Signal-Oriented Pathway Analyses Reveal a Signaling Complex As A

Total Page:16

File Type:pdf, Size:1020Kb

Signal-Oriented Pathway Analyses Reveal a Signaling Complex As A Published OnlineFirst October 10, 2016; DOI: 10.1158/0008-5472.CAN-16-1740 Cancer Integrated Systems and Technologies Research Signal-Oriented Pathway Analyses Reveal a Signaling Complex as a Synthetic Lethal Target for p53 Mutations Songjian Lu1,2, Chunhui Cai1,2, Gonghong Yan3,4,5, Zhuan Zhou3,6, Yong Wan3,6, Vicky Chen1,2, Lujia Chen1,2, Gregory F. Cooper1,2, Lina M. Obeid7, Yusuf A. Hannun7, Adrian V. Lee2,3,4,5, and Xinghua Lu1,2 Abstract Defining processes that are synthetic lethal with p53 muta- methods-identified pathways were perturbed by SGA. In par- tions in cancer cells may reveal possible therapeutic strategies. ticular, our analyses revealed that SGA affecting TP53, PTK2, In this study, we report the development of a signal-oriented YWHAZ,andMED1 perturbed a set of signals that promote cell computational framework for cancer pathway discovery in this proliferation, anchor-free colony formation, and epithelial– context. We applied our bipartite graph–based functional mod- mesenchymal transition (EMT). These proteins formed a sig- ule discovery algorithm to identify transcriptomic modules naling complex that mediates these oncogenic processes in a abnormally expressed in multiple tumors, such that the genes coordinated fashion. Disruption of this signaling complex by in a module were likely regulated by a common, perturbed knocking down PTK2, YWHAZ, or MED1 attenuated and signal. For each transcriptomic module, we applied our weight- reversed oncogenic phenotypes caused by mutant p53 in a ed k-path merge algorithm to search for a set of somatic genome synthetic lethal manner. This signal-oriented framework for alterations (SGA) that likely perturbed the signal, that is, the searching pathways and therapeutic targets is applicable to all candidate members of the pathway that regulate the transcrip- cancer types, thus potentially impacting precision medicine in tomic module. Computational evaluations indicated that our cancer. Cancer Res; 76(23); 6785–94. Ó2016 AACR. Introduction Consortium [ICGC (3–5); see study by Djosta Nono and collea- gues (ref. 6) for a comprehensive review]. However, a majority of Cancer is driven by aberrations in cellular signaling pathways, the current methods concentrate on finding genes that are mutat- commonly caused by somatic genome alterations (SGA), such as ed above a baseline frequency according to a certain statistical somatic mutations and copy number alterations, and epigenetic model, without information regarding the functional impacts of alterations that affect signaling proteins (1, 2). Large-scale cancer mutation events, such as the biological processes perturbed by the genomic studies, such as The Cancer Genome Atlas (TCGA), mutation events. As such, it is difficult to organize candidate provide an unprecedented opportunity to comprehensively inves- drivers observed in different tumors into pathways. To address tigate cancer pathways perturbed by SGAs. this challenge, researchers have designed a family of algorithms Discovering cancer drivers and pathways is an active research that searches for a set of mutated genes that exhibit mutually area. Different algorithms have been designed to search for cancer exclusive patterns in tumors and identifies them as members of a driver genes using cancer genomic data availed by large-scale candidate pathway, based on the observation that SGA events projects such as TCGA and the International Cancer Genome affecting a pathway seldom co-occur in a tumor (7–12). This framework has limitations in that mutual exclusivity is neither a fi 1Department of Biomedical Informatics, University of Pittsburgh, Pitts- necessary nor a suf cient condition for genes involved in a burgh, Pennsylvania. 2Center for Causal Discovery, University of Pitts- pathway. That is, not all genes in a pathway show mutual 3 burgh, Pittsburgh, Pennsylvania. University of Pittsburgh Cancer exclusivity, and not all mutually exclusive genes are in a common Institute, Pittsburgh, Pennsylvania. 4Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsyl- pathway. Other researchers resort to the knowledge of biological vania. 5Magee-Womens Research Institute, Pittsburgh, Pennsylvania. networks, for example, protein–protein interaction (PPI) net- 6Department of Cell Biology, University of Pittsburgh, Pittsburgh, 7 works, to search for genes that are closely located within a biologic Pennsylvania. Department of Medicine, the State University of New – York at Stony Brook, Stony Brook, New York. network and are commonly perturbed by SGAs (13 16). The limitation of this approach is that PPI data can be noisy and that Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/). member proteins of a pathway do not always physically interact. Importantly, the aforementioned driver identification or pathway S. Lu, C. Cai, and G. Yan contributed equally to this work. discovery algorithms do not take into account the functional Corresponding Authors: Xinghua Lu, University of Pittsburgh, 5607 Baum Blvd, impacts of SGA events, which is critical to determine whether an Pittsburgh, PA 15206. Phone: 412-624-3333; Fax: 412-624-5310; E-mail: SGA-perturbed gene is a driver and whether a set of SGAs perturb a [email protected]; and Adrian V. Lee, [email protected] common cellular signal. doi: 10.1158/0008-5472.CAN-16-1740 In this study, we developed a novel signal-oriented compu- Ó2016 American Association for Cancer Research. tational framework, which utilizes the intrinsic relation www.aacrjournals.org 6785 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst October 10, 2016; DOI: 10.1158/0008-5472.CAN-16-1740 Lu et al. Figure 1. Identification of response modules predictive of clinical outcomes. A, Diagram illustrating the search for a response module by finding a densely connected bipartite graph. Tumors and DEGs annotated by a common GO term are represented as the nodes in the graph. An edge indicates that a gene is differentially expressed in a tumor. A response module consists of a set of co-differentially expressed genes in multiple tumors satisfying a specified connectivity. B, Volcano plot illustrating response modules that are predictive of patient outcomes. A row corresponds to a response module, and a red dot indicates the Kaplan–Meier P value of METABRIC patients dichotomized according to the state of the response module. The pink area indicates the upper 95% of P values that can be obtained when dividing patients conditioning on randomly drawn gene sets of the same size as the corresponding response module. C, Heatmap illustrating the averaged within-module expression values of response modules (response modules annotated with GO: 0000278, GO: 0000087, and GO: 0007067 were merged and are indicated by an asterisk). The pseudo-color represents the relative expression value of a response module in tumors by the number of SDs from the mean. The tumors were clustered into subgroups with group IDs indicated below the heatmap; the proportion of tumors belonging to PAM50 subtypes within a cluster are shown as colors. D, Kaplan–Meier survival curves of the 8 patient groups identified by clustering analysis. between the perturbation of a signaling pathway and the transcriptomic module as a means to discover the members of expression changes of downstream genes regulated by the a cancer pathway. pathway, to search for driver SGAs and reconstruct signaling Applying our framework to breast cancer tumors from TCGA, pathways. To this end, we first applied a bipartite graph–based we defined the most commonly perturbed transcriptomic mod- functional module discovery (BFMD) algorithm to identify ules and investigated the candidate pathways driving their aber- transcriptomic modules (17, 18) as signatures of cellular rant expression. We discovered a p53-centered signaling complex signals that are perturbed in tumors. We then applied a involving TP53, PTK2, YWHAZ, and MED1, which drives multiple weighted k-path merge (WKM) algorithm to identify a set of oncogenic processes in breast cancer and is associated with SGAs that perturb a common signal (12, 19) with respect to a worse clinical outcome. We show that disrupting the complex, 6786 Cancer Res; 76(23) December 1, 2016 Cancer Research Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst October 10, 2016; DOI: 10.1158/0008-5472.CAN-16-1740 Synthetic Lethal Targets for Treating p53 Mutations by knocking down PTK2, YWHAZ, and MED1 proteins, specifi- cancer cell line kit (ICBP45) of the National Cancer Institute cally attenuates or reverses the oncogenic phenotypes induced by (Bethesda, MD). The cell lines were obtained by the ICBP program mutant p53. Given that TP53 is the most frequently mutated gene in 2010 and were thawed 2 weeks before experiments (2013– (>40% of all types of tumors) and is associated with worse 2014). There were less than 10 passages between thawing of the outcome (1, 20), the effective targeting of TP53 mutation–medi- cells and the experiments described in this study. In general, ated signals could have a significant impact on a large number of mycoplasma testing is performed periodically on all cell lines patients with cancer. used in the laboratory (every 3 months), but in this case, this was The signal-oriented framework is a general approach that can be not necessary, as all
Recommended publications
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • RT² Profiler PCR Array (384-Well Format) Human Apoptosis 384HT
    RT² Profiler PCR Array (384-Well Format) Human Apoptosis 384HT Cat. no. 330231 PAHS-3012ZE For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 7900HT (384-well block), Format E ViiA™ 7 (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (384-well block) Format G Description The Human Apoptosis RT² Profiler PCR Array profiles the expression of 370 key genes involved in apoptosis, or programmed cell death. The array includes the TNF ligands and their receptors; members of the bcl-2 family, BIR (baculoviral IAP repeat) domain proteins, CARD domain (caspase recruitment domain) proteins, death domain proteins, TRAF (TNF receptor-associated factor) domain proteins and caspases. These 370 genes are also grouped by their functional contribution to apoptosis, either anti-apoptosis or induction of apoptosis. Using real-time PCR, you can easily and reliably analyze expression of a focused panel of genes related to apoptosis with this array. For further details, consult the RT² Profiler PCR Array Handbook. Sample & Assay Technologies Shipping and storage RT² Profiler PCR Arrays in formats E and G are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products. For long term storage, keep plates at –20°C. Note: Ensure that you have the correct RT² Profiler PCR Array format for your real-time cycler (see table above). Note: Open the package and store the products appropriately immediately
    [Show full text]
  • MARCH5 Requires MTCH2 to Coordinate Proteasomal Turnover of the MCL1:NOXA Complex
    Cell Death & Differentiation (2020) 27:2484–2499 https://doi.org/10.1038/s41418-020-0517-0 ARTICLE MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex 1,2 1,2,5 1,2 1,2 1,2,3 1,2 Tirta Mario Djajawi ● Lei Liu ● Jia-nan Gong ● Allan Shuai Huang ● Ming-jie Luo ● Zhen Xu ● 4 1,2 1,2 1,2 Toru Okamoto ● Melissa J. Call ● David C. S. Huang ● Mark F. van Delft Received: 3 July 2019 / Revised: 6 February 2020 / Accepted: 7 February 2020 / Published online: 24 February 2020 © The Author(s) 2020. This article is published with open access Abstract MCL1, a BCL2 relative, is critical for the survival of many cells. Its turnover is often tightly controlled through both ubiquitin-dependent and -independent mechanisms of proteasomal degradation. Several cell stress signals, including DNA damage and cell cycle arrest, are known to elicit distinct E3 ligases to ubiquitinate and degrade MCL1. Another trigger that drives MCL1 degradation is engagement by NOXA, one of its BH3-only protein ligands, but the mechanism responsible has remained unclear. From an unbiased genome-wide CRISPR-Cas9 screen, we discovered that the ubiquitin E3 ligase MARCH5, the ubiquitin E2 conjugating enzyme UBE2K, and the mitochondrial outer membrane protein MTCH2 co- — fi 1234567890();,: 1234567890();,: operate to mark MCL1 for degradation by the proteasome speci cally when MCL1 is engaged by NOXA. This mechanism of degradation also required the MCL1 transmembrane domain and distinct MCL1 lysine residues to proceed, suggesting that the components likely act on the MCL1:NOXA complex by associating with it in a specific orientation within the mitochondrial outer membrane.
    [Show full text]
  • Bayesian Hierarchical Modeling of High-Throughput Genomic Data with Applications to Cancer Bioinformatics and Stem Cell Differentiation
    BAYESIAN HIERARCHICAL MODELING OF HIGH-THROUGHPUT GENOMIC DATA WITH APPLICATIONS TO CANCER BIOINFORMATICS AND STEM CELL DIFFERENTIATION by Keegan D. Korthauer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF WISCONSIN–MADISON 2015 Date of final oral examination: 05/04/15 The dissertation is approved by the following members of the Final Oral Committee: Christina Kendziorski, Professor, Biostatistics and Medical Informatics Michael A. Newton, Professor, Statistics Sunduz Kele¸s,Professor, Biostatistics and Medical Informatics Sijian Wang, Associate Professor, Biostatistics and Medical Informatics Michael N. Gould, Professor, Oncology © Copyright by Keegan D. Korthauer 2015 All Rights Reserved i in memory of my grandparents Ma and Pa FL Grandma and John ii ACKNOWLEDGMENTS First and foremost, I am deeply grateful to my thesis advisor Christina Kendziorski for her invaluable advice, enthusiastic support, and unending patience throughout my time at UW-Madison. She has provided sound wisdom on everything from methodological principles to the intricacies of academic research. I especially appreciate that she has always encouraged me to eke out my own path and I attribute a great deal of credit to her for the successes I have achieved thus far. I also owe special thanks to my committee member Professor Michael Newton, who guided me through one of my first collaborative research experiences and has continued to provide key advice on my thesis research. I am also indebted to the other members of my thesis committee, Professor Sunduz Kele¸s,Professor Sijian Wang, and Professor Michael Gould, whose valuable comments, questions, and suggestions have greatly improved this dissertation.
    [Show full text]
  • Simultaneously Inhibiting BCL2 and MCL1 Is a Therapeutic Option for Patients with Advanced Melanoma
    cancers Article Simultaneously Inhibiting BCL2 and MCL1 Is a Therapeutic Option for Patients with Advanced Melanoma Nabanita Mukherjee 1, Carol M. Amato 2 , Jenette Skees 1, Kaleb J. Todd 1, Karoline A. Lambert 1, William A. Robinson 2, Robert Van Gulick 2, Ryan M. Weight 2, Chiara R. Dart 2, Richard P. Tobin 3, Martin D. McCarter 3, Mayumi Fujita 1,4,5 , David A. Norris 1,4 and Yiqun G. Shellman 1,5,* 1 Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; [email protected] (N.M.); [email protected] (J.S.); [email protected] (K.J.T.); [email protected] (K.A.L.); [email protected] (M.F.); [email protected] (D.A.N.) 2 Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8117, Aurora, CO 80045, USA; [email protected] (C.M.A.); [email protected] (W.A.R.); [email protected] (R.V.G.); [email protected] (R.M.W.); [email protected] (C.R.D.) 3 Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] (R.P.T.); [email protected] (M.D.M.) 4 Dermatology Section, Department of Veterans Affairs Medical Center, Denver, CO 80220, USA 5 Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA * Correspondence: [email protected]; Tel.: +1-303-724-4034; Fax: +1-303-724-4048 Received: 30 June 2020; Accepted: 31 July 2020; Published: 5 August 2020 Abstract: There is an urgent need to develop treatments for patients with melanoma who are refractory to or ineligible for immune checkpoint blockade, including patients who lack BRAF-V600E/K mutations.
    [Show full text]
  • Synergy of Bcl2 and Histone Deacetylase Inhibition Against Leukemic Cells from Cutaneous T-Cell Lymphoma Patients Benoit Cyrenne
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine January 2018 Synergy Of Bcl2 And Histone Deacetylase Inhibition Against Leukemic Cells From Cutaneous T-Cell Lymphoma Patients Benoit Cyrenne Follow this and additional works at: https://elischolar.library.yale.edu/ymtdl Recommended Citation Cyrenne, Benoit, "Synergy Of Bcl2 And Histone Deacetylase Inhibition Against Leukemic Cells From Cutaneous T-Cell Lymphoma Patients" (2018). Yale Medicine Thesis Digital Library. 3388. https://elischolar.library.yale.edu/ymtdl/3388 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. i Synergy of BCL2 and histone deacetylase inhibition against leukemic cells from cutaneous T-cell lymphoma patients A Thesis Submitted to the Yale University School of Medicine in Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine Benoit M. Cyrenne 2018 ii SYNERGY OF BCL2 AND HISTONE DEACETYLASE INHIBITION AGAINST LEUKEMIC CELLS FROM CUTANEOUS T-CELL LYMPHOMA PATIENTS. Benoit Cyrenne, Julia Lewis, Jason Weed, Kacie Carlson, Fatima Mirza, Francine Foss, and Michael Girardi. Department of Dermatology, Yale University, School of Medicine, New Haven, CT. The presence and degree of peripheral blood involvement in patients with cutaneous T-cell lymphoma (CTCL) portend a worse clinical outcome. Available systemic therapies for CTCL may variably decrease tumor burden and improve quality of life, but offer limited effects on survival; thus, novel approaches to the treatment of advanced stages of this non-Hodgkin lymphoma are clearly warranted.
    [Show full text]
  • BCL-2 Family Proteins: Changing Partners in the Dance Towards Death
    Cell Death and Differentiation (2018) 25, 65–80 OPEN Official journal of the Cell Death Differentiation Association www.nature.com/cdd Review BCL-2 family proteins: changing partners in the dance towards death Justin Kale1, Elizabeth J Osterlund1,2 and David W Andrews*,1,2,3 The BCL-2 family of proteins controls cell death primarily by direct binding interactions that regulate mitochondrial outer membrane permeabilization (MOMP) leading to the irreversible release of intermembrane space proteins, subsequent caspase activation and apoptosis. The affinities and relative abundance of the BCL-2 family proteins dictate the predominate interactions between anti-apoptotic and pro-apoptotic BCL-2 family proteins that regulate MOMP. We highlight the core mechanisms of BCL-2 family regulation of MOMP with an emphasis on how the interactions between the BCL-2 family proteins govern cell fate. We address the critical importance of both the concentration and affinities of BCL-2 family proteins and show how differences in either can greatly change the outcome. Further, we explain the importance of using full-length BCL-2 family proteins (versus truncated versions or peptides) to parse out the core mechanisms of MOMP regulation by the BCL-2 family. Finally, we discuss how post- translational modifications and differing intracellular localizations alter the mechanisms of apoptosis regulation by BCL-2 family proteins. Successful therapeutic intervention of MOMP regulation in human disease requires an understanding of the factors that mediate the major binding interactions between BCL-2 family proteins in cells. Cell Death and Differentiation (2018) 25, 65–80; doi:10.1038/cdd.2017.186; published online 17 November 2017 The membrane plays an active role in most BCL-2 family interactions by changing the affinities and local relative abundance of these proteins.
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • The AAA-Atpase P97 Is Essential for Outer Mitochondrial Membrane Protein Turnover
    MBoC | ARTICLE The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover Shan Xu a, b,* , Guihong Peng a, b,* , Yang Wang a, c , Shengyun Fang a, c , and Mariusz Karbowskia, b a Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201; b Department of Biochemistry & Molecular Biology, c Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 ABSTRACT Recent studies have revealed a role for the ubiquitin/proteasome system in the Monitoring Editor regulation and turnover of outer mitochondrial membrane (OMM)-associated proteins. Al- Benjamin Glick though several molecular components required for this process have been identifi ed, the University of Chicago mechanism of proteasome-dependent degradation of OMM-associated proteins is currently Received: Sep 3 , 2010 unclear. We show that an AAA-ATPase, p97, is required for the proteasomal degradation of Revised: Oct 26 , 2010 Mcl1 and Mfn1, two unrelated OMM proteins with short half-lives. A number of biochemical Accepted: Nov 18 , 2010 assays, as well as imaging of changes in localization of photoactivable GFP-fused Mcl1, re- vealed that p97 regulates the retrotranslocation of Mcl1 from mitochondria to the cytosol, prior to, or concurrent with, proteasomal degradation. Mcl1 retrotranslocation from the OMM depends on the activity of the ATPase domain of p97. Furthermore, p97-mediated retrotranslocation of Mcl1 can be recapitulated in vitro, confi rming a direct mitochondrial role for p97. Our results establish p97 as a novel and essential component of the OMM-associated protein degradation pathway. INTRODUCTION Mitochondria are the primary site of energy production in animal such as mitochondrial membrane dynamics.
    [Show full text]
  • XIAO-DISSERTATION-2015.Pdf
    CELLULAR AND PROCESS ENGINEERING TO IMPROVE MAMMALIAN MEMBRANE PROTEIN EXPRESSION By Su Xiao A dissertation is submitted to Johns Hopkins University in conformity with the requirements for degree of Doctor of Philosophy Baltimore, Maryland May 2015 © 2015 Su Xiao All Rights Reserved Abstract Improving the expression level of recombinant mammalian proteins has been pursued for production of commercial biotherapeutics in industry, as well as for biomedical studies in academia, as an adequate supply of correctly folded proteins is a prerequisite for all structure and function studies. Presented in this dissertation are different strategies to improve protein functional expression level, especially for membrane proteins. The model protein is neurotensin receptor 1 (NTSR1), a hard-to- express G protein-coupled receptor (GPCR). GPCRs are integral membrane proteins playing a central role in cell signaling and are targets for most of the medicines sold worldwide. Obtaining adequate functional GPCRs has been a bottleneck in their structure studies because the expression of these proteins from mammalian cells is very low. The first strategy is the adoption of mammalian inducible expression system. A stable and inducible T-REx-293 cell line overexpressing an engineered rat NTSR1 was constructed. 2.5 million Functional copies of NTSR1 per cell were detected on plasma membrane, which is 167 fold improvement comparing to NTSR1 constitutive expression. The second strategy is production process development including suspension culture adaptation and induction parameter optimization. A further 3.5 fold improvement was achieved and approximately 1 milligram of purified functional NTSR1 per liter suspension culture was obtained. This was comparable yield to the transient baculovirus- insect cell system.
    [Show full text]
  • Multi-Modal Effects of 1B3, a Novel Synthetic Mir-193A-3P Mimic, Support Strong Potential for Therapeutic Intervention in Oncology
    www.oncotarget.com Oncotarget, 2021, Vol. 12, (No. 5), pp: 422-439 Research Paper Multi-modal effects of 1B3, a novel synthetic miR-193a-3p mimic, support strong potential for therapeutic intervention in oncology Bryony J. Telford1, Sanaz Yahyanejad1, Thijs de Gunst1, Harm C. den Boer1, Rogier M. Vos1, Marieke Stegink1, Marion T.J. van den Bosch1, Mir Farshid Alemdehy1, Laurens A.H. van Pinxteren1, Roel Q.J. Schaapveld1 and Michel Janicot1 1InteRNA Technologies BV, Utrecht, The Netherlands Correspondence to: Michel Janicot, email: [email protected] Keywords: miR-193a-3p; microRNA mimic; microRNA delivery in vivo; pleiotropic mechanism of microRNA Received: October 16, 2020 Accepted: February 01, 2021 Published: March 02, 2021 Copyright: © 2021 Telford et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Compelling evidence demonstrates that miR-193a-3p is a tumor suppressor microRNA in many cancer types, and its reduced expression is linked to cancer initiation and progression, metastasis, and therapy resistance. However, its mechanism of action is not consistently described between studies, and often contradicts the pleiotropic role of a microRNA in manipulating several different mRNA targets. We therefore comprehensively investigated miRNA-193a-3p's mode of action in a panel of human cancer cell lines, with a variety of genetic backgrounds, using 1B3, a synthetic microRNA mimic. Interestingly, the exact mechanism through which 1B3 reduced cell proliferation varied between cell lines. 1B3 efficiently reduced target gene expression, leading to reduced cell proliferation/survival, cell cycle arrest, induction of apoptosis, increased cell senescence, DNA damage, and inhibition of migration.
    [Show full text]
  • Signal-Oriented Pathway Analyses Reveal a Signaling Complex As a Synthetic
    Author Manuscript Published OnlineFirst on October 10, 2016; DOI: 10.1158/0008-5472.CAN-16-1740 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Signal-oriented pathway analyses reveal a signaling complex as a synthetic lethal target for p53 mutations Songjian Lu1,2,*, Chunhui Cai1,2,*, Gonghong Yan3,4,5,*, Zhuan Zhou3,6, Yong Wan3,6, Vicky Chen1,2, Lujia Chen1,2, Gregory F. Cooper1,2, Lina M. Obeid7, Yusuf A. Hannun7, Adrian V. Lee2,3,4,5§ and Xinghua Lu1,2,§ 1Department of Biomedical Informatics, 2Center for Causal Discovery, 3University of Pittsburgh Cancer Institute, 4Department of Pharmacology and Chemical Biology, 5Magee-Womens Research Institute, 6Department of Cell Biology, Pittsburgh, PA, 7 Department of Medicine, the State University of New York at Stony Brook, Stony Brook, NY * These authors contributed equally to this work § Corresponding Authors: Xinghua Lu, Adrian V Lee Email: [email protected] and [email protected] The authors declare no conflict of interest pertaining to this manuscript. 1 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 10, 2016; DOI: 10.1158/0008-5472.CAN-16-1740 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Defining processes that are synthetic lethal with p53 mutations in cancer cells may reveal possible therapeutic strategies. In this study, we report the development of a signal-oriented computational framework for cancer pathway discovery in this context. We applied our bipartite- graph-based functional module discovery algorithm to identify transcriptomic modules abnormally expressed in multiple tumors, such that the genes in a module were likely regulated by a common, perturbed signal.
    [Show full text]