Universality of the Chern-Simons Diffusion Rate

Total Page:16

File Type:pdf, Size:1020Kb

Universality of the Chern-Simons Diffusion Rate PHYSICAL REVIEW D 98, 106023 (2018) Universality of the Chern-Simons diffusion rate † ‡ Francesco Bigazzi,1,* Aldo L. Cotrone,1,2, and Flavio Porri1,2, 1INFN, Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy 2Dipartimento di Fisica e Astronomia, Universit`a di Firenze, Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze), Italy (Received 20 August 2018; published 27 November 2018) We prove the universality of the Chern-Simons diffusion rate—a crucial observable for the chiral magnetic effect—in a large class of planar strongly correlated gauge theories with dual string description. When the effects of anomalies are suppressed, the diffusion rate is simply given in terms of temperature, entropy density and gauge coupling, with a universal numerical coefficient. We show that this result holds, in fact, for all the top-down holographic models where the calculation has been performed in the past, even in the presence of magnetic fields and anisotropy. We also extend the check to further well-known models for which the same computation was lacking. Finally we point out some subtleties related to the definition of the Chern-Simons diffusion rate in the presence of anomalies. In this case, the usual definition of the rate—a late time limit of the imaginary part of the retarded correlator of the topological charge density—would give an exactly vanishing result, due to its relation with a nonconserved charge correlator. We confirm this observation by explicit holographic computations on generic isotropic black hole backgrounds. Nevertheless, a nontrivial Chern- Simons relaxation time can in principle be extracted from a quasinormal mode calculation. DOI: 10.1103/PhysRevD.98.106023 I. INTRODUCTION techniques, as first performed in [3]. Thus, we consider the planar, strong coupling regime of quantum field theories The Chern-Simons diffusion rate Γ is a fundamental CS which can model (but always present some differences observable in the study of chiral effects in the Quark-Gluon Plasma (QGP). Its value, setting the rate of (local) change of from) real world QCD. Holography has proven to give the Chern-Simons number, determines, through the axial fruitful indications about the physics of transport coeffi- anomaly, the (local) change rate of chirality imbalance in cients in QCD. In particular, when some universality can be the plasma. Chirality imbalance is then responsible, in the found among different holographic models, the result for presence of a magnetic field, for the chiral magnetic effect [1], the observable under scrutiny can be used as a benchmark which can be in principle measured in current experiments. for the experiments, since clearly it does not depend on Being inherently nonperturbative, the Chern-Simons many of the details of the theory. The shear viscosity is the diffusion rate cannot be computed in QCD from first most notable example of such a situation [4,5]. principles. In the literature there are interesting effective We are going to prove that at leading order in the planar field theory calculations, setting for example the behavior strong coupling limit, the Chern-Simons diffusion rate is with N (the number of colors of the theory) to be OðN0Þ universal in a relevant class of top-down holographic N 4 [2]. But it is fair to say that we lack a solid estimate models which includes, among the others, ¼ SYM (analogous to what can be obtained from the lattice for [3], even in the presence of anisotropies [6,7] and magnetic Γ fields [8], the Witten-Sakai-Sugimoto model [9–11] and the other observables) for the value of CS in the realistic strong coupling regime of the QGP. Maldacena-Nuñez model [12,13], for which the computa- Γ In this paper we address the problem of the calculation of tion of CS was lacking. In all the cases the field theory the Chern-Simons diffusion rate by means of holographic comes either from D3-branes or wrapped Dp-branes with p>3. More specifically, at leading order in the large N limit *[email protected] † where axial anomalies can be neglected, the Chern-Simons [email protected][email protected] diffusion rate is given, with a universal coefficient, in terms of the temperature T, entropy density s and the gauge Published by the American Physical Society under the terms of α 2 4π coupling s ¼ gYM=ð Þ of the field theory the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to 2 Γ α ðTÞ the author(s) and the published article’s title, journal citation, CS ¼ s : ð1:1Þ and DOI. Funded by SCOAP3. sT 23π3 2470-0010=2018=98(10)=106023(14) 106023-1 Published by the American Physical Society BIGAZZI, COTRONE, and PORRI PHYS. REV. D 98, 106023 (2018) Z Δ 2 At present there are no counterexamples to this formula in hð NCSÞ i 4 Γ ¼ ¼ d xhQðxÞQð0Þi; ð1:2Þ top-down holographic models. So, it is not excluded that its CS Vt validity goes beyond the class of models considered in this where the variation in the Chern-Simons number is paper. Thus, the holographic behavior of this observable Z Z can be used with a certain degree of confidence as a 1 Δ 4 4 ˜ benchmark for the QGP. For example, a very rough NCS ¼ d xQðxÞ¼ d x 16π2 TrFF: ð1:3Þ estimate of the critical temperature values αsðTcÞ ∼ 3 Here F is the Yang-Mills field strength, Q the topological 1=2;sðTcÞ ∼ 10Tc (lattice results without magnetic field Γ 4 ∼ 0 01 charge density operator [14,15]) gives the value CS=Tc . This would have quite a small effect in the QGP. 1 Q FF;˜ : From a technical point of view, the derivation of the ¼ 16π2 Tr ð1 4Þ result (1.1) relies on the fact that the quadratic part of a b the five dimensional bulk action for the field dual to the and we normalize the SUðNÞ generators so that Tr½t t ¼ topological charge density operator has a universal form in δab=2 for the fundamental representation. this class of models. It is the action of a massless scalar. Its The two-point function in formula (1.2) is the sym- kinetic term depends on a function which, in the models metrized Wightman one—everything is defined in real Γ at hand, is the dual of the coupling constant [Eq. (2.13)]. time. In a state at thermal equilibrium at temperature T, CS The universality of this result can be useful beyond the can be given by a Kubo formula determination of the Chern-Simons diffusion rate. 2 The most interesting correction to the holographic result Γ − T ω ⃗ 0 CS ¼ lim ImGRð ; k ¼ Þ: ð1:5Þ for the Chern-Simons diffusion rate in the planar expansion ω→0 ω comes from possible anomalies proportional to the topo- Thus its computation boils down to the determination of the logical charge density operator. In the bulk, these are small frequency, zero momentum retarded correlator described by a Stueckelberg action for the scalar mentioned ω ⃗ 0 above and a vector field dual to the anomalous current [16]. GRð ; k ¼ Þ of the operator Q. The retarded correlator We are going to show that, in this case, the usual holo- is precisely what can be directly computed in holography Γ from the standard prescriptions [3], once the bulk field dual graphic prescription for the calculation of CS gives an identically vanishing result.1 This fact is very general for to the operator Q is identified. holographic field theories and does not rely on the details of The paper is organized as follows. In Sec. II we prove the the dual gravity backgrounds. universal formulas (1.1), (2.13) for the Chern-Simons dif- As we are going to discuss, this feature is not related to the fusion rate and the gravity action of the field dual to the holographic limit, but it simply relies on the fact that the usual corresponding operator in a relevant class of top-down Γ holographic models in absence of anomalies. Then, in definition of CS, as the late time behavior of the (imaginary part of the) retarded correlator of the topological charge Sec. III we discuss the effects of anomalies confirming, density, gives zero if the latter is proportional, as it happens through a holographic computation on generic isotropic black due to the anomaly relation, to the retarded correlator of a hole backgrounds, that the standard prescription for the Γ nonconserved (axial) charge. The relaxation time of the latter calculation of CS gives an identically vanishing result. In can, instead, be consistently defined and expressed in terms turn, we discuss how to extract the Chern-Simons relaxation of the Chern-Simons diffusion rate computed with a cutoff in time from the quasinormal modes of the dual black hole time, i.e., effectively turning off the anomaly. The rate backgrounds. The Appendices include the analysis of the Γ computed with this prescription is not automatically vanish- direct calculation of CS in specific examples, including, for ing. Some considerations along this line can be already found the first time, the Maldacena-Nuñez model. Moreover they in [2,18] where the same issue has been pointed out for QCD. contain a sketch of the derivation of a linear response formula – Chiral effects in the presence of anomalies can be inves- for the axial relaxation time as well as specific anti de Sitter tigated, from a holographic point of view, through the (AdS) examples of the generic holographic results discussed analysis of quasinormal modes of the dual black hole in Sec.
Recommended publications
  • Redalyc.A Local Non-Abelian Gauge Invariant Action Stemming from The
    Brazilian Journal of Physics ISSN: 0103-9733 [email protected] Sociedade Brasileira de Física Brasil Dudal, D.; Capri, M. A. L.; Gracey, J. A.; Lemes, V. E. R.; Sobreiro, R. F.; Sorella, S. P.; Verschelde, H. A Local Non-Abelian Gauge Invariant Action Stemming from the Nonlocal Operator F(D2)-1F Brazilian Journal of Physics, vol. 37, núm. 1B, march, 2007, pp. 232-238 Sociedade Brasileira de Física Sâo Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=46437212 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 232 Brazilian Journal of Physics, vol. 37, no. 1B, March, 2007 A Local Non-Abelian Gauge Invariant Action Stemming from the 2 ¡1 Nonlocal Operator Fµn(D ) Fµn D. Dudala,¤ M. A. L. Caprib, J. A. Graceyc, V. E. R. Lemesb, R. F. Sobreirob, S. P. Sorellab,† and H. Verscheldea a Ghent University Department of Mathematical Physics and Astronomy, Krijgslaan 281-S9, B-9000 Gent, Belgium b UERJ - Universidade do Estado do Rio de Janeiro, Rua Sao˜ Francisco Xavier 524, 20550-013 Maracana,˜ Rio de Janeiro, Brazil c Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, United Kingdom (Received on 12 September, 2006) 2 ¡1 We report on the nonlocal gauge invariant operator of dimension two, Fµn(D ) Fµn. We are able to localize this operator by introducing a suitable set of (anti)commuting antisymmetric tensor fields.
    [Show full text]
  • Jhep11(2016)024
    Published for SISSA by Springer Received: June 27, 2016 Revised: September 1, 2016 Accepted: October 16, 2016 Published: November 7, 2016 Massless and massive higher spins from anti-de Sitter space waveguide JHEP11(2016)024 Seungho Gwak,a Jaewon Kima and Soo-Jong Reya;b aSchool of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea bFields, Gravity & Strings, Center for Theoretical Physics of the Universe, Institute for Basic Sciences, Daejeon 34047, Korea E-mail: [email protected] Abstract: Understanding Higgs mechanism for higher-spin gauge fields is an outstanding open problem. We investigate this problem in the context of Kaluza-Klein compactifica- tion. Starting from a free massless higher-spin field in (d + 2)-dimensional anti-de Sitter space and compactifying over a finite angular wedge, we obtain an infinite tower of heavy, light and massless higher-spin fields in (d + 1)-dimensional anti-de Sitter space. All mas- sive higher-spin fields are described gauge invariantly in terms of Stueckelberg fields. The spectrum depends on the boundary conditions imposed at both ends of the wedges. We ob- served that higher-derivative boundary condition is inevitable for spin greater than three. For some higher-derivative boundary conditions, equivalently, spectrum-dependent bound- ary conditions, we get a non-unitary representation of partially-massless higher-spin fields of varying depth. We present intuitive picture which higher-derivative boundary conditions yield non-unitary system in terms of boundary action. We argue that isotropic Lifshitz in- terfaces in O(N) Heisenberg magnet or O(N) Gross-Neveu model provides the holographic dual conformal field theory and propose experimental test of (inverse) Higgs mechanism for massive and partially massless higher-spin fields.
    [Show full text]
  • Broken Symmetries and Transport in Holography
    Broken Symmetries and Transport in Holography Memoria de Tesis Doctoral realizada por Amadeo Jim´enez presentada ante el Departamento de F´ısicaTe´orica de la Universidad Aut´onomade Madrid para optar al T´ıtulode Doctor en F´ısicaTe´orica Tesis Doctoral dirigida por Karl Landsteiner, Investigador del Instituto de F´ısicaTe´oricaUAM/CSIC Departamento de F´ısicaTe´orica Universidad Aut´onomade Madrid Instituto de F´ısicaTe´orica UAM/CSIC Marzo de 2015 Agradecimientos Por suerte tengo mucho que agradecer. En primer lugar quiero expresar mi gratitud a Karl, que ha iluminado mi odisea a trav´esde la ocuridad hologr´afica. Por su infinita paciencia y su buen humor. Por estar siempre dispuesto a discutir y ayudarme a comprender. Realmente ha sido un placer y un honor. Gracias por ponerme en el camino en el que estoy. He tenido la suerte de coincidir con Luis, mi \hermano" de tesis, a lo largo de este viaje. Gracias por explicarme tantas cosas. Estoy convencido de que no hubiera llegado hasta aqu´ısin tu ayuda. No olvidar´elas conversaciones de f´ısicay de no f´ısicacon Dani, Diego, Javi, Jo~ao, Mateo y Pablo d´ıatras d´ıa.Ojal´ase repitan. Querr´ıatambien mencionar a algunos profesores con los que he tenido la oportunidad de conversar y que me han iluminado e inspirado especialmente: Ho-Ung, Ioannis y Pepe. No me olvido de mis amigos de siempre: Bad´ıa, Blanco, Charlie, Hector, Jaime, Juan y Tupi. Con vosotros la vida es mejor. Hay un lugar especial aqu´ıpara Irene, el gusano que me ha acompa~nadoy soportado en esta maravillosa etapa de mi vida.
    [Show full text]
  • Ext-2004-043.Pdf
    The Charge-Mass-Spin Relation of Clifford Polyparticles, Kerr-Newman Black Holes and the Fine Structure Constant Carlos Castro Center for Theoretical Studies of Physical Systems Clark Atlanta University, Atlanta, GA. 30314 A Clifford-algebraic interpretation is proposed of the charge, mass, spin relationship found recently by Cooperstock and Faraoini which was based on the Kerr-Newman metric solutions of the Einstein-Maxwell equations. The components of the polymomentum associated with a Clifford polyparticle in four dimensions provide for such a charge, mass, spin relationship without the problems encountered in Kaluza-Klein com- pactifications which furnish an unphysically large value for the electron charge. A physical reasoning behind such charge, mass, spin relationship is provided, followed by a discussion on the geometrical derivation of the fine structure constant by Wyler, Smith, Gonzalez-Martin and Smilga. To finalize, the renormalization of electric charge is discussed and some remarks are made pertaining the modifications of the charge-scale relationship, when the spin of the polyparticle changes with scale, that may cast some light into the alleged Astrophysical variations of the fine structure constant. EXT-2004-043 01/09/2003 Key words : Clifford Algebras; Black Holes; Dirac electron. PACS : 11 E88, 15 A66, 83 C57 1. INTRODUCTION 1.1 CLIFFORD ALGEBRAS IN PHYSICS Clifford algebras display a rich mathematical structure which is very useful for a unified description of geometry and physics [1,2,3,4,5,6,9]. For example, a geometric approach to the physics of the Standard Model in terms of Clifford algebras was advanced by [3] . Important applications have also been found in string theory, extended objects, gravity, QFT...
    [Show full text]
  • Massive Gravity from Double Copy
    Published for SISSA by Springer Received: April 28, 2020 Revised: September 6, 2020 Accepted: October 27, 2020 Published: December 4, 2020 Massive gravity from double copy JHEP12(2020)030 Arshia Momeni,a Justinas Rumbutisa and Andrew J. Tolleya,b aTheoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2AZ, U.K. bCERCA, Department of Physics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, U.S.A. E-mail: [email protected], [email protected], [email protected] Abstract: We consider the double copy of massive Yang-Mills theory in four dimensions, whose decoupling limit is a nonlinear sigma model. The latter may be regarded as the leading terms in the low energy effective theory of a heavy Higgs model, in which the Higgs has been integrated out. The obtained double copy effective field theory contains a massive spin-2, massive spin-1 and a massive spin-0 field, and we construct explicitly its interacting Lagrangian up to fourth order in fields. We find that up to this order, the spin-2 self interactions match those of the dRGT massive gravity theory, and that all the interactions 2 1/3 are consistent with a Λ3 = (m MPl) cutoff. We construct explicitly the Λ3 decoupling limit of this theory and show that it is equivalent to a bi-Galileon extension of the standard Λ3 massive gravity decoupling limit theory. Although it is known that the double copy of a nonlinear sigma model is a special Galileon, the decoupling limit of massive Yang-Mills theory is a more general Galileon theory.
    [Show full text]
  • Gauge Fields and Fermions in Tachyon Effective Field Theories
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server hep-th/0011226 CTP-MIT-3044 UUITP-11/00 Gauge Fields and Fermions in Tachyon Effective Field Theories Joseph A. Minahan1 Department of Theoretical Physics Box 803, SE-751 08 Uppsala, Sweden and Barton Zwiebach2 Center for Theoretical Physics Massachusetts Institute of Technology Cambridge, MA 02139, USA Abstract In this paper we incorporate gauge fields into the tachyon field theory models for un- stable D-branes in bosonic and in Type II string theories. The chosen couplings yield massless gauge fields and an infinite set of equally spaced massive gauge fields on codi- mension one branes. A lack of a continuum spectrum is taken as evidence that the stable tachyon vacuum does not support conventional gauge excitations. For the bosonic string model we find two possible solvable couplings, one closely related to Born-Infeld forms and the other allowing a detailed comparison to the open string modes on bosonic D-branes. We also show how to include fermions in the type II model. They localize correctly on stable codimension one branes resulting in bose-fermi degeneracy at the massless level. Finally, we establish the solvability of a large class of models that include kinetic terms with more than two derivatives. 1E-mail: [email protected] 2E-mail: [email protected] 1 Contents 1 Introduction and summary 2 2 Coupling gauge fields to the superstring tachyon model 6 2.1Thesuperstringmodelrevisited........................ 6 2.2Couplingtogaugefields............................ 8 3 Coupling gauge fields to the bosonic string tachyon model 11 3.1Thebosonicstringmodelrevisited.....................
    [Show full text]
  • Renormalizability of Super Yang–Mills Theory in Landau Gauge with A
    Eur. Phys. J. C (2018) 78:797 https://doi.org/10.1140/epjc/s10052-018-6239-5 Regular Article - Theoretical Physics Renormalizability of N = 1 super Yang–Mills theory in Landau gauge with a Stueckelberg-like field M. A. L. Capria, D. M. van Egmondb, M. S. Guimaraesc, O. Holandad, S. P. Sorellae,R.C.Terinf, H. C. Toledog Departamento de Física Teórica, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã, Rio de Janeiro 20550-013, Brazil Received: 9 March 2018 / Accepted: 11 September 2018 / Published online: 1 October 2018 © The Author(s) 2018 Abstract We construct a vector gauge invariant transverse due to the high energy behavior of the longitudinal vector field configuration V H , consisting of the well-known super- degree of freedom. In the abelian case it is perfectly compen- field V and of a Stueckelberg-like chiral superfield .The sated by the dynamics of the Stueckelberg field but in non- renormalizability of the Super Yang Mills action in the Lan- abelian theories this seems to be not so, resulting in incur- dau gauge is analyzed in the presence of a gauge invariant able divergent interacting amplitudes or unbounded cross mass term m2 dVM(V H ), with M(V H ) a power series sections. in V H . Unlike the original Stueckelberg action, the resulting Nevertheless there have been recent interests in the study action turns out to be renormalizable to all orders. of massive vector models without the Higgs. The main moti- vation comes here from the continuous efforts to understand the low energy behavior of strongly interacting gauge the- 1 Introduction ories, such as QCD.
    [Show full text]
  • Theoretical Exercises 2016 Contents
    November 30, 2016 Theoretical Exercises 2016 Thomas Becher Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics University of Bern Contents 1 Gaussian integrals and Wick's theorem 1 1.1 Gaussian integrals . .1 1.2 Generating function, Wick's theorem . .2 2 Integrals over Grassmann variables 4 3 Dirac Algebra 6 3.1 Levi-Civita symbol . .6 3.2 Dirac Algebra . .8 4 Klein-Gordon, Maxwell and Proca equations 11 4.1 Klein Gordon equation . 11 4.2 Electromagnetic field in relativistic notation . 11 4.3 Proca equation . 12 4.4 Gauge invariance . 13 5 Spinors and Dirac equation 15 5.1 Lorentz transformation of spinor fields . 15 5.2 Dirac Lagrangian and Dirac equation . 19 5.3 Plane-wave solutions . 19 6 Non-relativistic limit of the Dirac equation 22 6.1 Dirac equation in the presence of an electromagnetic field . 22 6.2 Magnetic moment of the electron . 23 7 Interacting fields in perturbation theory 25 7.1 Relativistically invariant interaction Lagrangians . 25 7.2 Perturbation theory . 27 7.3 Wick's theorem . 28 7.4 Feynman rules . 30 7.4.1 φ4-theory . 30 7.4.2 QED . 31 7.4.3 QED with an extra neutral scalar S .................... 32 8 Computation of scattering cross sections 33 8.1 Reduction formula and S-matrix . 33 8.2 Cross section and decay rate . 35 9 Diphoton production and a scalar resonance 37 9.1 Decays of the scalar S ............................... 38 9.2 Diphoton production . 39 9.3 Finite-width effects . 41 9.4 Data analysis . 42 2 1 Gaussian integrals and Wick's theorem 1.1 Gaussian integrals Exercise 1.1.
    [Show full text]
  • Massive Born-Infeld and Other Dual Pairs Abstract: S
    Published for SISSA by Springer Received: February 9, 2015 Accepted: March 6, 2015 Published: April 8, 2015 Massive Born-Infeld and other dual pairs JHEP04(2015)032 S. Ferraraa,b,1 and A. Sagnottia,c aDepartment of Physics, CERN Theory Division, Geneva 23, CH-1211 Switzerland bINFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, Frascati, I-00044 Italy cScuola Normale Superiore and INFN, Piazza dei Cavalieri 7, Pisa, I-56126 Italy E-mail: [email protected], [email protected] Abstract: We consider massive dual pairs of p-forms and (D p 1)-forms described − − by non-linear Lagrangians, where non-linear curvature terms in one theory translate into non-linear mass-like terms in the dual theory. In particular, for D = 2p and p even the two non-linear structures coincide when the non-linear massless theory is self-dual. This state of affairs finds a natural realization in the four-dimensional massive N = 1 supersymmetric Born-Infeld action, which describes either a massive vector multiplet or a massive linear (tensor) multiplet with a Born-Infeld mass-like term. These systems should play a role for the massive gravitino multiplet obtained from a partial super-Higgs in N = 2 Supergravity. Keywords: Supersymmetry and Duality, Supersymmetry Breaking, Duality in Gauge Field Theories ArXiv ePrint: 1502.01650 1On leave of absence from Department of Physics and Astronomy, U.C.L.A., Los Angeles, CA, U.S.A. Open Access, c The Authors. doi:10.1007/JHEP04(2015)032 Article funded by SCOAP3. Contents 1 Introduction 1 2 Massless and massive dualities 2 3 Self-dualities in even dimensions 5 4 Self-dual massive dualities in odd dimensions 7 JHEP04(2015)032 5 N = 1 superspace formulation 8 6 Massive supersymmetric Born-Infeld and its superspace dual 10 7 Discussion 11 A The dual massive Born-Infeld-like action 11 1 Introduction Non-linear theories of p-form gauge fields naturally arise in Superstrings and are clearly relevant in the description of brane dynamics as models for the partial breaking of Su- persymmetry.
    [Show full text]
  • Renormalizability of $\Mathcal {N}= 1$ Super Yang-Mills Theory In
    RENORMALIZABILITY OF =1 SUPER YANG-MILLS THEORY IN LANDAU GAUGE WITHN A STUECKELBERG-LIKE FIELD 1M. A. L. Capri,∗ 1D.M. van Egmond,† 1M. S. Guimaraes,‡ 1O. Holanda,§ 1S. P. Sorella,¶ 1R. C. Terin,∗∗ and 1H. C. Toledo†† 1Departamento de F´ısica Te´orica, Rua S˜ao Francisco Xavier 524, Universidade do Estado do Rio de Janeiro, 20550-013, Maracan˜a, Rio de Janeiro, Rio de Janeiro, Brazil. H We construct a vector gauge invariant transverse field configuration V , consisting of the well- known superfield V and of a Stueckelberg-like chiral superfield Ξ. The renormalizability of the Super Yang Mills action in the Landau gauge is analyzed in the presence of a gauge invariant mass term 2 H H H m R dV M(V ), with M(V ) a power series in V . Unlike the original Stueckelberg action, the resulting action turns out to be renormalizable to all orders. I. INTRODUCTION In this work we study the renormalizability properties of a = 1 non-abelian gauge theory defined by a multiplet containing a massive vectorial excitation. The model we studyN is the supersymmetric version of a Stueckelberg-like action, in the sense that the massive gauge field is constructed by means of a compensating scalar field, thus preserving gauge invariance. The history of Stueckelberg-like models is very well reviewed in [1]. Traditionally, most of the investigations have studied such models as potential alternative to the Higgs mechanism of mass generation, but as discussed in [2] there seems to be an unavoidable clash between renormalizability and unitarity in non-abelian Stueckelberg-like models.
    [Show full text]
  • Arxiv:Hep-Th/0011226V1 24 Nov 2000 Ial,W Sals H Ovblt Falrecaso Oesta Include That Models of C Class Localize Derivatives
    hep-th/0011226 CTP-MIT-3044 UUITP-11/00 Gauge Fields and Fermions in Tachyon Effective Field Theories Joseph A. Minahan1 Department of Theoretical Physics Box 803, SE-751 08 Uppsala, Sweden and Barton Zwiebach2 Center for Theoretical Physics Massachusetts Institute of Technology Cambridge, MA 02139, USA Abstract In this paper we incorporate gauge fields into the tachyon field theory models for un- stable D-branes in bosonic and in Type II string theories. The chosen couplings yield massless gauge fields and an infinite set of equally spaced massive gauge fields on codi- mension one branes. A lack of a continuum spectrum is taken as evidence that the stable arXiv:hep-th/0011226v1 24 Nov 2000 tachyon vacuum does not support conventional gauge excitations. For the bosonic string model we find two possible solvable couplings, one closely related to Born-Infeld forms and the other allowing a detailed comparison to the open string modes on bosonic D-branes. We also show how to include fermions in the type II model. They localize correctly on stable codimension one branes resulting in bose-fermi degeneracy at the massless level. Finally, we establish the solvability of a large class of models that include kinetic terms with more than two derivatives. 1E-mail: [email protected] 2 E-mail: [email protected] 1 Contents 1 Introduction and summary 2 2 Coupling gauge fields to the superstring tachyon model 6 2.1 Thesuperstringmodelrevisited . 7 2.2 Couplingtogaugefields ............................ 8 3 Coupling gauge fields to the bosonic string tachyon model 11 3.1 The bosonic string model revisited .
    [Show full text]
  • Book of Abstracts Ii Contents
    XIV Hadron Physics 2018 Sunday, 18 March 2018 - Friday, 23 March 2018 Florianopolis, Brazil Book of Abstracts ii Contents Opening ............................................. 1 Registration ........................................... 1 Celebration session - 30th anniversary of the International Workshop on Hadron Physics 1 Poster Prizes & General Assembly ............................... 1 Many-body forces in magnetic neutron stars ......................... 1 Sigma resonance parameters from lattice QCD ........................ 2 Exploring the decay probability of neutron-rich superheavy nuclei ............ 2 Extreme binding energy limit for a fermionic system. .................... 2 Thermodynamic consistency in magnetized neutron stars .................. 3 An effective holographic approach to QCD .......................... 3 Covariant quark model for the electromagnetic structure of light nucleon resonances . 4 Effects of Hyperons on the Structure of Neutron Stars .................... 4 Rescattering of J/ in the hadronic medium : an update using coupled channel unitarized amplitudes .......................................... 5 Nuclear Astrophysics in the new era of multi-messenger Astronomy ........... 5 An empirical Equation of State for nuclear physics and astrophysics ............ 6 A first survey of the ghost-gluon vertex in the Gribov-Zwanziger framework . 6 Probing soft QCD with exclusive reactions .......................... 7 A quasi-particle equation of state with a phenomenological critical point for heavy-ion nuclear collisions
    [Show full text]