Ecology of a Costa Rican Leaf-Cutting Ant 61

Total Page:16

File Type:pdf, Size:1020Kb

Ecology of a Costa Rican Leaf-Cutting Ant 61 Wetterer et al.: Ecology of a Costa Rican Leaf-cutting Ant 61 FORAGING AND NESTING ECOLOGY OF ACROMYRMEX OCTOSPINOSUS (HYMENOPTERA: FORMICIDAE) IN A COSTA RICAN TROPICAL DRY FOREST JAMES K. WETTERER,1 DANIEL S. GRUNER2 AND JORGÉ E. LOPEZ3 1Center for Environmental Research & Conservation, Columbia University New York, NY 10027 2Department of Zoology, University of Hawaii, Honolulu, HI 96822 3Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 ABSTRACT Leaf-cutting ants (Acromyrmex sp. and Atta sp.) in Costa Rica show many intra- and interspecific differences in ecology. Recent taxonomic studies question whether the Acromyrmex octospinosus populations on the Pacific and Atlantic slopes of Costa Rica are a single species. We therefore examined the foraging and nesting ecology of A. octospinosus in the tropical dry forest of Palo Verde National Park on the Pacific slope of Costa Rica and compared our findings with published data on the ecology of A. octospinosus in the tropical moist forest of La Selva Biological Station on the At- lantic slope. The Pacific A. octospinosus foraged primarily on the leaves of herbs and other small plants, fallen leaves, fruit, flowers, and insect frass, but does not cut the leaves of large trees. Worker size distribution within colonies was bimodal with only 62 Florida Entomologist 81(1) March, 1998 the larger workers leaving the nest to forage. Nests were shallow and generally under a few centimeters of organic debris at the base of trees and woody shrubs or in crev- ices. The foraging and nesting ecology of the Pacific A. octospinosus appeared to be very similar to that of the Atlantic A. octospinosus, except that the Pacific ants col- lected considerable amounts of insect frass (11% of all loads), whereas the Atlantic ants had no recorded loads of frass. This difference in selectivity, however, may have been due simply to seasonal differences in availability of frass at the sites. Acromyrmex octospinosus was the only species of leaf-cutting ant found at Palo Verde. The vertisol soil of the area, which has very poor drainage when wet and cracks deeply when dry, may not be suitable for major pest species of leaf-cutters in Costa Rica, Atta cephalotes and Atta colombica, which excavate nests deep underground. Key Words: Atta, foraging selectivity, Palo Verde, pest ants RESUMEN Las hormigas podadoras (Acromyrmex sp. y Atta sp.) en Costa Rica muestran mu- chas diferencias intra- e interespecíficas en ecología. Estudios taxonómicos recientes ponen en duda la noción que poblaciones de Acromyrmex octospinosus en los flancos Orientales y Occidentales de Costa Rica sean una sola especie. Por lo tanto, nosotros examinamos la ecología de alimentaciùn y anidamiento de A. octospinosus en el bos- que seco tropical del Parque Nacional Palo Verde en el flanco occidental de Costa Rica, y comparamos nuestros resultados con datos previamente publicados sobre la ecología de A. octospinosus en el bosque húmedo tropical de la Estación Biológica La Selva en el flanco oriental. La alimentación de A. octospinosus en el lado occidental consistió principalmente de hojas de hierbas y otras plantas pequeñas, hojas caídas, frutas, flo- res y excrementos de insectos, pero no cortan hojas de árboles grandes. La distribu- ción del tamaño de las obreras en la colonia es bimodal, y sólo las obreras grandes salen de la colonia para recoger alimentos. Los nidos son poco profundos y por lo ge- neral están bajo unos cuantos centímetros de materia orgánica al pie de árboles y ar- bustos, o en grietas. La ecología de alimentación y anidamiento de A. octospinosus en el lado occidental parece ser muy similar a la de A. octospinosus en el lado oriental, ex- cepto que las hormigas en el lado occidental recogen cantidades considerables de ex- cremento de insectos (11% de todas las cargas), mientras que las hormigas en el lado oriental no han sido observadas cargando excremento de insectos. Esta diferencia en selectividad, sin embargo, puede ser causada por diferencias en disponibilidad de ex- cremento de insectos en diferentes estaciones entre las localidades. Acromyrmex oc- tospinosus fue la única especie de hormiga podadora encontrada en Palo Verde. El suelo vertisol de esa área, que tiene muy mal drenaje cuando está mojado y que forma rajaduras hondas cuando está seco, puede no ser adequado para otras especies dañi- nas de hormigas podadoras en Costa Rica, Atta cephalotes y Atta colombica, las cuales excavan nidos profundos. Fungus-growing ants (Myrmicinae; Attini) are unique among ants in their habit of cultivating a symbiotic fungus for food. All attine ants are obligately dependent on their fungus. In other aspects of their ecologies, however, different species of attines vary greatly (Weber 1972, Hölldobler & Wilson 1990). Ants of the nine “lesser” genera (Cyphomyrmex, Mycetosoritis, Mycetophylax, Mycocepurus, Mycetarotes, Myrmicoc- rypta, Apterostigma, Sericomyrmex, and Trachymyrmex) typically collect insect frass, dead insects, or small pieces of fallen plant material to use as substrate for their fun- gal gardens. They tend to have small and inconspicuous colonies (fewer than 5000 in- dividuals), with relatively monomorphic workers. In contrast, ants belonging to two Wetterer et al.: Ecology of a Costa Rican Leaf-cutting Ant 63 genera of attines, Acromyrmex and Atta, often depend on harvesting leaves for their fungal gardens and consequently are commonly called leaf-cutting ants. Leaf-cutting ant colonies can grow to include many thousand to several million highly-polymorphic workers. Many leaf-cutters, particularly Atta species, are major agricultural pests. Earlier studies have found striking differences in the foraging and nesting ecology of Acromyrmex octospinosus (Reich), Acromyrmex volcanus (Wheeler), Acromyrmex coronatus (Fabricius), and Atta cephalotes (L.), the four species of leaf-cutting ants found on the Atlantic slope of Costa Rica (Wetterer, 1991, 1993, 1994a, b, 1995). Ac- romyrmex octospinosus and A. volcanus colonies forage primarily on small herbs and fallen leaves, fruits, and flowers (Wetterer 1991, 1993). These colonies produce two distinct size castes of workers (Wetterer, unpublished). The minima workers stay in- side the nest, tending the fungus garden and brood, while the relatively monomorphic maxima workers leave the nest to forage. In A. coronatus colonies and small A. ceph- alotes colonies, workers primarily cut the soft leaves of herbaceous plants (Wetterer 1994a, 1995). These colonies produce a narrow range of small workers, the largest of which are just big enough to cut soft vegetation efficiently (Wilson 1983, Wetterer, un- published). In large A. cephalotes colonies, workers primarily attack the leaves and flowers of trees (Cherrett 1968, 1972; Rockwood & Hubbell 1987; Vasconcelos 1990; Wetterer 1994b). These colonies produce an extremely broad continuous size-range of workers (Stradling 1978; Wilson 1983). A wide range of medium-size workers forage, with the larger of these cutting thicker and tougher vegetation (Nichols-Orians & Schultz 1989; Wetterer 1994b). Recent taxonomic research, based on morphological characters and allozyme poly- morphisms, has raised questions as to whether the A. octospinosus on the Pacific and Atlantic slopes of Costa Rica are a single species (J. Longino, T. Schultz, & K. Boomsma, personal communication). Because earlier studies indicated marked inter- specific ecological differences among leaf-cutting ants, we compared the foraging and nesting ecology of Pacific and Atlantic A. octospinosus. We also examined the question as to why A. octospinosus was the only leaf-cutting ant species present at our study site in Palo Verde National Park. METHODS We studied foraging selectivity and nesting habits of Acromyrmex octospinosus col- onies at the start of the wet season (June 1996) in tropical dry forest of Palo Verde Na- tional Park, Guanacaste Province, Costa Rica. We worked in the area around Palo Verde Biological Station (10°19’N, 85°21’W; elevation 10 m), operated by the Organi- zation for Tropical Studies (see Janzen 1983 for a site description). We conducted our study during daylight hours, when most A. octospinosus colonies were actively forag- ing. On an earlier visit to Palo Verde in the dry season (January 1996), there was no diurnal foraging by A. octospinosus (J. Wetterer, personal observation). Through extensive searches along hiking trails and roads around Palo Verde, we located seventeen A. octospinosus colonies. At a nearby open pasture site, Sitio Mojal, we collected data on one additional A. octospinosus colony (colony 12), making a total of eighteen colonies. We found no other leaf-cutting ant colonies at the site, although we did find a single live alate Atta cephalotes queen. We explored the area for several kilometers in different directions, but never located any A. cephalotes colonies. At each A. octospinosus colony, we collected laden foragers from along their forag- ing trails. To help ensure a representative sample, we collected laden foragers at ten second intervals as they passed a designated point on their trail, or if there were few foragers, we collected consecutive foragers. We used data from twelve colonies in our 64 Florida Entomologist 81(1) March, 1998 foraging selectivity analysis. At four large A. octospinosus colonies, we collected 25 for- agers from each of the two main trails. From six smaller colonies, we collected 25 for- agers for each colony. At two very small colonies, we collected only fourteen workers from one colony and eleven from the other, because no more foragers came in a period of several hours. At six other small colonies we collected none or only one forager due to lulls in foraging activity that seemed to be associated with hot sunny weather. We did not include these collections in our foraging selectivity analysis. We classified each load as fresh (soft, pliant, and green) or fallen (dry or yellowed) leaf material (fragment or whole leaf), herb section (stem or stem with leaves, leaf buds, or flowers), flower (part or whole), fruit (part or whole berry), insect frass, or “other.” Whenever possible, we located and identified the original source of each load.
Recommended publications
  • Basic Biology and Applications of Actinobacteria
    Edited by Shymaa Enany Basic Biology and Applications of ActinobacteriaBasic of Biology and Applications Actinobacteria have an extensive bioactive secondary metabolism and produce a huge Basic Biology and amount of naturally derived antibiotics, as well as many anticancer, anthelmintic, and antifungal compounds. These bacteria are of major importance for biotechnology, medicine, and agriculture. In this book, we present the experience of worldwide Applications of Actinobacteria specialists in the field of Actinobacteria, exploring their current knowledge and future prospects. Edited by Shymaa Enany ISBN 978-1-78984-614-0 Published in London, UK © 2018 IntechOpen © PhonlamaiPhoto / iStock BASIC BIOLOGY AND APPLICATIONS OF ACTINOBACTERIA Edited by Shymaa Enany BASIC BIOLOGY AND APPLICATIONS OF ACTINOBACTERIA Edited by Shymaa Enany Basic Biology and Applications of Actinobacteria http://dx.doi.org/10.5772/intechopen.72033 Edited by Shymaa Enany Contributors Thet Tun Aung, Roger Beuerman, Oleg Reva, Karen Van Niekerk, Rian Pierneef, Ilya Korostetskiy, Alexander Ilin, Gulshara Akhmetova, Sandeep Chaudhari, Athumani Msalale Lupindu, Erasto Mbugi, Abubakar Hoza, Jahash Nzalawahe, Adriana Ribeiro Carneiro Folador, Artur Silva, Vasco Azevedo, Carlos Leonardo De Aragão Araújo, Patricia Nascimento Da Silva, Jorianne Thyeska Castro Alves, Larissa Maranhão Dias, Joana Montezano Marques, Alyne Cristina Lima, Mohamed Harir © The Editor(s) and the Author(s) 2018 The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or non-commercial purposes without INTECHOPEN LIMITED’s written permission.
    [Show full text]
  • The Conservation Management and Ecology of Northeastern North
    THE CONSERVATION MANAGEMENT AND ECOLOGY OF NORTHEASTERN NORTH AMERICAN BUMBLE BEES AMANDA LICZNER A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO September 2020 © Amanda Liczner, 2020 ii Abstract Bumble bees (Bombus spp.; Apidae) are among the pollinators most in decline globally with a main cause being habitat loss. Habitat requirements for bumble bees are poorly understood presenting a research gap. The purpose of my dissertation is to characterize the habitat of bumble bees at different spatial scales using: a systematic literature review of bumble bee nesting and overwintering habitat globally (Chapter 1); surveys of local and landcover variables for two at-risk bumble bee species (Bombus terricola, and B. pensylvanicus) in southern Ontario (Chapter 2); identification of conservation priority areas for bumble bee species in Canada (Chapter 3); and an analysis of the methodology for locating bumble bee nests using detection dogs (Chapter 4). The main findings were current literature on bumble bee nesting and overwintering habitat is limited and biased towards the United Kingdom and agricultural habitats (Ch.1). Bumble bees overwinter underground, often on shaded banks or near trees. Nests were mostly underground and found in many landscapes (Ch.1). B. terricola and B. pensylvanicus have distinct habitat characteristics (Ch.2). Landscape predictors explained more variation in the species data than local or floral resources (Ch.2). Among local variables, floral resources were consistently important throughout the season (Ch.2). Most bumble bee conservation priority areas are in western Canada, southern Ontario, southern Quebec and across the Maritimes and are most often located within woody savannas (Ch.3).
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • Symbiotic Adaptations in the Fungal Cultivar of Leaf-Cutting Ants
    ARTICLE Received 15 Apr 2014 | Accepted 24 Oct 2014 | Published 1 Dec 2014 DOI: 10.1038/ncomms6675 Symbiotic adaptations in the fungal cultivar of leaf-cutting ants Henrik H. De Fine Licht1,w, Jacobus J. Boomsma2 & Anders Tunlid1 Centuries of artificial selection have dramatically improved the yield of human agriculture; however, strong directional selection also occurs in natural symbiotic interactions. Fungus- growing attine ants cultivate basidiomycete fungi for food. One cultivar lineage has evolved inflated hyphal tips (gongylidia) that grow in bundles called staphylae, to specifically feed the ants. Here we show extensive regulation and molecular signals of adaptive evolution in gene trancripts associated with gongylidia biosynthesis, morphogenesis and enzymatic plant cell wall degradation in the leaf-cutting ant cultivar Leucoagaricus gongylophorus. Comparative analysis of staphylae growth morphology and transcriptome-wide expressional and nucleotide divergence indicate that gongylidia provide leaf-cutting ants with essential amino acids and plant-degrading enzymes, and that they may have done so for 20–25 million years without much evolutionary change. These molecular traits and signatures of selection imply that staphylae are highly advanced coevolutionary organs that play pivotal roles in the mutualism between leaf-cutting ants and their fungal cultivars. 1 Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden. 2 Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark. w Present Address: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark. Correspondence and requests for materials should be addressed to H.H.D.F.L.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Biodiversity, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • Population Genetic Signatures of Diffuse Co-Evolution Between Leaf-Cutting Ants and Their Cultivar Fungi
    Molecular Ecology (2006) doi:10.1111/j.l365-294X.2006.03134.x Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi A. S. MIKHEYEV,*U. G. MUELLER*andJ. J. BOOMSMAt *Section of Integrative Biology, 1 University Station C0930, University of Texas, Austin, TX 78712, USA, ^Institute of Biology, Department of Population Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark Abstract Switching of symbiotic partners pervades most mutualisms, despite mechanisms that appear to enforce partner fidelity. To investigate the interplay of forces binding and dissolving mutualistic pairings, we investigated partner fidelity at the population level in the attine ant-fungal cultivar mutualism. The ants and their cultivars exhibit both broad-scale co-evolution, as well as cultivar switching, with short-term symbiont fidelity maintained by vertical transmission of maternal garden inoculates via dispersing queens and by the elimination of alien cultivar strains. Using microsatellite markers, we genotyped cultivar fungi associated with five co-occurring Panamanian attine ant species, representing the two most derived genera, leaf-cutters Atta and Acromyrmex. Despite the presence of mech- anisms apparently ensuring the cotransmission of symbiont genotypes, different species and genera of ants sometimes shared identical fungus garden genotypes, indicating wide- spread cultivar exchange. The cultivar population was largely unstructured with respect to host ant species, with only 10% of the structure in genetic variance being attributable to partitioning among ant species and genera. Furthermore, despite significant genetic and ecological dissimilarity between Atta and Acromyrmex, generic difference accounted for little, if any, variance in cultivar population structure, suggesting that cultivar exchange dwarfs selective forces that may act to create co-adaptive ant-cultivar combinations.
    [Show full text]
  • Generalized Antifungal Activity and 454-Screening of Pseudonocardia and Amycolatopsis Bacteria in Nests of Fungus-Growing Ants
    Generalized antifungal activity and 454-screening SEE COMMENTARY of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants Ruchira Sena,1, Heather D. Ishaka, Dora Estradaa, Scot E. Dowdb, Eunki Honga, and Ulrich G. Muellera,1 aSection of Integrative Biology, University of Texas, Austin, TX 78712; and bMedical Biofilm Research Institute, 4321 Marsha Sharp Freeway, Lubbock, TX 79407 Edited by Raghavendra Gadagkar, Indian Institute of Science, Bangalore, India, and approved August 14, 2009 (received for review May 1, 2009) In many host-microbe mutualisms, hosts use beneficial metabolites origin (12–14). Many of the ant-associated Pseudonocardia species supplied by microbial symbionts. Fungus-growing (attine) ants are show antibiotic activity in vitro against Escovopsis (13–15). A thought to form such a mutualism with Pseudonocardia bacteria to diversity of actinomycete bacteria including Pseudonocardia also derive antibiotics that specifically suppress the coevolving pathogen occur in the ant gardens, in the soil surrounding attine nests, and Escovopsis, which infects the ants’ fungal gardens and reduces possibly in the substrate used by the ants for fungiculture (16, 17). growth. Here we test 4 key assumptions of this Pseudonocardia- The prevailing view of attine actinomycete-Escovopsis antago- Escovopsis coevolution model. Culture-dependent and culture- nism is a coevolutionary arms race between antibiotic-producing independent (tag-encoded 454-pyrosequencing) surveys reveal that Pseudonocardia and Escovopsis parasites (5, 18–22). Attine ants are several Pseudonocardia species and occasionally Amycolatopsis (a thought to use their integumental actinomycetes to specifically close relative of Pseudonocardia) co-occur on workers from a single combat Escovopsis parasites, which fail to evolve effective resistance nest, contradicting the assumption of a single pseudonocardiaceous against Pseudonocardia because of some unknown disadvantage strain per nest.
    [Show full text]
  • SPECIFICITY and STABILITY of the ACROMYRMEX–PSEUDONOCARDIA SYMBIOSIS 4309 Ria That They Would Not Associate with in the field, Partic- the Pronotum of A
    Molecular Ecology (2013) 22, 4307–4321 doi: 10.1111/mec.12380 Specificity and stability of the Acromyrmex–Pseudonocardia symbiosis S. B. ANDERSEN,*1 L. H. HANSEN,† P. SAPOUNTZIS,* S. J. SØRENSEN† and J. J. BOOMSMA* *Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark, †Molecular Microbial Ecology Group, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark Abstract The stability of mutualistic interactions is likely to be affected by the genetic diversity of symbionts that compete for the same functional niche. Fungus-growing (attine) ants have multiple complex symbioses and thus provide ample opportunities to address questions of symbiont specificity and diversity. Among the partners are Actinobacteria of the genus Pseudonocardia that are maintained on the ant cuticle to produce antibiot- ics, primarily against a fungal parasite of the mutualistic gardens. The symbiosis has been assumed to be a hallmark of evolutionary stability, but this notion has been chal- lenged by culturing and sequencing data indicating an unpredictably high diversity. We used 454 pyrosequencing of 16S rRNA to estimate the diversity of the cuticular bacterial community of the leaf-cutting ant Acromyrmex echinatior and other fungus- growing ants from Gamboa, Panama. Both field and laboratory samples of the same colonies were collected, the latter after colonies had been kept under laboratory condi- tions for up to 10 years. We show that bacterial communities are highly colony-specific and stable over time. The majority of colonies (25/26) had a single dominant Pseudono- cardia strain, and only two strains were found in the Gamboa population across 17 years, confirming an earlier study.
    [Show full text]
  • CATALOG of SPECIES
    ARSARSARSARSARSARS ARSARS CollectionCollectionef ofof EntomopathogenicEntomopathogenic FungalFungal CulturesCultures CATALOG of SPECIES FULLY INDEXED [INCLUDES 9773 ISOLAtes] USDA-ARS Biological Integrated Pest Management Research Robert W. Holley Center for Agriculture and Health 538 Tower Road Ithaca, New York 14853-2901 28 July 2011 Search the ARSEF catalog online at http://www.ars.usda.gov/Main/docs.htm?docid=12125 ARSEF Collection Staff Richard A. Humber, Curator phone: [+1] 607-255-1276 fax: [+1] 607-255-1132 email: [email protected] Karen S. Hansen phone: [+1] 607-255-1274 fax: [+1] 607-255-1132 email: [email protected] Micheal M. Wheeler phone: [+1] 607-255-1274 fax: [+1] 607-255-1132 email: [email protected] USDA-ARS Biological IPM Research Unit Robert W. Holley Center for Agriculture & Health 538 Tower Road Ithaca, New York 14853-2901, USA IMPORTANT NOTE Recent phylogenetically based reclassifications of fungal pathogens of invertebrates Richard A. Humber Insect Mycologist and Curator, ARSEF UPDATED July 2011 Some seemingly dramatic and comparatively recent changes in the classification of a number of fungi may continue to cause confusion or a degree of discomfort to many of the clients of the cultures and informational resources provided by the ARSEF culture collection. This short treatment is an attempt to summarize some of these changes, the reasons for them, and to provide the essential references to the literature in which the changes are proposed. As the Curator of the ARSEF collection I wish to assure you that these changes are appropriate, progressive, and necessary to modernize and to stabilize the systematics of the fungal pathogens affecting insects and other invertebrates, and I urge you to adopt them into your own thinking, teaching, and publications.
    [Show full text]
  • “Building Behaviour and the Control of Nest Climate in Acromyrmex Leaf Cutting Ants”
    “Building behaviour and the control of nest climate in Acromyrmex leaf-cutting ants” Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Leonardo Martin Bollazzi Sosa Aus Las Piedras, Uruguay. Würzburg, März 2008 2 Eingereicht am: 19 März 2008 Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. M. J. Müller Gutachter: Prof. Dr. Flavio Roces Gutachter: Prof. Dr. Judith Korb Tag des Promotionskolloquiums: 28 Mai 2008 Doktorurkunde ausgehändigt am: …………………………………………………… 3 Contents Summary..................................................................................................................................6 Zusammenfassung ...............................................................................................................9 1. Introduction and general aim...................................................................................12 1.1. Specific aims and experimental approach.........................................................14 2. Thermal preference for fungus culturing and brood location by workers of the thatching grass-cutting ant Acromyrmex heyeri.................................................16 2.1. Introduction............................................................................................................16 2.2. Methods..................................................................................................................18 2.3. Results....................................................................................................................19
    [Show full text]
  • The Coexistence
    Myrmecological News 13 37-55 2009, Online Earlier Natural history and phylogeny of the fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini) Natasha J. MEHDIABADI & Ted R. SCHULTZ Abstract Ants of the tribe Attini comprise a monophyletic group of approximately 230 described and many more undescribed species that obligately depend on the cultivation of fungus for food. In return, the ants nourish, protect, and disperse their fungal cultivars. Although all members of this tribe cultivate fungi, attine ants are surprisingly heterogeneous with regard to symbiont associations and agricultural system, colony size and social structure, nesting behavior, and mating system. This variation is a key reason that the Attini have become a model system for understanding the evolution of complex symbioses. Here, we review the natural-history traits of fungus-growing ants in the context of a recently published phylo- geny, collating patterns of evolution and symbiotic coadaptation in a variety of colony and fungus-gardening traits in a number of major lineages. We discuss the implications of these patterns and suggest future research directions. Key words: Hymenoptera, Formicidae, fungus-growing ants, leafcutter ants, colony life, natural history, evolution, mating, agriculture, review. Myrmecol. News 13: 37-55 (online xxx 2008) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 12 June 2009; revision received 24 September 2009; accepted 28 September 2009 Dr. Natasha J. Mehdiabadi* (contact author) & Dr. Ted R. Schultz* (contact author), Department of Entomology and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, NHB, CE518, MRC 188, Washington, DC 20013-7012, USA. E-mail: [email protected]; [email protected] * Both authors contributed equally to the work.
    [Show full text]