Soluble Reactive Phosphorus Transport and Retention in Tropical, Rainforest Streams Draining a Volcanic and Geothermally Active Landscape in Costa Rica

Total Page:16

File Type:pdf, Size:1020Kb

Soluble Reactive Phosphorus Transport and Retention in Tropical, Rainforest Streams Draining a Volcanic and Geothermally Active Landscape in Costa Rica Biogeochemistry (2006) 81:131–143 DOI 10.1007/s10533-006-9026-6 ORIGINAL PAPER Soluble reactive phosphorus transport and retention in tropical, rainforest streams draining a volcanic and geothermally active landscape in Costa Rica. : Long-term concentration patterns, pore water environment and response to ENSO events Frank J. Triska Æ Catherine M. Pringle Æ John H. Duff Æ Ronald J. Avanzino Æ Alonso Ramirez Æ Marcelo Ardon Æ Alan P. Jackman Received: 21 March 2005 / Accepted: 3 April 2006 / Published online: 3 June 2006 Ó Springer Science+Business Media B.V. 2006 Abstract Soluble reactive phosphorus (SRP) events on SRP-enriched reaches. Mean interan- transport/retention was determined at four sites in nual SRP concentrations (– standard deviation) three rainforest streams draining La Selva Bio- were 89 – 53lg/l in the Salto (1988–1996), logical Station, Costa Rica. La Selva is located at 21 – 39lg/l in the Pantano (1988–1998), and the base of the last remaining intact rainforest 26 – 35lg/l in the Sabalo (1988–1996). After transect from ~30 m above sea level to 3000 m January, 1997 the separate upland-lowland along the entire Caribbean slope of Central contributions to discharge and SRP load were America. Steam SRP levels can be naturally high determined monthly in the Salto. SRP in Upper there due to regional, geothermal groundwater Salto was low (19 – 8lg/l, 1997–2002) until discharged at ambient temperature. Monitoring enriched at the upland-lowland transition by since 1988 has revealed distinctive long-term dif- regional groundwater. Mean SRP concentration in ferences in background SRP and total P (TP) for Lower Salto (108 – 104lg/l) was typically highest three streams in close proximity, and identified the February–April, the driest months, and lowest impact of ENSO (El Nino Southern Oscillation) July–September, the wettest. SRP concentration was positively correlated to the inverse of dis- charge in Lower Salto when ENSO data were omitted (1992 and 1998–1999), but not in the F. J. Triska (&) Æ J. H. Duff Æ R. J. Avanzino Upper Salto, Pantano, or Sabalo. TP was positively U.S. Geological Survey, 345 Middlefield Rd., MS 439, correlated to the inverse of discharge in all three Menlo Park, CA 94025, USA streams when ENSO data were omitted. High SRP e-mail: [email protected] springs and seeps along the Lower Salto contrib- C. M. Pringle Æ M. Ardon uted ~36% of discharge but ~85% of SRP export Institute of Ecology, University of Georgia, Athens, 1997–2001. Annual SRP flux from the total Salto GA 30602, USA watershed (1997–2001) averaged 2.9 kg/ha year, but only 0.6 kg/ha year from the Upper Salto. A A. P. Jackman Department of Chemical Engineering, University of dye tracer injection showed that pore water envi- California, Davis, CA 95616, USA ronments were distinctly different between Upper and Lower Salto. Upper Salto had high surface A. Ramirez water–pore water exchange, high dissolved Institute for Tropical System Studies, University of Puerto Rico, San Juan, PR 00936, USA oxygen, low SRP, and low conductivity similar to 123 132 Biogeochemistry (2006) 81:131–143 surface water, and Lower Salto had low surface that P uptake length decreased with decreasing water–pore water exchange, low dissolved oxygen, concentration. Mulholland et al. (1997) reported high SRP, and high conductivity reflecting geo- greater SRP retention in Hugh White Creek, NC, thermal groundwater influence. SRP export from USA with larger hyporheic volume compared to the Salto was controlled by regional groundwater Walker Branch TN, USA with smaller hyporheic transfer, which in similar volcanic settings could be volume. In contrast Hall et al. (2002) found P a significant P source. However, ENSO events uptake unrelated to hyporheic volume at Hub- modified the SRP concentration in the Salto sug- bard Brook, NH, USA, because P uptake there gesting that long-term monitoring is required to was dominated by abiotic sorption Within years, understand underlying SRP dynamics and P flux to storm flows can induce high-P pulses to an downstream communities. otherwise P-limited biotic community. Between years, P retained in a dry year can be transported Keywords Phosphorus Æ Retention Æ Sorption Æ in a subsequent wet year (Meyer and Likens SRP Æ Streams Æ Tropical Æ TP Æ Transport Æ 1979). Volcanic Æ ENSO Shifts in SRP concentration, exacerbated by land use, are increasingly common especially in large watersheds with combined urban and agri- Introduction cultural use. Land use modifies temporal concen- tration patterns by shifting SRP sources under Phosphorus cycling in fluvial environments variable hydrologic conditions (Devito et al. 1989; involves numerous interacting biotic and abiotic Dorioz et al. 1998). For example, SRP retention reactions that regulate its uptake and transport. decreased following logging, becoming more dis- Physical factors affecting SRP include pH (Hol- charge related than before (Butturini and Sabater tan et al. 1988; Kleeberg and Schlungbaum 1993), 1998). Although a downstream increase in SRP temperature (Mulholland et al. 1985; Bothwell concentration is usually associated with land use 1988; Holtan et al. 1988; D’Angelo et al. 1991; (e.g., McClain et al. 1998), in some drainages SRP Meals et al. 1999), sorption/desorption (Meyer concentration is naturally elevated. 1979; Hill 1982), interstitial redox conditions The Salto River, drains dense tropical rainfor- (Enell and Lofgren 1988; Holtan et al. 1988; est at La Selva Biological Station, Costa Rica. Gonsiorczyk and Koschel 1997), and discharge High, natural SRP input, attributed to regional, (Meyer 1979). All control P levels in surface wa- geothermally modified groundwater, is intro- ter and depending on concentration, can limit duced at the ambient surface water temperature biotic production and decomposition (Elwood of ~24 °C (Pringle et al. 1990). In this study we et al. 1981; Newbold et al. 1981; Rosemond et al. compared natural input, output and concentration 2002; Ramirez et al. 2003). P occurs in numerous among upland and lowland reaches of the Salto dissolved and particulate forms in fluvial envi- River and two nearby streams, the Pantano and ronments. Dissolved P occurs as either SRP or Sabalo. All three streams had similar geologic and unreactive P. SRP is the most biologically avail- climatic setting, annual day length, and nearly able and thus the focus of most fluvial studies. constant annual temperature. The three streams Differing SRP results reported in published field were compared using both short- and long-term studies are likely due to differences in back- approaches. The study had three objectives: (1) to ground concentration, geologic setting, magni- determine long-term trends of SRP concentration tude of experimental amendment, channel from three streams with differing SRP levels; (2) geomorphology, or study duration. For example, to examine SRP concentration and retention rel- Munn and Meyer (1990) reported rapid SRP ative to the pore water environment above and uptake in an eastern USA stream draining deeply below sites of high SRP input; and (3) to examine weathered granitic bedrock, but less uptake in a short-term SRP retention by in situ and labora- stream draining volcanic bedrock. Within a simi- tory studies. This report examines the first two lar geologic setting, Hart et al. (1992) reported objectives. 123 Biogeochemistry (2006) 81:131–143 133 Study area watershed is located in La Selva Biological Reserve and the upper two-thirds lies in Braulio All study sites were within or adjacent to La Selva Carrillo National Park. The area of the upper Biological Station, a 3300 ha reserve located at watershed above the sampling site Salto 60, as the transition between the Caribbean lowland indicated on Fig. 1,is~726 ha, while the lower plains and the steep foothills of Costa Rica’s watershed between stations Salto 60 and Salto 30, central mountain range (Fig. 1). La Selva receives is ~394 ha. More than 95% of the watershed is average annual rainfall of ~4 m. The wettest roadless, primary, tropical rainforest (Pringle months are July–September and the driest are et al. 1990; Pringle et al. 1993). February–April, although some years lack a def- Upper Salto drains a basalt formation believed inite dry season. Our focus was the Salto River, to be of Quaternary origin. The stream gradient is an ungaged third order stream that drops from steep (0.10) and its bed is composed of large 300 to ~36 m above mean sea level where it joins boulders with sand interstices. Lower Salto drains the Puerto Viejo River. The base of this 1120 ha swamp-forest composed primarily of terraces of Fig. 1 Map of Salto River basin at La Selva Biological Station indicating its location in Costa Rica and long-term sampling locations in the Salto, Pantano, and Sabalo Rivers 123 134 Biogeochemistry (2006) 81:131–143 alluvial sands and gravels of volcanic origin pling using a Marsh-McBirney current meter. The (Bourgeois et al. 1972). The Salto mainstem flows long-term SRP and TP concentrations were fit with along the eastern boundary of the younger of two a linear regression through the inverse of discharge lava flows at La Selva (Pringle et al. 1990). P-rich since dilution was considered the most likely con- springs emerge near the edge of this formation as trol of SRP concentration. Before determining if the channel crosses the gradient break and enters the slope of the regression line was significantly lowland swamp-forest (Pringle and Triska, 1991). different than zero, residuals were examined for Swamp-forest soils are poorly drained, blue-grey normality using a probability plot correlation and blackish-brown silts and clays. Soils are coefficient (PPCC) test (Looney and Gulledge slightly acidic (pH 4.0–5.2), contain up to 25% 1985). Where residuals were nearly normally dis- organic content, and have a fragile structure tributed, data points corresponding to the extreme (Bourgeois et al.
Recommended publications
  • SFS SUMMER of SCIENCE PROGRAM Week 1 (June 9-June 12, All Times EDT) TUESDAY, June 9, 2020
    SFS SUMMER OF SCIENCE PROGRAM Week 1 (June 9-June 12, all times EDT) TUESDAY, June 9, 2020 2:00 p.m. Meeting Room Opens ​ 2:10 p.m. Presidential Address: “Emergence: a Freshwater Science Imperative” ​ Amy D. Rosemond, Professor of Ecology, University of Georgia, and President, Society for Freshwater Science 2:50 p.m. Announcement of the 2020 Fellows of the Society for Freshwater Science Fellows of the Society of Freshwater Science are selected based on sustained excellence in contributions to freshwater science research, policy, or management. They are the leaders, at national and international levels, of their areas of freshwater science. In 2020, five new Fellows were added to this select and accomplished group. 3:00 p.m. SFS Membership Business Meeting Open to all. Come hear about your Society's work over the past year from SFS leadership, meet the outgoing and incoming officers of the Society, and participate in voting. Stay for the announcement of the incoming President-elect and the location of the 2021 Annual Meeting. 3:00 p.m. Welcome and Call to Order (Bob Hall, SFS Vice President) 3:05 p.m. In Memoriam/Moment of Silence (Sally Entrekin, SFS Secretary) 3:10 p.m. Secretary’s Report and Approval of Minutes (Sally Entrekin) ​ ​ 3:20 p.m. President’s Remarks (Amy Rosemond, SFS President, 2019-20) 1 3:30 p.m. Society Financial Report (Betsy Colburn, Chair, Finance Committee) 3:40 p.m. Treasurer’s Report (Mike Swift, SFS Treasurer) 3:45 p.m. Journal Editor’s Report (Chuck Hawkins, Editor-in-Chief, Freshwater Science 3:55 p.m.
    [Show full text]
  • Disturbance and Resilience in the Luquillo Experimental Forest
    Biological Conservation 253 (2021) 108891 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Disturbance and resilience in the Luquillo Experimental Forest Jess K. Zimmerman a,*, Tana E. Wood b, Grizelle Gonzalez´ b, Alonso Ramirez c, Whendee L. Silver d, Maria Uriarte e, Michael R. Willig f, Robert B. Waide g, Ariel E. Lugo b a Department of Environmental Science, University of Puerto Rico, Río Piedras, PR 00921, Puerto Rico b USDA Forest Service International Institute of Tropical Forestry, Río Piedras, PR 00926, Puerto Rico c Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, United States of America d Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, United States of America e Department of Ecology, Evolution and Environmental Biology, Columbia University, United States of America f Institute of the Environment and Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT 06269, United States of America g Department of Biology, University of New Mexico, Albuquerque, NM 87131, United States of America ARTICLE INFO ABSTRACT Keywords: The Luquillo Experimental Forest (LEF) has a long history of research on tropical forestry, ecology, and con­ Biogeochemistry servation, dating as far back as the early 19th Century. Scientificsurveys conducted by early explorers of Puerto Climate change Rico, followed by United States institutions contributed early understanding of biogeography, species endemism, Drought and tropical soil characteristics. Research in the second half of the 1900s established the LEF as an exemplar of Food web forest management and restoration research in the tropics. Research conducted as part of a radiation experiment Gamma radiation Hurricane funded by the Atomic Energy Commission in the 1960s on forest metabolism established the field of ecosystem Landslide ecology in the tropics.
    [Show full text]
  • Society for Freshwater Science Annual Meeting May 21-26 2016 Sacramento Convention Center Street Level
    SOCIETY FOR FRESHWATER SCIENCE Annual Meeting MAy 21-26 2016 SACRAMENTO CONVENTION CENTER Street Level Third Floor Meeting Rooms Sacramento Convention Center Wifi Username: Society4FreshWater Password: science16 CONTENTS General Information Registration Information ..................................................6 Plenary Information .........................................................7-9 Awards .............................................................................10 Future Meeting: SFS2017 Raleigh .....................................11 Sponsors ..........................................................................12-13 Exhibitors .........................................................................14-16 Activities Workshops .......................................................................17 Taxonomy Events ..............................................................18 Field Trips .........................................................................19 Meetings ..........................................................................20 Events & Activities ............................................................20 Student/Post Doc Opportunities ......................................21 Instars Program ................................................................22 Presenter Information ......................................................23 Sessions Oral Sessions ....................................................................30-57 Poster Sessions .................................................................58-66
    [Show full text]
  • Understanding and Conserving Puerto Rico's Tropical Ecosystems
    Understanding and Conserving Puerto Rico’s Tropical Ecosystems Dr Jess K. Zimmerman UNDERSTANDING AND CONSERVING PUERTO RICO’S TROPICAL ECOSYSTEMS Tropical forests and marine ecosystems in the Caribbean are biodiversity hotspots and home to many species found nowhere else on Earth. Increasing environmental stress from a changing climate, such as hurricanes, temperature rises and droughts, threaten to irreparably alter these precious systems. Coupled with ongoing pressures from human activities, some of these areas are especially at risk. Dr Jess Zimmerman and his colleagues at the University of Puerto Rico and throughout the US aim to provide the basis for predicting the future of these ecosystems, through their research at the Luquillo Experimental Forest in north-eastern Puerto Rico. resilience is not immunity. Puerto Rico’s precious ecosystems are at risk from a myriad of factors, with many pressures predicted to increase in the coming decades. For example, climate change is increasing the frequency and intensity of droughts and hurricanes. Rising temperatures contribute to coral bleaching, and may permanently alter the composition of tropical forests. Protecting these wild spaces, while still accommodating the needs of the human population, requires a thorough understanding of the island’s ecology A Biodiversity Hotspot at Risk valuable ecosystem services to Puerto and the long-term impacts of the Rico residents, such as fishing and numerous interacting environmental The ecosystems of Puerto Rico are farming opportunities, clean freshwater, pressures. Dr Jess Zimmerman from the home to a vast array of species. Thanks and some protection from hurricanes Department of Environmental Sciences to the country’s relative isolation, that frequently pass through the at the University of Puerto Rico and his many species that have evolved here area.
    [Show full text]
  • Amy Daum Rosemond Rosemondlab.Ecology.Uga.Edu Google Scholar 140 East Green Street  Athens, Georgia 30602706.542.3903  [email protected] Researcherid I-2688-2018
    Rosemond CV March, 2020 Amy Daum Rosemond rosemondlab.ecology.uga.edu Google Scholar 140 East Green Street Athens, Georgia 30602706.542.3903 [email protected] ResearcherID I-2688-2018 EDUCATION 1993 Ph.D. Biology Vanderbilt University Advisors: Susan Brawley, Patrick J. Mulholland (Oak Ridge National Laboratory) 1987 M.A. Biology, University of North Carolina, Chapel Hill Advisor: Seth Reice 1982 B.S. Zoology, University of North Carolina, Chapel Hill APPOINTMENTS 2017-present Professor, Odum School of Ecology University of Georgia Athens, GA 2017 Interim Associate Dean of Administration and Research (March-December) 2011-2017 Associate Professor, Odum School of Ecology University of Georgia Athens, GA 2005-2011 Assistant Professor, Odum School of Ecology University of Georgia Athens, GA 1998-2005 Assistant Director, Institute of Ecology University of GeorgiaAthens, GA 1996-1998 Assistant Research Scientist, Institute of Ecology University of GeorgiaAthens, GA 1996-1997 Instructor, Institute of Ecology University of GeorgiaAthens, GA 1994-1997 National Science Foundation Postdoctoral Research Fellow, Institute of Ecology University of GeorgiaAthens, GA AFFILIATIONS 2017-present UGA Institute for Resilient Infrastructure Systems, Member and Advisory Board 2015-present UGA River Basin Center Faculty, Member and Advisory Board 2014-present Center for Integrative Conservation Research Faculty Affiliate 2005-present UGA Water Faculty 2005-present Conservation Ecology Faculty AREAS OF RESEARCH Aquatic ecosystem ecology, biogeochemistry,
    [Show full text]
  • Silnews 32: January 2001 1 a Major Objective of Our Long-Term STREAMS Research Throughout Central America (Pringle Et Al
    Internet: www.limnology.org Volume 32 January 2001 The International Association of Theoretical and Applied Limnology (Societas Internationalis Limnologiae, SIL) promotes and communicates new and emerging knowledge among limnologists to advance the understanding of inland aquatic ecosystems and their management. CONTENTS Stream Research in Costa Rica . 1 - 4 Announcements . 5 - 11 Letters to the Editor . 9 M. Straškraba (1931 - 2000) 12 - 13 Reports on Working Groups . 14 Book Reviews . 15 - 18 Calendar of Events . 18 - 19 SIL Officers . 20 Change of address . 20 A piedmont reach of the Salto stream, which is low in nutrients. Stream Research in Costa Rica: Material for future issues should be sent to the Editor: Linking Freshwater Research Programs Dr. R.D. Robarts, or to Environmental Outreach. Ms. Clara Fabbro, Editorial Assistant, GEMS/Water Collaborating Centre, by Environment Canada, Catherine Pringle, Frank J. Triska, David Genereux, Alonso Ramirez, 11 Innovation Blvd., Saskatoon, SK Elizabeth Anderson and Douglas Parsons. S7N 3H5 CANADA Email: [email protected] Contributions on a PC formatted disk, in any standard word processor or DOS (ASCII) text, or as email attachments, will assist the Editor. continued on next page SILnews 32: January 2001 1 A major objective of our long-term STREAMS research throughout Central America (Pringle et al. 1993). program in Costa Rica is to understand the link between Geothermally-modified groundwaters have high levels of surface-subsurface water interactions and ecosystem phosphorus (up to 400 µg SRP L-1) and other solutes (Ca, processes in lowland tropical streams. Much of our Mg, SO4) but are not elevated in temperature.
    [Show full text]
  • Role of Podostemurn Cerato Hyllurn Michx. in Structuring Benthic Macroinvertebrate Assembf Ages in a Southern Appalachian River
    J. N. Am. Benthol. Soc., 2004, 23(4):713-727 O 2004 by The North American Benthological Society Role of Podostemurn cerato hyllurn Michx. in structuring benthic macroinvertebrate assembf ages in a southern Appalachian river Institute of Ecology, University of Georgia, Athens, Georgia 30602 USA ERIC D. ROMANISZYN~ Department of Entomology, University of Georgia, Athens, Georgia 30602 USA Abstract. Podostemum ceratophyllum Michx. has been associated with extremely high secondary pro- duction of benthic macroinvertebrates in open-canopy rapids. We conducted an experiment in the 7*-order Little Tennessee River, North Carolina, to test whether varying amounts of Podostemum influenced macroinvertebrate abundance, biomass, community composition, and functional feeding group structure. The experiment consisted of 3 treatments in which I! ceratophy2lum was completely, partially, or not removed from portions of 4 bedrock outcrops at 2 sites. Macroinvertebrates were sampled at 0,3, and 6 wk post treatment. Complete removal of I! ceratop@llum greatly reduced overall macroinvertebrate abundance and biomass and altered assemblage structure, but had relatively little effect on functional structure. The lack of change in functional feeding group structure was probably a result of the importance of I! ceratophyllum as a substrate for epiphytic algae, and the availability of nearby colonists in undisturbed habitats. We found a strong positive relationship between surface area of Podostemum and total macroinvertebrate abundance and biomass. We estimated that I! cera- tophyllum increased surface area by 3 to 4 times over bare bedrock. Podostemum ceratophyllum in the Little Tennessee River serves as an important habitat supporting high abundance and biomass of macroinvertebrates. Key words: macrophytes, productivity, habitat, surface area, functional feeding groups, filterers, gatherers, scrapers.
    [Show full text]
  • Riparian Plant Litter Quality Increases with Latitude
    Georgia Southern University Digital Commons@Georgia Southern Biology Faculty Publications Biology, Department of 9-5-2017 Riparian Plant Litter Quality Increases With Latitude Luz Boyero University of Basque Manuel A. S. Graça University of Coimbra Alan M. Tonin Universidade de Brasília Javier Pérez University of Basque Andrew J. Swafford University of California, Santa Barbara See next page for additional authors Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/biology-facpubs Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Biology Commons Recommended Citation Boyero, Luz, Manuel A. S. Graça, Alan M. Tonin, Javier Pérez, Andrew J. Swafford, Verónica Ferreira, Andrea Landeira-Dabarca, Markos A. Alexandrou, Mark O. Gessner, Brendan G. McKie, Ricardo J. Albariño, Leon A. Barmuta, Marcos Castillo, Julián Chará, Eric Chauvet, Jose Checo Colón-Gaud, David Dudgeon, Andrea C. Encalada, Ridcardo Figueroa, Alexander S. Flecker, Tadeusz Fleituch, André Frainer, José F. Gonçalves Jr., Julie E. Helson, Tomoya Iwata, Jude Mathooko, Charles M'Erimba, Catherine M. Pringle, Alonso Ramírez, Christopher M. Swan, Catherine M. Yule, Richard G. Pearson. 2017. "Riparian Plant Litter Quality Increases With Latitude." Scientific Reports, 7 (10562): 1-10. doi: 10.1038/s41598-017-10640-3 https://digitalcommons.georgiasouthern.edu/biology-facpubs/27 This article is brought to you for free and open access by the Biology, Department of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Authors Luz Boyero, Manuel A. S. Graça, Alan M. Tonin, Javier Pérez, Andrew J.
    [Show full text]
  • Project Summary the Luquillo Experimental Forest Long-Term
    Project Summary The Luquillo Experimental Forest Long-Term Ecological Research program (LUQ) focuses on the long-term dynamics of tropical forest ecosystems characterized by large-scale, infrequent disturbance, rapid processing of organic material, and high habitat and species diversity. Research by LUQ has stimulated a new appreciation of the significance of large-scale disturbances in tropical forested ecosystems and the key role of the biota in shaping the response to these events. Hurricanes occurring one and 10 years after the LTER program began permitted us to capitalize upon landscape-scale natural experiments which we continue to follow closely. Among our most important findings from these natural experiments is that detrital dynamics plays a central role in forest recovery by influencing carbon and nutrient storage and flow. The central theme we propose is that disturbance, through its effects on detrital dynamics, is a dominant ecosystem driver in the Luquillo Experimental Forest. A common feature of all disturbances is the generation of dead organic matter that must be processed by the biota as part of the ecosystem's response to disturbance. Pulses of detritus shift the flow of energy within the food web, modify the availability and distribution of nutrients, and feed back on the composition and productivity of plant and animal communities. Rapid processing of detritus distinguishes the Luquillo Experimental Forest (LEF) from other forested LTER sites, where decomposition takes two to 20 times as long. In this proposal, we
    [Show full text]
  • Field Stations and Marine Laboratories of the Future: a Strategic Vision Field Stations and Marine Laboratories of the Future: a Strategic Vision
    Field Stations and Marine Laboratories of the Future: A Strategic Vision Field Stations and Marine Laboratories of the Future: A Strategic Vision Steering Committee Ian Billick Executive Director, Rocky Mountain Biological Laboratory Gothic, Colorado Ivar Babb Director, Northeast Underwater Research Technology and Education Center University of Connecticut Brian Kloeppel Associate Professor, Department of Geosciences and Natural Resources Western Carolina University Jo-Ann C. Leong Professor and Director, Hawai ‘i Institute of Marine Biology University of Hawai ‘i at Manoa Jan Hodder Senior Lecturer, Oregon Institute of Marine Biology University of Oregon James Sanders Director, Skidaway Institute of Oceanography Savannah, Georgia Hilary Swain Executive Director, Archbold Biological Station Venus, Florida Staff Jessica Ruvinsky , Writer/Editor Sonda Donovan , Project Manager Joellen Fonken , Designer Curtis J. Mearns , Survey Research Reviewers Peter Stine National Coordinator, Experimental Forests and Ranges USDA Forest Service Susan N. White Executive Director, North Carolina Sea Grant and the Water Resources Research Institute North Carolina State University Jennifer Egan Management Plan Coordinator, White Clay Creek Scenic and Recreational Rivers Program Ph.D. student, Water Science and Policy, University of Delaware Alonso Ramirez Director, El Verde Field Station Director, REU in Tropical Ecology and Conservation, Institute for Tropical Ecosystem Studies University of Puerto Rico Andrew D. Robertson Chief Scientific and Medical Officer, National Psoriasis Foundation Craig Williamson Professor and Ohio Eminent Scholar of Ecosystem Ecology Miami University This material is based in part upon work supported by the National Science Foundation under Grant Number DBI-1126161. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
    [Show full text]
  • Macroconsumer Effects on Insect Detritivores and Detritus Processing in a Tropical Stream
    Freshwater Biology (1998) 39, 515–523 Macroconsumer effects on insect detritivores and detritus processing in a tropical stream AMY D. ROSEMOND, CATHERINE M. PRINGLE AND ALONSO RAMI´REZ Institute of Ecology, University of Georgia, Athens, GA 30602, U.S.A. SUMMARY 1. Few studies have assessed the effects of macroconsumers, such as fishes and shrimps, on detritus and detritivores. 2. We used an underwater electric field to prevent macroconsumers from feeding in and on leaf packs in a lowland stream in Costa Rica and thus to determine their effects on the density of insect detritivores and decay rates of leaves. 3. Exclusion of macroconsumers resulted in significantly higher densities of small invertebrates inhabiting leaf packs. Most of these were collector–gatherers, none were shredders. 4. Despite the increase in invertebrate density, decay rates of leaves were not statistically different. These findings contrast with results from temperate streams showing that increases in the density of invertebrates in leaf packs typically result in an increased rate of decay. 5. Leaf decay rates and invertebrate densities were also compared between leaf packs placed in electric exclusion treatments and those placed in coarse (2 cm) plastic net bags (as used in many previous studies). Our results suggest that using such netting in tropical streams may deter macroconsumers, which can affect insect density and, potentially, decay rates of organic matter. Introduction Macroconsumers, such as fish and decapod crusta- in temperate streams may primarily affect small con- ceans (e.g. shrimp, crayfish), can be ‘strong interactors’ sumers (e.g. insect larvae), but the omnivorous nature (sensu Paine, 1992) in both temperate and tropical of many macroconsumers in tropical streams may streams by affecting the abundance of basal food result in effects at several trophic levels.
    [Show full text]
  • SFS Presentation Grid 2016
    SFS Presentation Grid ­ 2016 Time 302­303 304­305 306 307 308 309­310 311­312 313 314 315 Time/Location: Time/Location: Time/Location: Time/Location: Time/Location: Time/Location: Time/Location: Time/Location: Time/Location: Time/Location: [302­303] – 10:30 [304­305] – 10:30 [306] – 10:30 [307] – 10:30 [308] – 10:30 [309­310] – 10:30 [311­312] – 10:30 [313] – 10:30 [314] – 10:30 [315] – 10:30 Title: Title: Title: Title: Title: Title: Title: Title: Title: Title: CONTEMPORARY BEYOND LEVERAGING PRACTICAL LEVELS OF RESTORATION OF THE DOES COMPLIANCE FRESHWATER CADDISFLY WHAT PHYSIOLOGICAL EVALUATING WHEN AND HOW DYNAMIC THERMAL ADAPTATION RESOURCES: CITIZEN IDENTIFCATION FOR UPPER CLARK FORK WITH THE BRAZILIAN CONSERVATION IN BEHAVIORAL RESEARCH ON ION COMPENSATORY HYPORHEIC TEMPERATURE OF A PREDATOR SCIENCE OFFERS REAL LARVAE OF BAETIS RIVER, MT: FOREST CODE CENTRAL AMERICA RESPONSES TO DRYING TRANSPORT SUGGESTS MITIGATION UNDER MOSAICS INFLUENCE EXACERBATES SCIENCE AND REAL (EPHEMEROPTERA: OPPORTUNITIES FOR MITIGATE THE IMPACTS AND THE CARIBBEAN CUES IN TEMPORARY ABOUT THE POTENTIAL THE CLEAN WATER ACT: CHANNEL TEMPERATURE Sunday ECOLOGICAL DATA TO ADDRESS AND BAETIDAE) IN NORTH SYNERGY OF SUGARCANE PONDS: IMPLICATIONS TOXICITY OF SULFATE THE STATE OF THE REGIMES 10:30 CONSEQUENCES OF SOLVE REAL PROBLEMS AMERICA AGRICULTURE AND ITS Authors: FOR EFFECTS OF SCIENCE CLIMATE WARMING Authors: LEGACY ON INSTREAM Alonso Ramirez CLIMATE CHANGE Authors: Authors: Authors: Authors: H. Maurice Valett, Marc NUTRIENT Michael Griffith Authors: Katie Fogg,
    [Show full text]