, and showed high degree of small- scale spatial variation. Commercially valuable species of sea cucumbers and sea urchins were nearly absent from the reefs. Species inventories of shallow-water asteroids and echinoids in the South China Sea were analysed. The results indicate that the waters of Nha Trang have echinoid and asteroid fauna quite similar to that of the Spratly archipelago. Comparable pristine areas can thus be expected to be found around the offshore islands in the open parts of the South China Sea.
    [Show full text]
  • Echinodermata Associated with Coral Reefs of Andaman and Nicobar Islands
    Rec. zoo!. Surv. India: 100 (Part 3-4) : 21-60, 2002 ECHINODERMATA ASSOCIATED WITH CORAL REEFS OF ANDAMAN AND NICOBAR ISLANDS D. R. K. SASTRY Zoological Survey of India, A & N Regional Station, Port Blair - 744 102 INTRODUCTION Coral reefs are an important ecosystem of the coastal environment. The reef ecosystem IS highly productive and provides substratum, shelter, food etc. to a variety of biota. Consequently a number of faunal and floral elements are attracted towards the reef ecosystem and are closely associated with each other to form a community. Thus the reefs are also rich in biodiversity. Among the coral reef associates echinoderms are a conspicuous element on account of their size, abundance and effect on the reef ecosystem including the corals. In spite of their importance in the coral reef ecosystem and its conservation, very few studies were made on the echinoderm associates of the coral reefs. Though there were some studies elsewhere, the information on reef­ associated echinoderms of Indian coast is meager and scattered (see Anon, 1995). Hence an attempt is made here to collate the scattered accounts and unpublished information available with Zoological Survey of India. Since the information is from several originals and quoted references and many are to be cited often, these are avoided in the text and a comprehensive bibliography is appended which served as source material and also provides additional references of details and further information. ECHINODERMS OF CORAL REEFS More than 200 species of echinoderms occur in the reef ecosystem of Andaman and Nicobar Islands. These belong to five extant classes with 30 to 60 species of each class.
    [Show full text]
  • Pterapogon Kauderni in Appendix II, in Accordance with Article II, Paragraph 2(A) of the Convention and Satisfying Criteria a and B in Annex 2A of Resolution Conf
    Original language: English CoP17 Prop. XXX CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Seventeenth meeting of the Conference of the Parties Johannesburg (South Africa), 24 September – 5 October 2016 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of Pterapogon kauderni in Appendix II, in accordance with Article II, paragraph 2(a) of the Convention and satisfying Criteria A and B in Annex 2a of Resolution Conf. 9.24 (Rev. CoP16). B. Proponent The European Union and its Member States* C. Supporting statement 1. Taxonomy 1.1 Class: Actinopterygii 1.2 Order: Perciformes 1.3 Family: Apogonidae 1.4 Genus, species or subspecies, including author and year: Pterapogon kauderni Koumans, 1933 1.5 Scientific synonyms: 1.6 Common names: English: Banggai Cardinalfish French: Poisson-cardinal de Banggai Spanish: Pez cardenal de Banggai 1.7 Code numbers: 2. Overview Pterapogon kauderni is a small marine fish endemic to the Banggai Archipelago off Central Sulawesi, eastern Indonesia (Allen and Steene, 2005; Vagelli and Erdmann, 2002). The species has an extremely restricted range of c. 5,500 km2 and occurs as isolated small populations in the shallows of 34 islands (Vagelli, 2011). The species has been subject to heavy collection pressure for the aquarium trade, with annual harvests reportedly having reached 900.000 fish/year in 2007 (Vagelli, 2008; 2011). The species’ biological characteristics make it vulnerable to overexploitation (low fecundity, extended parental care, and a lack of planktonic phase that precludes dispersal). A reported widespread decline in the abundance of * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • APOGONIDAE Cardinalfishes by G.R
    click for previous page 2602 Bony Fishes APOGONIDAE Cardinalfishes by G.R. Allen iagnostic characters: Small (to 20 cm, usually under 12 cm) percoid fishes; body ovate to elongate, Dmoderately compressed. Eyes large, their diameter exceeding snout length. Rear margin of cheek (preopercle) with characteristic double edge, which is variously serrated or smooth. Mouth large, lower jaw often protruding. Jaws with bands of small villiform teeth; teeth present on vomer, but palatine teeth may be absent; enlarged canines on premaxillae, dentaries, or vomer in some species. Two separate dorsal fins, the first consisting of VI to VIII rigid spines, the second with I rigid spine and 8 to 14 soft rays. Anal fin with II rigid spines and 8 to 18 soft rays. Caudal fin rounded to forked, frequently emarginate or truncate. Pelvic fins with I spine and 5 soft rays. Pectoral fins with 10 to 20 rays. Branchiostegal rays 7. Scales relatively large in marine species, except absent in Gymnapogon;scales usually ctenoid, but cycloid in a few species, about 9 to 37 lateral-line scales in most marine species, but absent in at least 1 species of Siphamia. Colour: highly variable, frequently shades of black, brown, red, or yellow; many species exhibit a pattern of dark bars or stripes on a lighter ground colour. 2 dorsal fins Apogon double-edged preopercle II anal-fin Pterapogon spines Rhabdamia Habitat, biology, and fisheries: Inhabit coral and rocky reefs and adjacent habitats including sand-rubble patches and seagrass beds; several species frequently shelter among the spines of sea urchins (usually Diadema) or Crown-of-thorns starfish (Acanthaster).
    [Show full text]
  • Of the Endangered Species Act for the Banggai Cardinalfish (Pterapogon Kauderni)
    Before the Secretary of Commerce Petition for Protective Regulations Under Section 4(d) of the Endangered Species Act for the Banggai cardinalfish (Pterapogon kauderni) Banggai cardinalfish, Pterapogon kauderni Photo credit: Amada44-Wikimedia Commons By: Animal Welfare Institute Center for Biological Diversity Defenders of Wildlife 22 April 2021 NOTICE OF PETITION The Hon. Gina Raimondo Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave., NW Washington, DC 20230 [email protected] Dr. Paul Doremus Acting Assistant Administrator National Oceanographic and Atmospheric Administration 1315 East West Highway Silver Spring, MD 20910 [email protected] PETITIONERS Dianne DuBois Staff Scientist International Program Center for Biological Diversity P.O. Box 18223 Asheville, NC 28806 [email protected] 413-530-9257 The Center for Biological Diversity (Center) is a non-profit, public interest environmental organization dedicated to the protection of native species and their habitats through science, policy, and environmental law. The Center has over 1.7 million members and online activists throughout the United States and internationally. The Center and its members are concerned with the conservation of endangered species and the effective implementation of the Endangered Species Act. The Center engages at the Convention on International Trade in Endangered Species of Wild Fauna and Flora and other international fora to advocate for protections for imperiled species and places. More information about the Center is available at www.biologicaldiversity.org. DJ Schubert Wildlife Biologist Animal Welfare Institute i 900 Pennsylvania Ave, SE Washington, DC 20003 [email protected] The Animal Welfare Institute (AWI) is an international non-profit organization that has sought, since its founding in 1951, to alleviate the suffering inflicted on animals by people.
    [Show full text]
  • A Note on the Obligate Symbiotic Association Between Crab Zebrida
    Journal of Threatened Taxa | www.threatenedtaxa.org | 26 August 2015 | 7(10): 7726–7728 Note The Toxopneustes pileolus A note on the obligate symbiotic (Image 1) is one of the most association between crab Zebrida adamsii venomous sea urchins. Venom White, 1847 (Decapoda: Pilumnidae) ISSN 0974-7907 (Online) comes from the disc-shaped and Flower Urchin Toxopneustes ISSN 0974-7893 (Print) pedicellariae, which is pale-pink pileolus (Lamarck, 1816) (Camarodonta: with a white rim, but not from the OPEN ACCESS white tip spines. Contact of the Toxopneustidae) from the Gulf of pedicellarae with the human body Mannar, India can lead to numbness and even respiratory difficulties. R. Saravanan 1, N. Ramamoorthy 2, I. Syed Sadiq 3, This species of sea urchin comes under the family K. Shanmuganathan 4 & G. Gopakumar 5 Taxopneustidae which includes 11 other genera and 38 species. The general distribution of the flower urchin 1,2,3,4,5 Marine Biodiversity Division, Mandapam Regional Centre of is Indo-Pacific in a depth range of 0–90 m (Suzuki & Central Marine Fisheries Research Institute (CMFRI), Mandapam Takeda 1974). The genus Toxopneustes has four species Fisheries, Tamil Nadu 623520, India 1 [email protected] (corresponding author), viz., T. elegans Döderlein, 1885, T. maculatus (Lamarck, 2 [email protected], 3 [email protected], 1816), T. pileolus (Lamarck, 1816), T. roseus (A. Agassiz, 5 [email protected] 1863). James (1982, 1983, 1986, 1988, 1989, 2010) and Venkataraman et al. (2013) reported the occurrence of Members of five genera of eumedonid crabs T. pileolus from the Andamans and the Gulf of Mannar, (Echinoecus, Eumedonus, Gonatonotus, Zebridonus and but did not mention the association of Zebrida adamsii Zebrida) are known obligate symbionts on sea urchins with this species.
    [Show full text]
  • Manual for the Production of the Banggai Cardinalfish, Pterapogon Kaudnerni, in Hawai‘I
    Manual for the Production of the Banggai Cardinalfish, Pterapogon Kaudnerni, in Hawai‘i Steve Hopkins, Harry Ako and Clyde S. Tamaru Rain Garden Ornamentals 49-041 Kamehameha Highway Käne‘ohe, Hawai‘i 96744 College Of Tropical Agriculture and Human Resources Department of Molecular Biosciences and Biosystems Engineering 1955 East-West Road, Room 511 Honolulu, HI 96822 University of Hawai‘i Sea Grant College Program 2525 Correa Road, HIG 205 Honolulu, Hawai‘i 96822 December 2005 ACKNOWLEDGEMENTS The authors would like to recognize the various agencies that contributed funding for developing these techniques and publishing the manual. Partial funding for technology development and publishing was obtained through the Economic Development Alliance of Hawaii and the Department of Commerce, National Oceanic and Atmospheric Administration (NOAA) Sea Grant Program, Pacific Tropical Ornamental Fish Program, Susan Matsushima, Program Coordinator. The authors of this manual, Steve Hopkins and Clyde Tamaru, worked under Award Number NA06RG0436. The statements, finding, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of NOAA or the Department of Commerce. Publication of this manual was also funded in part by a grant/cooperative agreement from NOAA, Project A/AS-1, which is sponsored by the University of Hawai‘i Sea Grant College Program, School of Ocean and Earth Science and Technology (SOEST), under Institutional Grants Numbers NA16RG2254 and NA09OAR4171048 from the NOAA Office of Sea Grant, Department of Commerce. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its sub- agencies. UNIHI-SEAGRANT- AR-04-01 The information provided was also partially supported by the Hawaii Department of Agriculture Aquaculture Development Program under the Aquaculture Extension Project, Awards Numbers 52663 and 53855.
    [Show full text]
  • Aquarium Trade Threat to Pterapogon Kaudneri, the Bangaii Cardinalfish
    Aquarium Trade Threat to Pterapogon kaudneri, the Bangaii cardinalfish By Eric Borneman on behalf of Eric Borneman, Alex Vagelli, Frank Marini, Andrew Bruckner, and MASNA History Allen GR (2000) Env Biol Fish 57:142 - First discovered in 1920, described in 1933 (Koumans 1933) - Forgotten until 1991 -“Rediscovered” in 1994-1995 (Allen and Steene 1995) - Proposed for IUCN red listing as threatened species in 1999, 2002 Range 32 of 57 islands in the Bangaii Archipelago Total area of 5500km2 Potential habitat: 34km2 Vagelli AA and Erdmann MV (2002) First comprehensive ecological survey of the Banggai cardinalfish, Pterapogon kauderni Env Biol Fish 63: 1-8 Estimated population -No historical data – estimate 0.6 ind/m2 -Based on collection, retrofits to historical population of 20 million - first estimate in 2001 -6 years after collection began - 2.2 - 2.4 million fish (2007) - Density 0.08 ind/m2 CITES, COP 14 2007) from Vagelli AA (2005) PhD dissertation Natural Habitat and Behavior Associated with benthic invertebrates May share habitat with other species (corals, urchins, seagrass, anemones) Usually in bays, <4.5m depth Associate in groups of 2-500 individuals - average size 9.5-21 individuals Very site attached Associates with damselfish, clownfish, and wrasses Carnivorous planktivore Lifespan 1-3 years in wild Vagelli and Erdmann (2002) Reproductive Issues Endemic Low to no dispersal or gene flow Low fecundity (average 40-50 egg clutch size) Direct development with long parental care, male mouthbrooding Highly genetically isolated – two
    [Show full text]
  • Pacific Ocean Synthesis
    Pacific Ocean Synthesis Scientific Literature Review of Coastal and Ocean Threats, Impacts, and Solutions May 2009 This literature review was completed as of October 2008. The authors comprehensively reviewed the literature, but may have missed important reports and papers. If you know of a report or paper we have not included in this literature review documenting Pacific Ocean threats, impacts, or solutions please send the reference to [email protected]. Center for Ocean Solutions. 2009. Pacific Ocean Synthesis: Scientific Literature Review of Coastal and Ocean Threats, Impacts, and Solutions. The Woods Center for the Environment, Stanford University. California. © 2009 by the Board of Trustees of the Leland Stanford Junior University The Center for Ocean Solutions is a collaboration between Stanford University (including the Hopkins Marine S Station) (www.stanford.edu), the Monterey Bay Aquarium, and the Monterey Bay Aquarium Research Institute (MBARI) (www.mbayaq.org). The Center for Ocean Solutions is administered by the Woods Institute for the Environment at Stanford University. Primary authors: Margaret Caldwell, Tegan Churcher Hoffmann, Stephen Palumbi, Jessica Teisch, Chelsea Tu. Contributors are listed in Appendix A. EAN SOLUTION OC Cover Photo: Schooling Tuna (Danilo Cedrone, Courtesy of United Nations Food and Agriculture Organization) Photo on the right: School of fish in Palau (David Burdick) CENTER FOR B Abstract The objective of this Pacific Ocean synthesis is to comprehensively and systematically survey the published scientific literature, government publications and other peer-reviewed reports to identify Pacific Ocean and regional threats as well as the environmental and socioeconomic impacts of those threats. In addition, the report highlights select regional and Pacific Ocean solutions presented by the literature.
    [Show full text]
  • Diadema Setosum (Leske, 1778) (Echinodermata, Echinoidea, Diadematidae), First Record for Simi Island, Hellas, Eastern Mediterranean
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/333118797 DIADEMA SETOSUM (LESKE, 1778) (ECHINODERMATA, ECHINOIDEA, DIADEMATIDAE), FIRST RECORD FOR SIMI ISLAND, HELLAS, EASTERN MEDITERRANEAN Article · May 2019 CITATIONS READS 0 324 2 authors, including: Christos Galanos Hellenic Open University 14 PUBLICATIONS 35 CITATIONS SEE PROFILE All content following this page was uploaded by Christos Galanos on 16 May 2019. The user has requested enhancement of the downloaded file. PARNASSIANA ARCHIVES 7: 15-19 2019 DIADEMA SETOSUM (LESKE, 1778) (ECHINODERMATA, ECHINOIDEA, DIADEMATIDAE), FIRST RECORD FOR SIMI ISLAND, HELLAS, EASTERN MEDITERRANEAN Christos J. Galanos1* & Sarantis Kritikos2 1 Email: [email protected] 2 Email: [email protected] * Corresponding author Published online: May 13, 2019 Abstract Diadema setosum, is an Indo-Pacific alien species, which has been introduced to eastern Mediterranean basin through the Suez Canal. In the current paper it is documented for the first time as a new species for the island of Simi (Symi), Dodecanese Complex, Greece. The geographical position of the island, the distribution range of the species in the country, as well as voucher photographs and all the localities from where it was observed are provided. Introduction The alien sea urchin, Diadema setosum, was found for the first time in the Mediterranean Sea along the south-western coast of Turkey in 2006 (Yokes & Galil 2006). Since then, its presence has been documented in Lebanon in 2009 (Nader & Indary 2011), Cyprus in 2016 (Kapiris and Constantinou 2016) and Israel in 2017 (Bronstein & Kroh 2018). In Greece, it is established, as evidenced by the surveys in the Hellenic waters and has been rapidly expanding its range.
    [Show full text]