Long Base-Line Neutrino Oscillation Beams and Experiments

Total Page:16

File Type:pdf, Size:1020Kb

Long Base-Line Neutrino Oscillation Beams and Experiments 481 LONG BASE-LINE NEUTRINO OSCILLATION BEAMS AND EXPERIMENTS Stavros Katsanevas University of Athens 104 Solonos, GR-106 80 Athens. Abstract Strong interest has recently been shown in very long base-line neutrino beams1 directed at existing or planned massivedetector facilities, in order to extend the search forneutrino oscil­ lations. There are currently proposed experiments in the U.S, Japan and Europe. Among such possibilities are beams from CERN pointing towards the Gran Sasso Underground Laboratory in Italy and the NESTOR Underwater Laboratory in the Ionian Sea off the west coast of the Peloponnese. After a brief review of the long baseline beam possibilities in the U.S and Japan, the basic parameters of a CERN beam are studied. A number of possible configurations cov­ ering a range of neutrino energy bands are studied and estimates of the neutrino fluxes, event rates and backgrounds at typical detectors are reported. A neutrino oscillation search down to limits of sin2 0.01 and could be made with currently proposed detectors. 20 � �m2 � O.OOleV2 482 1 Introduction The relatively old idea of a long baselineaccelerator beam pointing to a detector located tens to hundreds of kilometers away hasevolved from the phase of first estimations [l] to that of realistic designs and detailed proposals [2]. Further, results of the KAMIOKANDE, !MB, and SOUDAN [3] collaborations suggest that perhaps as much as 40 % of the atmospheric v" events in the energy range from 0.2-1.5 GeV have oscillated to some other type of neutrino. On then other hand, FREJUS [4] did not record any effect. The recent 'multi-GeV' studies by KAMIOKANDE [5], have confirmed their previous result, and have even shown an azimuthal distribution of the ratio ;;,:- consistent with avµ --+ v, or vµ --+ vr oscillation signal. Clearly one would like to continue with controlled beam experiments because they have the fo llowing advantages over atmospheric data: Initial flavourcom position well known (typically 11, is 1% of 11µ ), Control of the energy. One can typically obtain beam energy dispersions of as � 5 GeV One can assume the direction cosines and time of arrival of the neutrino, improving efficiency and reducing backgrounds substantially Higher statistics, giving sensitivity to lower mixing angles Control of the beam polarity. One can switch between v and ;;; beams to study matter enhanced oscillation (MSW) effects [6]). 2 Currently proposed beams and experiments The possibilities of long base-line beams are under active study in the US and Japan. In the US the two main proposals are: a beam from the Fe rmilab 120 GeV Main Injector to the Soudan underground laboratory at 732 km distance (MINOS proposal) [7] and the 24 GeV Brookhaven proton beam to sites up to 68 km on Long-Island [9]. There is also a Japanese proposal [10] of a beam from KEK {12 GeV) to Superkamiokande, 250 km away. MINOS The Collaboration [7] proposes to conduct a search for IIµ --+ v, and IIµ --+ llr oscillations detected by the comparison of signals in a "near" detector at Fermilab and a "far" detector at the Soudan site. A new 10 kt {36m long,4m radius) detector consisting of a sandwich of 4 cm thick octagonal steel plates separated by 2 cm gaps of active elements in a toroidal magnetic field of � 1.5 Tesla will be built at Soudan. In a standard year they expect ') 3.7xl020 protons on the target. They propose two focusing scenarii: a wide-band beam horn-reflector system peaking at 10 GeV in Ev and delivering 2100 111, Charged Current (CC) events per kiloton-year at the far detector and a narrow-band beam , using lithium lenses that can be tuned between 10 GeV and 30 GeV in Ev with energy spread of ±15%. The 11, backgrounds are estimated to be in both beams less than 1%. The decay tunnel, they presently favour, is 800m long and has lm radius. The near detector will have the same granularity and detector technology as the far detector. Simulations show that the neutrino energy spectrum in the center of the beam (� 25 cm radius) will be similar to that of the far detector. They will be able to start taking data in 2001. The existing high resolution lkt detector Soudan2 [8] in the same site, can provide an independent test with lower statistics. Among the lower energy proposals the Japanese proposal [10] proposes a setup where the 12 GeV proton beam of KEK after a 90 degrees bend is directed to 3 water cherenkov detectors and a near fine-grained detector. Their fiducial masses and distances are 1.6 ton at 500m, 2kt at 25 km and 22kt at 250 km (the Super-Kamioka detector). A fine grained detector of 10 tons will be positionned immediately in front of the first cherenkov detector. There is a horn focusing and the decay pipe is 200m long and l.5m in radius. For a total 1020 protons on target, which corresponds to 2-3 years of running, more than 500 CC events will be observed in the 22 kt fiducial volume for Super-Kamioka, 1700 CC events at the intermediate detector and 8000 CC events in the near detector. The 11, contamination is estimated to be less than 0.7% of the 111, flux. They wish to start taking data during 1999. Assuming protons on target every seconds for seconds/year l) 4xl013 l.9 l.75xl07 483 BNL The second low energy proposal 889 uses the BNL AGS. The experiment will search for vµ oscillations by means of four identical 4.6 kton {18m high, 9m radius) water Cherenkov neutrino detectors located 1,3, 24 and 68 km from the AGS neutrino source. The experiment will capitalize on the advantages of AGS: a) high 28 GeV proton beam intensity (6xl013 p per pulse every 1.6 sec) and narrow time-structure (8 bunches per pulse, 20-30ns wide) of the fast extracted protom beam to permit the detectors to be loacted on the earths surface. They have requested 102l protons on the target. A key aspect particular to this design, involves placing the detectors 1.5 degrees offthe center line of the neutrino beam, in order to obtain a lower neutrino mean energy (� 1 GeV). They use a double horn focusing sustem and the neutrinos are produced in a decay pipe 180m long having a radius of l.5m at the far end. For the above integrated luminosity they expect 2.2xl03, l.8xl04, ll.5xl05, and 10.3xl06 quasi-elastic muon events in decreasing order of distance in the 4 detectors. They also expect 4.5xl02, 3.6xl03, 23.2xl04, and 20.7xl05 neutral current events respectively. They could be ready to start ir0 taking data by the year 2000. Interest in a long baseline neutrino beam from CERN has been stimulated by the fact that as part of the LHC project at CERN, new transfer lines are required to bring fast extracted protons from the SPS to the LHC. It has been shown [11] that it would be possible to derive a neutrino beam from the Tl 87 line linking SPS-LSS4 to the LHC/LEP ring near point 8. Two substantial neutrino detector facilities exist or are under development which lie in the general direction of such a beam: the Gran Sasso underground laboratory (in particular the ICARUS detector [12]) at a dis­ tance of 731 km, azimuth 122.502 and declination 3.283 degrees w.r.t CERN. The proposal describes a 5 kt liquid argon TPC detector. An intermediate, fu nded, 600 ton detector will be ready to take data2l in 2 years time. the deep ( 4000m below sea level) underwater neutrino laboratory NESTOR [13] in the Mediterranean at a distance of 1676 km, azimuth 124.1775 and declination 8.526 degrees w.r.t CERN. The NESTOR protype module under construction consists of a 200 kton tower (32m diameter,240m height) having 12 floors distant by 20m with sparse photomultiplier (14/floor) coverage. It will be deployed during 1997. 3) The directional angles from CERN differ by 1.68 degrees in azimuth and 5.24 degrees in declination [14]. The possibility of providing neutrino beams to both of these facilities using common or shared beam equipment is clearly attractive; one cannot avoid though the cost of two decay tunnels. 3 CERN Beam simulation A. Ball et al. [15] use GEANT [16] to fully simulate the beam line with realistic values for material thicknesses, magnetic field strengths, secondary interaction effects, absorption and multiple scattering in all materials. Incident proton beams of different energy (80, 120, 160 and 450 GeV) have been simulated. They were assumed to have a normal intensity distribution with a = 0.5 mm at a multiply segmented beryllium target of 3 mm diameter and 80-120 cm overall length. A major systematic uncertainty in estimating neutrino fluxes is the model of hadronic interactions used to obtain the production spectra. Three production models have been com­ pared, GHEISHA [17], FLUKA [18] and a thermodynamic model using fitted parameters [19]. The thermodynamic model compared to FLUKA/GHEISHA underestimates by 50% the neu­ trino flux, but it is known that no attempt hasbeen made to fitparameters to experimental data below 25% of the proton energy. FLUKA was chosen as the production model since it appears to be more consistently checked against experimental data. Production spectra from GHEISHA are higher than FLUKA by 25-30 %. However, without experimental particle production data The limits reported in the last section correspond to year of protons on target of this detector 2l l 2xl019 The limits presented at the last section concern a modification of the present prototype which has a) modules 3) of 5m inter-floor distance, b) twice the number of photomultipliers per floor and c} floors twisted in angle for uniform space coverage.
Recommended publications
  • 3.00Pm CET = 7.00 Am Pacific Time GRAVITATIONAL
    PRESS RELEASE IN OCCASION OF THE START OF O3 Embargoed until March 26 – 3.00pm CET = 7.00 am Pacific time GRAVITATIONAL WAVE DETECTORS JOIN FORCES FOR A NEW YEAR-LONG SIGNAL HUNT Cascina (Pisa, Italy) - The Virgo and LIGO detectors are ready to start the new Observing run called O3, lasting a whole year. The hunt for gravitational waves is set to start on April 1st when the European Virgo detector, based in Italy at the European Gravitational Observatory (EGO), and the LIGO twin detectors, located in the state of Washington and Louisiana (USA), will start to take data becoming together the most sensitive gravitational wave observatory to date. During a one-year period the LIGO and Virgo Collaborations will register science data continuously, and the three detectors will operate as a global observatory. Since August 2017, the end of the second observation run O2, the two collaborations have intensively worked on their interferometers to improve the sensitivity and reliability. Scientists have also improved their offline and online data analysis and developed further the procedures for releasing Open Public Alerts: these will within minutes notify the physics and astronomy community when a potential gravitational-wave event is observed. “With our three detectors now operational at a significantly improved sensitivity, the global LIGO-Virgo detector network is expected to make several new detections. Moreover it will allow precise triangulation of the sources of gravitational waves. This will be an important step towards our quest of multi-messenger astronomy”, says Jo van den Brand of Nikhef (the Dutch National Institute for Subatomic Physics) and VU University Amsterdam, who is the spokesperson for the Virgo collaboration.
    [Show full text]
  • New Aspera Roadmap
    Astroparticle Physics for Europe ASPERA (& ApPEC) Roadmap Antonio Ferrer IFIC/MINECO Aspera-Spain Coordinator Benasque IMFP 1 June 2012 Astroparticle Physics for Europe > What is ApPEC ? > ApPEC is an European Consortium of funding agencies for Astroparticle Physics Coordination. Astroparticle Physics for Europe ApPEC created in 2001 by the national funding agencies of France, Germany, Italy, the Netherlands and UK. Since then Spain, Belgium, Portugal, Greece, Switzerland and Poland have joined ApPEC aims to Promote and facilitate co-operation within the European Particle Astrophysics (PA) community Develop and promulgate long term strategies for European PA, offering advice to national funding agencies and EU Assist in improving links and co-ordination between European PA and the scientific programmes of organisations such as CERN, ESA, and ESO Express their collective views on AP in appropriate international forums, such as OECD, UNESCO etc. Astroparticle Physics for Europe > What is ASPERA ? > ASPERA is an ERANET, a European network of national government agencies responsible for coordinating and funding research in astroparticle physics. > ASPERA is funded by the European Commission (FP 6) at the level of 2.5 Million € over a three years period. It started in July 2006. > ASPERA arises from the existence of ApPEC (Astroparticle Physics European Coordination). What is ASPERA ? Astroparticle Physics for Europe ‘per aspera ad astra’ www.aspera-eu.org ASPERA-I FP6 ERANET (July2006-July2009, 2.5 M€) Study APP personnel and funding
    [Show full text]
  • What Is Astroparticle Physics ?
    What is AstroParticle Physics ? KEY QUESTIONS AND METHODS 9What is the Universe made of ? 9Nature of dark matter and energy 9Use rare processes (neutrino properties , proton decay) to probe the first instants of the Universe 9What is the origin of cosmic rays? What is the nature of violent cosmic phenomena ? 9Use new messengers beyond light and radio waves (high energy photons , neutrinos, charged particles, gravitational waves) to probe the « interior » of violent cosmic processes Observatories deployed 9In the desert (AUGER/Argentina, HESS/Namibia) 9In large planes (GW antenna Virgo/Pisa) 9Underground (Gran Sasso/Fréjus/Camfrance/Boulby) 9Underwater (Mediterannean ANTARES/NEMO/NESTOR) 9In space (FERMI,/PAMELA, AMS at the ISS) 9RICH INTERFACE WITH ENVIRONMENT AND GEOSCIENCE 9ASTROPARTICLE PHYSICS HAS A RICH ECSITE Conference – Stavros Katsanevas / ASPERA – June 2009 OUTREACH POTENTIAL Federating a community through a European outreach project 10-17 October 2009: European week of astroparticle physics Celebrating the 100th anniversary of first cosmic rays experiments •In the frame of IYA 2009, we are mobilising physicists, laboratories, sites of experiments to organize big or small events •Open days, talks for the general public, exhibitions… With events organized all over Europe, astroparticle physicists will meet the general public and explain the challenges they face •Science centres are very welcome to organize things in this frame, we are open to collaborations, providing for instance speakers for public talks… •More information to come on: www.astroparticle.org ECSITE Conference – Stavros Katsanevas / ASPERA – June 2009 Federating a community through a European outreach project 10-17 October 2009: European week of astroparticle physics: 2 large events as examples Roma: first large exhibition fully dedicated to astroparticle physics • Developped by the three major Italian institutes involved in astroparticle physics INFN, INAF & ASI, the 600 square-metres exhibition will be inaugurated during the week in an art Museum in Roma.
    [Show full text]
  • Of European Astroparticle Physics Unveiled to the World 29 September 2008
    The 'Magnificent 7' of European astroparticle physics unveiled to the world 29 September 2008 Today Europeans presented to the world their To insure the coordination of astroparticle physics at strategy for the future of astroparticle physics. the European level, research agencies from 13 What is dark matter? What is the origin of cosmic countries joined their efforts within the ASPERA* rays? What is the role of violent cosmic European network, an ERA-Net funded by the processes? Can we detect gravitational waves? European Commission. Thanks to the work achieved through ASPERA, European countries for With seven types of major large-scale projects the first time have a common tool to programme physicists want to find the answers to some of the jointly and share their efforts in astroparticle most exciting questions about the Universe: physics. -- CTA, a large array of Cherenkov Telescopes for This ambitious programme will gather European detection of cosmic high-energy gamma rays countries to open new exciting windows to the -- KM3NeT, a cubic kilometre-scale neutrino Universe, and the most advanced projects such as telescope in the Mediterranean Sea CTA (high-energy gamma rays) and KM3NeT (high- -- Ton-scale detectors for dark matter searches energy neutrinos) could start construction by 2012. -- A ton-scale detector for the determination of the The complete funding of this billion-scale fundamental nature and mass of neutrinos programme would need a smooth yearly increase -- A Megaton-scale detector for proton decay's of current investments for astroparticle physics, search, neutrino astrophysics & investigation of amounting to an integrated increase of about 50% neutrino properties in a ten-year period.
    [Show full text]
  • Future Ground-Based Gravitational-Wave Observatories: Synergies with Other Scientific Communities
    Future Ground-Based Gravitational-Wave Observatories: Synergies with Other Scientific Communities GWIC April 2021 COMMUNITY NETWORKING SUBCOMMTTEE Michele Punturo, INFN - Perugia, Italy (Co-chair) David Reitze, Caltech, USA (Co-chair) David Shoemaker, MIT, USA STEERING COMMITTEE Michele Punturo, INFN - Perugia, Italy (Co-chair) David Reitze, Caltech, USA (Co-chair) Peter Couvares, Caltech, USA Stavros Katsanevas, European Gravitational Observatory, Italy Takaaki Kajita, University of Tokyo, Japan Vicky Kalogera, Northwestern University, USA Harald Lueck, Albert Einstein Institute, Germany David McClelland, Australian National University, Australia Sheila Rowan, University of Glasgow, UK Gary Sanders, Caltech, USA B.S. Sathyaprakash, Penn State University, USA and Cardiff University, UK David Shoemaker, MIT, USA (Secretary) Jo van den Brand, Nikhef, Netherlands GRAVITATIONAL WAVE INTERNATIONAL COMMITTEE This document was produced by the GWIC 3G Subcommittee and the GWIC 3G Synergies with Scientific Communities Subcommittee Final release, April 2021 Cover: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet) Contents 1 Introduction ........................................................1 2 Constituencies & Affiliated Communities .......................2 3 Engaging with Constituencies & Communities .................7 4 Summary of Recommendations ................................ 11 1. Introduction Planning for the development of a 3rd generation global gravitational-wave detector array is a multifaceted and complex effort that will necessarily need a high level of community input. Interfacing to extant and new stakeholders in the broader scientific constituencies is absolutely necessary to, first, keep them aware of the activities taking place in the ground-based gravitational-wave community and, second, receive input to inform and evolve the planning. The Community Networking Subcommittee within the GWIC 3G Planning Committee is charged with organizing and facilitating communications between 3rd generation projects and the relevant scientific communities.
    [Show full text]
  • Theory for Non-Accelerator Particle Physics
    Theory for non-accelerator particle physics Subir Sarkar University of Oxford PPAP meeting, University of Birmingham, 15 July 2009 … significant overlap in physics priorities with the Particle Astrophysics Panel (PAAP) e.g. the following were the key questions addressed by ApPEC, the Astroparticle Physics European Coordination committee What is the universe made of? Do protons last for ever? What are the properties of neutrinos … and their role in cosmic evolution? What can neutrinos tell us about the interior of the Sun and Earth, and about supernova explosions? What is the origin of cosmic rays? How does the sky look at extreme energies? What is the nature of gravity? Can we detect gravitational waves? What can they tell us about violent cosmic processes? Since neutrino physics has been discussed already, I will focus on dark matter & nucleon decay courtesey: Stavros Katsanevas What are the fundamental conservation laws in Nature? “One is tempted to conclude that the only fundamental conservation laws left in physics are the gauge symmetries: Lorentz invariance and SU(3)✕ SU(2)✕ U(1). But then what about baryon and lepton conservation? They appear to be exact and unbroken, but they are surely not exact unbroken gauge symmetries, because we do not see the effects of a long-range vector field coupled to baryon or lepton number. The peculiar position of baryon and lepton conservation in today’s physics suggests that baryon and lepton conservation may go the way of the other non- gauge symmetries, and turn out to be only approximate consequences
    [Show full text]
  • Curriculum Vitae Stavros Katsanevas (January 2019) Biographical Data • Born in Athens in 1953
    Curriculum vitae Stavros Katsanevas (January 2019) Biographical data • Born in Athens in 1953. Married to Angelique Alexandratou. • Nationalities: Greek and French. • Languages spoken: French, English, Greek, Italian. • Military Service: Greek Aviation 1986- 1987 Education • PhD, Athens University 1985 • Doctorat 3e cycle , Ecole Polytechnique 1979 • DEA de Physique Théorique ENS,ParisVI-VII, Paris XII 1976 • Diploma of Physics, Athens University 1975 Academic and Research Positions • Professor Classe Exceptionnelle 2, Université Paris Denis Diderot 2013- • Professor Classe Exceptionnelle 1, Université Paris Denis Diderot 2010-2013 • Professor 1st class, Université Paris VII, Denis Diderot 2004-2010 • Professor 1st class, Université de Lyon I Claude Bernard 2003-2004 • Professor 2nd class, Université de Lyon I Claude Bernard 1996-2003 • Associate Professor, Athens University 1989-1996 • Lecturer, Athens University 1982-1989 Fellowships • CERN, Corresponding fellow 1996 • CERN, Associate Scientist (leave of absence from Athens University 1991-1992 • CERN, Fellow (leave of absence from Athens University) 1983-1986 • Fellow Greek Ministry of Research at Fermi National Laboratory 1979-1982 • Fellow French Ministry of Research (DGRST) at Ecole Polytechnique 1976-1979 Awards, Distinctions • Chevalier de l’Ordre National du Mérite 2011 • Physics Prize, Academy of Athens for work on supersymmetry 2000 Positions of responsibility • (2018-) Director of the European Gravitational Observatory hosting the Virgo Gravitational wave antenna. • (2018-) Chair of the International Scientific Commitee of the Polish excellence centre on Astroparticle Physics ASTROCENT • (2017-2019) General Director of the « Fondation pour la Recherche et la Formation dans le domaine de la PhysiQue de l’Univers » in relation with the « Paris Center of Cosmological Physics », president George Smoot.
    [Show full text]
  • European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium
    European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium August 2017 European Astroparticle Physics Strategy 2017-2026 www.appec.org Executive Summary Astroparticle physics is the fascinating field of research long-standing mysteries such as the true nature of Dark at the intersection of astronomy, particle physics and Matter and Dark Energy, the intricacies of neutrinos cosmology. It simultaneously addresses challenging and the occurrence (or non-occurrence) of proton questions relating to the micro-cosmos (the world decay. of elementary particles and their fundamental interactions) and the macro-cosmos (the world of The field of astroparticle physics has quickly celestial objects and their evolution) and, as a result, established itself as an extremely successful endeavour. is well-placed to advance our understanding of the Since 2001 four Nobel Prizes (2002, 2006, 2011 and Universe beyond the Standard Model of particle physics 2015) have been awarded to astroparticle physics and and the Big Bang Model of cosmology. the recent – revolutionary – first direct detections of gravitational waves is literally opening an entirely new One of its paths is targeted at a better understanding and exhilarating window onto our Universe. We look of cataclysmic events such as: supernovas – the titanic forward to an equally exciting and productive future. explosions marking the final evolutionary stage of massive stars; mergers of multi-solar-mass black-hole Many of the next generation of astroparticle physics or neutron-star binaries; and, most compelling of all, research infrastructures require substantial capital the violent birth and subsequent evolution of our infant investment and, for Europe to remain competitive Universe.
    [Show full text]
  • High Energy Photons I
    Astroparticle Physics Today and Tomorrow Stavros Katsanevas APPEC Chairman, Univ. Paris VII, IN2P3/CNRS emes 25 Rencontres de Blois 2013 Astroparticle in focus Suspiciendo despicio (Looking up I am in fact looking down) Descpiciendo Suspicio (Looking down I am in fact looking up) From the frontispiece of Tycho Brahe’s Uranienborg Looking up: PLANCK lessons • ns=1 excluded at 7 σ Inflation • In a year with polarisation data sensitivity r 0,03 • Number of effective neutrinos closer to 3 • Sky maps of clusters, dark matter and violent phenomena •An example: smaller number of clusters seen (through SZ) than predicted by CMB. •Wrong physics scaling (Y (gas)-Mass)? or •We do not understand the transfer function ? e.g. neutrinos in quasi- degenerate region, WDM, etc. Are there “new” particles influencing cosmic structure formation? Looking down: LHC and neutrino • There is no other scale between the EW scale (LHC) and inflation (PLANCK) ? • then fine-tuning ? • If there are other scales how many ? • Are there scales close to inflation Degrassi et al. ? •Neutrino points to a high scale (See Saw) • ν mass • p -decay • Are there new scales close to the EW scale ? • Dark-matter (SUSY?) •Do we understand the vacuum ? •Dark Energy Astroparticle Physics in focus Going up and down the cosmic ladder The Astroparticle theme after LHC/PLANCK/ν results can be reduced to 2 fundamental questions: 1) Are there any intermediate scales between the EW and Inflation ? If yes how many and where are they ? 1) Dark matter and energy 2) Neutrino properties and proton decay 1) How do the particles and fields of the intermediate scales shape the genesis, evolution and destruction of cosmic structures ? 1) High energy photons, neutrinos, CR 2) Gravitational waves The heavenly ladder of St John of Klimakos , Sinai Roadmapping for Astroparticle 2013-2014 a pivotal year European Strategy for Astroparticle Physics.
    [Show full text]
  • Agence D'évaluation De L'enseignement Superieur
    Research evaluation REPORT ON THE RESEARCH UNIT: Astroparticule and Cosmology APC UNDER THE SUPERVISION OF THE FOLLOWING INSTITUTIONS AND RESEARCH BODIES: Université Paris Diderot Observatoire de Paris Centre National de la Recherche Scientifique - CNRS Commissariat à l’énergie atomique et aux énergies alternatives - CEA EVALUATION CAMPAIGN 2017-2018 GROUP D Astroparticule and Cosmology, APC, U PARIS 7, OBS PARIS, CNRS, CEA Mr Stavros KATSANEVAS This report is the sole result of the unit’s evaluation by the expert committee, the composition of which is specified below. The assessments contained herein are the expression of an independent and collegial reviewing by the committee. UNIT PRESENTATION Unit name: Astroparticule and Cosmology Unit acronym: APC Requested label: UMR Application type: Renewal Current number: UMR 7164 Head of the unit Mr Stavros KATSANEVAS (2017-2018): Project leader TBC (2019-2023): Number of teams or themes: 5 + one hosted team COMMITTEE MEMBERS Chair: Mr Steven RITZ, University of California Santa Cruz, USA Experts: Mr Reza ANSARI, University of Paris Sud& CNRS IN2P3 LAL (Orsay) Mr Eric DELAGNES, CEA Mr Dominique DUCHESNEAU, CNRS In2p3 LAPP Ms Piera GHIA, CNRS In2p3 (representative of CoNRS) Ms Mariana GRAÑA, CEA Mr François MONTANET, CNRS In2p3 (representative of CNU) Mr Stefano VITALE, University of Trente, Italy HCERES scientific officer: Mr Yannis KARYOTAKIS Representatives of supervising institutions and bodies: Ms Ursula BASSLER, CNRS Mr Claude CATALA, Observatoire de Paris Ms Sonia COLETTE-MAATOUK, CEA
    [Show full text]
  • Global Science Forum Working Group on Astroparticle Physics
    Global Science Forum Working Group on Astroparticle Physics Report to HEPAP C. Baltay with input from Kathy Turner Nov 18, 2010 OECD Organization for Economic Co-operation and Development • The OECD is an international forum to advise the governments of about 30 countries on economic, social, environmental and scientific challenges of globalization • The Global Science Forum is a branch of OECD that advises governments on global science policy • In the past, the Global Science Forum had working groups that wrote reports on international cooperation in Nuclear Physics, Elementary Particle Physics, Astrophysics, etc. etc…. Working Group on Astroparticle Physics • In October of 2008 the Global Science Forum established the Working Group on Astroparticle Physics. • The Working group held 5 meetings over the last two years – Paris, France – Krakow,Poland – Mumbai, India – Paris, France – Stanford, USA Members of the Working Group Chair Michel Spiro (France) Argentina Alberto Echtegoyen Australia Bruce Dawson Belgium Daniel Bertrand China Hesheng Chen France Stavros Katsanevas Philippe Chomaz Germany Thomas Berghofer Guido Drexlin Karsten Danzman India Naba Mondal Italy Benedetto D’Ettore Japan Toshikazu Ebisuzaki Korea Doo Jong Song Members of the Working Group Netherlands Anna Lipniacka Norway Michal Ostrovski Russia Victor Matveev Spain Manel Martinez Switzerland Maurice Bourquin Martin Steinacher UK Janet Seed Deborah Miller United States Kathy Turner Gene Henry Vernon Jones Stephen Murray Vernon Pankonin James Whitmore Members of the Working
    [Show full text]
  • Astroparticle Physics – the European Strategy
    the European strategy C M J CM MJ CJ CMJ N Members of the Roadmap Committee, 2008 Elena Aprile Laura Baudis Jose Bernabeu Pierre Binetruy Christian Spiering (chair) Franz v. Feilitzsch Aspera Working Group Leads Enrique Fernandez Andrea Giuliani Dark Matter: Werner Hofmann Gabriel Chardin Uli Katz Nigel Smith Paul Kooijman Neutrino Mass: Paolo Lipari Andrea Guiliani Manel Martinez Fabrice Piquemal Antonio Masiero Stefan Schönert Benoit Mours Francesco Ronga Megaton Detector: Sheila Rowan Aldo Ianni André Rubbia André Rubbia Subir Sarkar Charged Cosmic Rays Günther Sigl Andreas Haungs Gerard Smadja Günther Sigl Jenny !omas Lucia Votano Gamma Rays Werner Hofmann Editorial Board Manel Martinez Maurice Bourquin High Energy Neutrinos Stavros Katsanevas Uli Katz Arnaud Marsollier Gravitational Waves Deborah Miller Harald Lück Christian Spiering Michele Punturo Rob van der Meer Graphic design Arnaud Marsollier Didier Rouable Towards a European Strategy for Astroparticle Physics HYSIC LE P S TIC R A P Astroparticle Physics is a rapidly growing field of research at the intersection of astrophy- AS T R sics, particle and nuclear physics and cosmology. It addresses questions like the nature of O Y P G H O Y L dark matter and dark energy; the stability of protons and the physics of the Big Bang; S O E I L C M A ST TIC S the properties of neutrinos and their role in cosmic evolution; the interior of the Sun or S ROPAR O PHYSICS supernovae as seen with neutrinos; the origin of cosmic rays and the view of the sky at C extreme energies; and violent cosmic processes as seen with gravitational waves.
    [Show full text]