Near Attack Conformers Dominate Β-Phosphoglucomutase Complexes Where Geometry and Charge Distribution Reflect Those of Substrate
Near attack conformers dominate β-phosphoglucomutase complexes where geometry and charge distribution reflect those of substrate Joanna L. Griffina, Matthew W. Bowlerb,1, Nicola J. Baxterc, Katherine N. Leighd, Hugh R. W. Dannatta, Andrea M. Hounslowa, G. Michael Blackburna, Charles Edwin Websterd, Matthew J. Cliffa, and Jonathan P. Walthoa,c,1 aDepartment of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom; bStructural Biology Group, European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France; cManchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, United Kingdom; and dDepartment of Chemistry, University of Memphis, Memphis, TN 38152-3550 Edited by Sun Hur, Harvard Medical School, Boston, MA, and accepted by the Editorial Board March 14, 2012 (received for review October 14, 2011) Experimental observations of fluoromagnesate and fluoroalumi- (ΔSt+r) and free-energy barriers resulting from steric or electro- nate complexes of β-phosphoglucomutase (β-PGM) have demon- static interactions (ΔGSE). strated the importance of charge balance in transition-state For catalyzed reactions, enzymes reduce the entropic barrier stabilization for phosphoryl transfer enzymes. Here, direct obser- (ΔSt+r) for the reaction (7, 8), and this will reduce ΔGNAC. vations of ground-state analog complexes of β-PGM involving tri- Whether enzymes further stabilize NACs by preferentially re- fluoroberyllate establish that when the geometry and charge ducing ΔGSE, and whether such stabilization has a role in catal- distribution closely match those of the substrate, the distribution ysis, however, remains controversial (9–11). Specifically, the † of conformers in solution and in the crystal predominantly places contention is whether the enzymatic rate enhancement (ΔΔG )is the reacting centers in van der Waals proximity.
[Show full text]