After Almost 5 Years in Flight, the Space Probe Is
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lessons Learned from the Juno Project
Lessons Learned from the Juno Project Presented by: William McAlpine Insoo Jun EJSM Instrument Workshop January 18‐20, 2010 © 2010 All rights reserved. Pre‐decisional, For Planning and Discussion Purposes Only Y‐1 Topics Covered • Radiation environment • Radiation control program • Radiation control program lessons learned Pre‐decisional, For Planning and Discussion Purposes Only Y‐2 Juno Radiation Environments Pre‐decisional, For Planning and Discussion Purposes Only Y‐3 Radiation Environment Comparison • Juno TID environment is about a factor of 5 less than JEO • Juno peak flux rate is about a factor of 3 above JEO Pre‐decisional, For Planning and Discussion Purposes Only Y‐4 Approach for Mitigating Radiation (1) • Assign a radiation control manager to act as a focal point for radiation related activities and issues across the Project early in the lifecycle – Requirements, EEE parts, materials, environments, and verification • Establish a radiation advisory board to address challenging radiation control issues • Hold external reviews for challenging radiation control issues • Establish a radiation control process that defines environments, defines requirements, and radiation requirements verification documentation • Design the mission trajectory to minimize the radiation exposure Pre‐decisional, For Planning and Discussion Purposes Only Y‐5 Approach for Mitigating Radiation (2) • Optimize shielding design to accommodate cumulative total ionizing dose and displacement damage dose and instantaneous charged particle fluxes near Perijove -
40Th Annual Meeting of the AAS Division for Planetary Sciences
40th Annual Meeting of the AAS Division for Planetary Sciences 10-15 October 2008 - Ithaca, New York, Statler Hotel, 130 Statler Drive, Ithaca, NY 14853 Friday, Saturday, Sunday, Monday, Tuesday, Wednesday, 10 October 11 October 12 October 13 October 14 October 15 October 8:00 Registration Park Atrium, Statler Hotel 8 am-4 pm Registration 8 am-noon 8:30- 1 Exoplanets I 20 Titan: Upper Atmosphere 50 Outer Planets II 59 Galilean Satellites 10:00 Statler Auditorium Statler Auditorium Statler Auditorium Statler Auditorium 2 Comets I 21 Planetary Rings: Theory 51 Mercury 60 Asteroid Composition DPS Members Meeting Statler Ballroom Statler Ballroom Statler Ballroom Statler Ballroom Statler Auditorium 3 Mars: Surface 22 MB Asteroids & Trojans 52 Asteroid Discovery & Orbits Uris Hall Uris Hall Uris Hall 10:00- Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break 10:30 10:30- 4 Exoplanets II 23 Titan: Lower Atmosphere 34 Titan: Subsurface 53 Outer Planets III 61 Saturnian Satellites 12:00 Statler Auditorium Statler Auditorium Statler Auditorium Statler Auditorium Statler Auditorium 5 Comets II 24 Planetary Rings: Physical 35 Outer Planets I 54 Laboratory Research 62 Venus Statler Ballroom Statler Ballroom Statler Ballroom Statler Ballroom Statler Ballroom 6 Mars: Atmosphere 25 Near Earth Asteroids 36 Icy Dwarf Planets 55 Asteroid Evolution Uris Hall Uris Hall Uris Hall Uris Hall 12:00- Lunch Lunch Lunch Lunch 1:30 Meet the IAU NSF Town Hall DPS Women Green Conferencing Yale/Princeton Rooms Yale/Princeton Rooms Yale/Princeton Rooms Yale/Princeton Rooms 1:30- 7 Special Session 37 Special Session 56 Special Session 2:30 Dynamical Classification 26 Prize Lectures Exoplanets Mission Highlights of Planetary Bodies Kuiper Prize: Statler Auditorium Statler Auditorium All talks in any given session Statler Auditorium Michael F. -
Juno Spacecraft Description
Juno Spacecraft Description By Bill Kurth 2012-06-01 Juno Spacecraft (ID=JNO) Description The majority of the text in this file was extracted from the Juno Mission Plan Document, S. Stephens, 29 March 2012. [JPL D-35556] Overview For most Juno experiments, data were collected by instruments on the spacecraft then relayed via the orbiter telemetry system to stations of the NASA Deep Space Network (DSN). Radio Science required the DSN for its data acquisition on the ground. The following sections provide an overview, first of the orbiter, then the science instruments, and finally the DSN ground system. Juno launched on 5 August 2011. The spacecraft uses a deltaV-EGA trajectory consisting of a two-part deep space maneuver on 30 August and 14 September 2012 followed by an Earth gravity assist on 9 October 2013 at an altitude of 559 km. Jupiter arrival is on 5 July 2016 using two 53.5-day capture orbits prior to commencing operations for a 1.3-(Earth) year-long prime mission comprising 32 high inclination, high eccentricity orbits of Jupiter. The orbit is polar (90 degree inclination) with a periapsis altitude of 4200-8000 km and a semi-major axis of 23.4 RJ (Jovian radius) giving an orbital period of 13.965 days. The primary science is acquired for approximately 6 hours centered on each periapsis although fields and particles data are acquired at low rates for the remaining apoapsis portion of each orbit. Juno is a spin-stabilized spacecraft equipped for 8 diverse science investigations plus a camera included for education and public outreach. -
Juno Magnetometer (MAG) Standard Product Data Record and Archive Volume Software Interface Specification
Juno Magnetometer Juno Magnetometer (MAG) Standard Product Data Record and Archive Volume Software Interface Specification Preliminary March 6, 2018 Prepared by: Jack Connerney and Patricia Lawton Juno Magnetometer MAG Standard Product Data Record and Archive Volume Software Interface Specification Preliminary March 6, 2018 Approved: John E. P. Connerney Date MAG Principal Investigator Raymond J. Walker Date PDS PPI Node Manager Concurrence: Patricia J. Lawton Date MAG Ground Data System Staff 2 Table of Contents 1 Introduction ............................................................................................................................. 1 1.1 Distribution list ................................................................................................................... 1 1.2 Document change log ......................................................................................................... 2 1.3 TBD items ........................................................................................................................... 3 1.4 Abbreviations ...................................................................................................................... 4 1.5 Glossary .............................................................................................................................. 6 1.6 Juno Mission Overview ...................................................................................................... 7 1.7 Software Interface Specification Content Overview ......................................................... -
Enceladus Life Finder: the Search for Life in a Habitable Moon
Geophysical Research Abstracts Vol. 17, EGU2015-14923, 2015 EGU General Assembly 2015 © Author(s) 2015. CC Attribution 3.0 License. Enceladus life finder: the search for life in a habitable moon. Jonathan Lunine (1), Hunter Waite (2), Frank Postberg (3), Linda Spilker (4), and Karla Clark (4) (1) Center for Radiophysics and Space Research, Cornell University, Ithaca ([email protected]), (2) Southwest Research Institute,San Antonio, ( [email protected]), (3) U. Stuttgart, Stuttgart, ([email protected]), (4) Jet Propulsion Laboratory, Pasadena CA 91125, ( [email protected]) Is there life elsewhere in the solar system? Guided by the principle that we can most easily recognize life as we know it—life that requires liquid water—Enceladus is particularly attractive because liquid water from its deep interior is actively erupting into space, making sampling of the interior straightforward. The Cassini Saturn Orbiter has provided the motivation. In particular, at high resolution, spatial coincidences between individual geysers and small-scale hot spots revealed the liquid reservoir supplying the eruptions to be not in the near-surface but deeper within the moon [1], putting on a firm foundation the principle that sampling the plume allows us to know the composition of the ocean. Sensitive gravity and topography measurements established the location and dimensions of that reservoir: ∼ 35 km beneath the SPT ice shell and extending out to at least 50 degrees latitude, implying an interior ocean large enough to have been stable over geologic time [2]. The Cassini ion neutral mass spectrometer (INMS) discovered organic and nitrogen-bearing molecules in the plume vapour, and the Cosmic Dust Analyser (CDA) detected salts in the plume icy grains, arguing strongly for ocean water being in con-tact with a rocky core [3], [4]. -
Mr. Brent Sherwood Caltech/JPL, United States, [email protected]
Paper ID: 32273 67th International Astronautical Congress 2016 oral IAA/IAF SPACE LIFE SCIENCES SYMPOSIUM (A1) Astrobiology and Exploration (5) Author: Mr. Brent Sherwood Caltech/JPL, United States, [email protected] Prof. Jonathan Lunine Cornell University, United States, [email protected] Mr. John Elliott National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory, United States, [email protected] Prof. Sascha Kempf University of Colorado Boulder, United States, [email protected] Mr. Travis Imken Jet Propulsion Laboratory, United States, [email protected] Dr. Peter Kahn Jet Propulsion Laboratory, United States, [email protected] Mr. Andreas Frick (country is not specified), (email is not specified) Mr. Daniel Belter Jet Propulsion Laboratory, United States, [email protected] Ms. Kelli McCoy Jet Propulsion Laboratory, United States, [email protected] Dr. David Oh Jet Propulsion Laboratory - California Institute of Technology, United States, [email protected] Dr. J. Hunter Waite Southwest Research Institute, United States, [email protected] Mr. Michael Dinicola Jet Propulsion Laboratory, United States, [email protected] SYLPH: LIFE DETECTION IN A EUROPA PLUME Abstract An investigation and system concept is described, that would equip NASA's ocean-worlds flagship mission (aka Clipper, in development now) to directly sample the chemistry of an ocean plume at Europa. Cassini discoveries at Enceladus indicate that space-flight instruments available today can exquisitely measure the composition of ice grains, dust grains, and gas in an ocean plume, revealing the ocean's hab- itability and even detecting chemical signatures of extant life with multiple, independent tests. -
Cassini Images Seas on Saturn's Moon Titan 13 March 2007
Cassini Images Seas on Saturn's Moon Titan 13 March 2007 and their other properties point to the presence of liquids. The liquids are probably a combination of methane and ethane, given the conditions on Titan and the abundance of methane and ethane gases and clouds in Titan's atmosphere. Cassini's visual and infrared mapping spectrometer also captured a view of the region, and the team is working to determine the composition of the material contained within these features to test the hypothesis that they are liquid-filled. The imaging cameras, which provide a global view of Titan, have imaged a much larger, irregular dark A comparison view of a lake on Titan and Lake Superior. feature. The northern end of their image Image credit: NASA/JPL/GSFC corresponds to one of the radar-imaged seas. The dark area stretches for more than 620 miles in the image, down to 55 degrees north latitude. If the entire dark area is liquid-filled, it would be only Instruments on NASA's Cassini spacecraft have slightly smaller than Earth's Caspian Sea. The found evidence for seas, likely filled with liquid radar data show details at the northern end of the methane or ethane, in the high northern latitudes dark feature similar to those seen in earlier radar of Saturn's moon Titan. One such feature is larger observations of much smaller liquid-filled lakes. than any of the Great Lakes of North America and However, to determine if the entire dark feature is a is about the same size as several seas on Earth. -
Motivated by Faith, Catholic Scientists Look Beyond Earth's Galaxy
ADVERTISE | SUBSCRIBE | CONTACT US Search … GO NEWS OPINION OBITUARIES SPORTS AROUND THE DIOCESE NEWSLETTER SUBSCRIBE INTERNATIONAL NEWS Motivated by Faith, Catholic Scientists Look Beyond Earth’s Galaxy CATHOLIC NEWS SERVICE January 15, 2021 By Wandy Ortiz Verify before sharing ‘news,’ pope says in Communications Day message Is that all there is? When a 10-best movie list can’t get to 10 THE TABLET HEADLINES DELIVERED DAILY Email Address Your email will be used to send you The Tablet newsletter. You can unsubscribe at any time using the link in our emails. For more details, review our privacy policy. More info SUBSCRIBE This image from NASA’s Hubble Space Telescope has an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars. (Photo: CNS/NASA) MANHATTAN — After an unexpected 2020, this year began with Jupiter, Pluto, and Saturn’s conjunction FOLLOW THE TABLET — a nighttime view akin to the North Star that led the Magi to the Baby Jesus. For some, the sight was a reminder of just how beautiful God’s creation is, even in the most difficult times. This year has already been another for unexpected firsts: one of Jupiter’s 79 moons — Ganymede — emitted an FM radio signal strong enough to be picked up by a NASA spacecraft. No radio waves like it have ever been detected from this planet’s moon prior, and perhaps it could be a new step towards communication tools beyond our galaxy. When we look up at the sky — or even tune in — we can’t help but wonder what else is out there that we can’t see, hear or touch. -
EPSC2017-151-1, 2017 European Planetary Science Congress 2017 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2017
EPSC Abstracts Vol. 11, EPSC2017-151-1, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 Properties and circulation of Jupiter's circumpolar cyclones as measured by JunoCam G. S. Orton (1), G. Eichstädt (2), J. H. Rogers (3), C. J. Hansen (4), M. Caplinger (5), T. Momary (1), F. Tabataba-Vakili (1), A. P. Ingersoll (6) (1) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California USA ([email protected]), (2) Independent scholar, Stuttgart, Germany. (3) British Astronomical Association, London, UK, (4) Planetary Science Institute, Tucson, Arizona, USA, (5) Malin Space Science Systems, San Diego, California, USA, (6) California Institute of Technology, Pasadena, California, USA. Abstract 2. Data JunoCam has taken the first high-resolution visible JunoCam is rigidly mounted on the spinning images of Jupiter’s poles, which show that each pole spacecraft. That way, it can take a full panorama has a cluster of circumpolar cyclones (CPCs), each within about 30 seconds consisting of up to 82 narrow one separated in longitude by roughly equal spacing exposures. Usually, it takes partial panoramas of the [1]. There are five at the south pole and eight at the target of interest. The camera has a horizontal field of north pole. These configurations, including their view of about 58°, and Kodak KAI-2020 CCD sensor asymmetries and the characteristics of individual with four filter stripes, a red, a green, a blue and a cyclones, have remained stable over 7 months from narrow-band 890-nm infrared filter attached on the perijove 1 to perijove 5 as of this writing. -
Astrobiology and the Search for Life Beyond Earth in the Next Decade
ASTROBIOLOGY AND THE SEARCH FOR LIFE BEYOND EARTH IN THE NEXT DECADE HEARING BEFORE THE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FOURTEENTH CONGRESS FIRST SESSION September 29, 2015 Serial No. 114–40 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 97–759PDF WASHINGTON : 2016 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas F. JAMES SENSENBRENNER, JR., ZOE LOFGREN, California Wisconsin DANIEL LIPINSKI, Illinois DANA ROHRABACHER, California DONNA F. EDWARDS, Maryland RANDY NEUGEBAUER, Texas SUZANNE BONAMICI, Oregon MICHAEL T. MCCAUL, Texas ERIC SWALWELL, California MO BROOKS, Alabama ALAN GRAYSON, Florida RANDY HULTGREN, Illinois AMI BERA, California BILL POSEY, Florida ELIZABETH H. ESTY, Connecticut THOMAS MASSIE, Kentucky MARC A. VEASEY, Texas JIM BRIDENSTINE, Oklahoma KATHERINE M. CLARK, Massachusetts RANDY K. WEBER, Texas DON S. BEYER, JR., Virginia BILL JOHNSON, Ohio ED PERLMUTTER, Colorado JOHN R. MOOLENAAR, Michigan PAUL TONKO, New York STEPHEN KNIGHT, California MARK TAKANO, California BRIAN BABIN, Texas BILL FOSTER, Illinois BRUCE WESTERMAN, Arkansas BARBARA COMSTOCK, Virginia GARY PALMER, Alabama BARRY LOUDERMILK, Georgia RALPH LEE ABRAHAM, Louisiana DARIN LAHOOD, Illinois (II) C O N T E N T S September 29, 2015 Page Witness List ............................................................................................................. 2 Hearing Charter ..................................................................................................... -
Modeling the Stability of Polygonal Patterns of Vortices at the Poles of Jupiter As Revealed by the Juno Spacecraft
Modeling the stability of polygonal patterns of vortices at the poles of Jupiter as revealed by the Juno spacecraft Cheng Lia,1, Andrew P. Ingersollb, Alexandra P. Klipfelb, and Harriet Brettleb aAstronomy Department, University of California, Berkeley, CA 94720; and bDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved August 3, 2020 (received for review April 30, 2020) From its pole-to-pole orbit, the Juno spacecraft discovered arrays falls off faster than the 1/r dependence of a vortex patch sur- of cyclonic vortices in polygonal patterns around the poles of Ju- rounded by a region with zero vorticity—suggesting anticyclonic piter. In the north, there are eight vortices around a central vortex, vorticity surrounding the cyclones. In other words, the cyclonic and in the south there are five. The patterns and the individual vortices are “shielded.” Shielding may explain the slow rotation vortices that define them have been stable since August 2016. The (1.5° westward) of the structure as a whole during the 53 d of one azimuthal velocity profile vs. radius has been measured, but ver- orbit (5). tical structure is unknown. Here, we ask, what repulsive mechanism On Earth, cyclones drift poleward (6, 7), but they dissipate prevents the vortices from merging, given that cyclones drift pole- over land and cold ocean. Jupiter has neither land nor ocean, so ward in atmospheres of rotating planets like Earth? What atmo- the question is, why do cyclones neither accumulate at the poles spheric properties distinguish Jupiter from Saturn, which has only nor merge? Saturn has only one cyclone, and it is surrounded by one cyclone at each pole? We model the vortices using the shallow a sea of smaller anticyclones (8). -
Juno Mission to Jupiter
National Aeronautics and Space Administration Juno Mission to Jupiter unknown how deeply rooted Jupiter’s colorful, banded clouds and planet-sized spots are. And scientists yearn to understand what powers the auroras — Jupiter’s northern and southern lights. These mysteries make it clear that although Jupiter’s colorful clouds get most of the attention, some of the most enticing mysteries are hiding deep inside the planet. A Five-Year Journey Juno’s trip to Jupiter will take about five years. Though the journey may seem long, this flight plan allows the mission to use Earth’s gravity to speed the craft on its way. The spacecraft first loops around the inner solar system and then swings past Earth two years after launch to get a boost that will propel it onward to its With the exception of the sun, Jupiter is the most destination. dominant object in the solar system. Because of its enormous size and the fact that it was likely the first In July 2016, Juno will fire its main engine and slip of the planets to form, it has profoundly influenced the into orbit around the giant planet to begin its scientific formation and evolution of the other bodies that orbit mission. our star. NASA’s Juno mission will allow us to examine this gas giant planet from its innermost core to the outer A Solar-Powered, Spinning Spacecraft reaches of its enormous magnetic force field. Jupiter’s orbit is five times farther from the sun than Earth’s location, so the giant planet receives about During its mission, Juno will map Jupiter’s gravity 25 times less sunlight than Earth.