Biological Resources Technical Report

Total Page:16

File Type:pdf, Size:1020Kb

Biological Resources Technical Report Appendix E: Biological Resources Technical Report Coast Seafoods Company Humboldt Bay Harbor District Draft EIR Appendices October 2015 Biological Resources Impact Analysis for Coast Seafoods Company, Humboldt Bay Shellfish Aquaculture: Permit Renewal and Expansion Project Prepared for: Coast Seafoods Company/Pacific Seafoods 25 Waterfront Drive Eureka, CA 95501 Attn: Greg Dale Authored by: Chris Cziesla, Marlene Meaders, Phil Bloch, Mike McDowell, Ruth Park, Grant Novak, and Kerrie McArthur Confluence Environmental Company October 23, 2015 146 N Canal St, Suite 111 • Seattle, WA 98103 • www.confenv.com Biological Resources Technical Report TABLE OF CONTENTS 1.0 Summary ..................................................................................................................................... 1 1.1 Overwater Structure ................................................................................................................... 2 1.2 Unstructured Habitat ................................................................................................................. 2 1.3 Eelgrass Habitat ......................................................................................................................... 3 1.4 Other Habitat Concerns .............................................................................................................. 3 1.5 Potential Impacts to Benthic Communities ................................................................................ 4 1.6 Special-Status Species and Commercially Important Species ..................................................... 5 2.0 Project Description ...................................................................................................................... 6 2.1 Project Background .................................................................................................................... 6 2.2 Project Characteristics ................................................................................................................ 6 2.3 Project Alternatives .................................................................................................................... 8 2.4 Culture Methods ....................................................................................................................... 10 3.0 Existing Conditions .................................................................................................................... 11 3.1 General Habitat Conditions in Humboldt Bay ........................................................................... 11 3.2 North Bay Habitats ................................................................................................................... 13 3.3 Ecological Communities ........................................................................................................... 13 3.3.1 Subtidal Community ......................................................................................................... 13 3.3.2 Intertidal Community ....................................................................................................... 15 3.4 Pertinent Laws and Regulations ............................................................................................... 15 3.5 Special Status Species and Commercially Important Species ....................................................17 3.5.1 Dungeness Crab ................................................................................................................ 20 3.5.2 Pacific Lamprey ................................................................................................................ 20 3.5.3 Green Sturgeon and White Sturgeon (Sturgeon) .............................................................. 21 3.5.4 Coho and Chinook Salmon, Steelhead Trout, and Coastal Cutthroat Trout (Salmonids) ... 22 3.5.5 Southern Eulachon, Longfin Smelt, and Pacific Herring (Forage Fish) .............................. 24 3.5.6 Rockfish and California Halibut (Groundfish) .................................................................... 25 3.5.7 California Sea Lions, Harbor Seals, and Harbor Porpoises (Marine Mammals) .................. 27 4.0 Impact Metrics and Definition of Significance ........................................................................... 29 4.1 Impact Metrics.......................................................................................................................... 29 4.2 Thresholds of Significance ........................................................................................................ 30 Page i Biological Resources Technical Report 5.0 Impact Analysis of the Proposed Project ................................................................................... 32 5.1 Conservation Measures ............................................................................................................ 32 5.2 Potential Impacts to Habitat..................................................................................................... 33 5.2.1 Overwater Structures ....................................................................................................... 33 5.2.2 Unstructured Habitat ........................................................................................................ 34 5.2.3 Eelgrass Habitat ............................................................................................................... 35 Eelgrass Density Reduction ....................................................................................................... 36 Natural Variation and Eelgrass Resiliency .................................................................................. 37 Trampling .................................................................................................................................. 38 Fragmentation .......................................................................................................................... 39 Floating Eelgrass Rafts and Wrack ............................................................................................. 40 Summary of Eelgrass Impacts ................................................................................................... 41 5.2.4 Sediment Distribution and Tidal Circulation ..................................................................... 41 5.2.5 Water Quality ................................................................................................................... 42 Nutrients and Turbidity ............................................................................................................. 42 Contaminants ............................................................................................................................ 44 5.2.6 Sediment Quality .............................................................................................................. 45 5.3 Potential Impacts to Benthic Communities .............................................................................. 46 5.3.1 Changes to Species Composition ...................................................................................... 46 5.3.2 Trampling Effects ............................................................................................................. 49 5.3.3 Introduction of Non-Indigenous Species and Fouling Organisms ...................................... 50 5.3.4 Establishment of Non-Native Bivalves .............................................................................. 53 5.4 Potential Impacts to Dungeness Crab ....................................................................................... 53 5.4.1 Human Disturbance .......................................................................................................... 54 5.4.2 Habitat Degradation or Alteration .................................................................................... 54 5.4.3 Reduction in Prey Resources ............................................................................................. 55 5.4.4 Obstructions to Access or Migration Corridors ................................................................. 55 5.5 Potential Impacts to Pacific Lamprey ....................................................................................... 55 5.5.1 Human Disturbance .......................................................................................................... 56 5.5.2 Habitat Degradation or Alteration .................................................................................... 56 5.5.3 Reduction in Prey Resources ............................................................................................. 56 Page ii Biological Resources Technical Report 5.5.4 Obstructions to Access or Migration Corridors ................................................................. 56 5.6 Potential Impacts to Sturgeon .................................................................................................. 56 5.6.1 Human Disturbance .......................................................................................................... 57 5.6.2 Habitat Degradation or Alteration .................................................................................... 59 5.6.3 Reduction in Prey Resources ............................................................................................. 59 5.6.4 Obstructions to Access or Migration Corridors ................................................................. 59
Recommended publications
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • Evaluating Coexistence of Fish Species with Coastal Cutthroat Trout in Low Order Streams of Western Oregon and Washington, USA
    fishes Article Evaluating Coexistence of Fish Species with Coastal Cutthroat Trout in Low Order Streams of Western Oregon and Washington, USA Kyle D. Martens 1,* and Jason Dunham 2 1 Washington Department of Natural Resources, 1111 Washington Street SE, Olympia, WA 98504, USA 2 U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA; [email protected] * Correspondence: [email protected] Abstract: When multiple species of fish coexist there are a host of potential ways through which they may interact, yet there is often a strong focus on studies of single species without considering these interactions. For example, many studies of forestry–stream interactions in the Pacific Northwest have focused solely on the most prevalent species: Coastal cutthroat trout. To examine the potential for interactions of other fishes with coastal cutthroat trout, we conducted an analysis of 281 sites in low order streams located on Washington’s Olympic Peninsula and along the central Oregon coast. Coastal cutthroat trout and juvenile coho salmon were the most commonly found salmonid species within these streams and exhibited positive associations with each other for both presence and density. Steelhead were negatively associated with the presence of coastal cutthroat trout as well as with coho salmon and sculpins (Cottidae). Coastal cutthroat trout most frequently shared streams with juvenile coho salmon. For densities of these co-occurring species, associations between these two species were relatively weak compared to the strong influences of physical stream conditions Citation: Martens, K.D.; Dunham, J. (size and gradient), suggesting that physical conditions may have more of an influence on density Evaluating Coexistence of Fish Species with Coastal Cutthroat Trout than species interactions.
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • The Native Trouts of the Genus Salmo of Western North America
    CItiEt'SW XHPYTD: RSOTLAITYWUAS 4 Monograph of ha, TEMPI, AZ The Native Trouts of the Genus Salmo Of Western North America Robert J. Behnke "9! August 1979 z 141, ' 4,W \ " • ,1■\t 1,es. • . • • This_report was funded by USDA, Forest Service Fish and Wildlife Service , Bureau of Land Management FORE WARD This monograph was prepared by Dr. Robert J. Behnke under contract funded by the U.S. Fish and Wildlife Service, the Bureau of Land Management, and the U.S. Forest Service. Region 2 of the Forest Service was assigned the lead in coordinating this effort for the Forest Service. Each agency assumed the responsibility for reproducing and distributing the monograph according to their needs. Appreciation is extended to the Bureau of Land Management, Denver Service Center, for assistance in publication. Mr. Richard Moore, Region 2, served as Forest Service Coordinator. Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. Rocky Mountain Region September, 1980 Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. it TABLE OF CONTENTS Page Preface ..................................................................................................................................................................... Introduction ..................................................................................................................................................................
    [Show full text]
  • First Records of the Night Smelt, Spirinchus Starksi, in the Salish Sea
    First Records of the Night Smelt, Spirinchus starksi, in the Salish Sea, Washington Author(s): Melanie M Paquin , Anna N Kagley , Kurt L Fresh , and James W Orr Source: Northwestern Naturalist, 95(1):40-43. 2014. Published By: Society for Northwestern Vertebrate Biology DOI: http://dx.doi.org/10.1898/NWN13-05.1 URL: http://www.bioone.org/doi/full/10.1898/NWN13-05.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 40 NORTHWESTERN NATURALIST 95(1) NORTHWESTERN NATURALIST 95:40–43 SPRING 2014 FIRST RECORDS OF THE NIGHT SMELT, SPIRINCHUS STARKSI, IN THE SALISH SEA, WASHINGTON MELANIE MPAQUIN,ANNA NKAGLEY,KURT LFRESH, AND JAMES WORR Key words: COI, distribution, genetics, (frozen or preserved in ethanol) from 11 S. starksi Longfin Smelt, Night Smelt, Osmeridae, Spir- and 5 S. thaleichthys were obtained from the inchus starksi, Spirinchus thaleichthys, Washing- Northwest Fisheries Science Center (NWFSC) ton and the University of Washington Fish Collec- tion (UW).
    [Show full text]
  • Coastal Cutthroat Trout (Oncorhynchus Clarkii Clarkii) Data
    Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) Data: 1999 NOAA Status Review; 2007 PSMFC Review Partners: AK, BC, CA, OR , WA, FWS, USFS, USGS, NMFS, PSMFC, Tribes._____________ Species Status review: evidence that current smolt counts represent a fragment of historic counts. In addition, we are Coastal cutthroat trout (Oncorhynchus clarkii certain about the disappearance of many clarkii) have been considered a vulnerable populations that were once fished in certain indicator species in recent years and have been highly developed ecoregions. petitioned for listing under the Endangered Species Act (ESA). In 1996, National Marine CCT are the only sub-species of O. clarkii Fisheries Service (NMFS) listed the Umpqua without a multi-agency management plan in River coastal cutthroat trout (CCT) as a place. In 2006, in an effort to remedy this threatened species under the Endangered situation and as part of the decision to withdraw Species Act of 1973, as amended (16 U.S.C. the listing of the SWWC-ESU, Pacific States 1531 et seq). Following this listing, NMFS Marine Fisheries Commission (PSMFC) and conducted a status review of the species FSW initiated a voluntary effort among state, throughout their distributional range in the tribal, federal and provincial agencies that lower 48 state region of North America. represent agencies throughout the distributional During that process NMFS identified six range of CCT. The goal of this effort is to Evolutionary Significant Units (ESU’s). The coordinate agency efforts, share knowledge Fish and Wildlife Service (FWS) and NMFS (meta data approach), and advance our have, in the past, jointly managed CCT under understanding of CCT with the long-term goal of the ESA and on April 5, 1999, the agencies developing a consistent framework for the published a joint proposal to list the management, research, restoration, and southwestern Washington-Columbia River conservation of the subspecies.
    [Show full text]
  • Species Fact Sheet Coastal Cutthroat Trout Oncorhynchus Clarkii
    Species Fact Sheet Coastal Cutthroat Trout Oncorhynchus clarkii STATUS: SPECIES OF The Southwestern Washington/Lower Columbia CONCERN River Distinct Population Southwestern Segment of Coastal cutthroat Washington/Lower trout potentially occurs in these Washington counties: Thurston, Columbia River Distinct Lewis, Yakima, Mason, Pacific, Population Segment Grays Harbor, Wahkiakum, Cowlitz, Clark, Skaminia, Klickitat, (Map may reflect historical as well as recent sightings) In 1999, the southwestern Washington/lower Columbia River Distinct Population Segment of coastal cutthroat trout, Oncorhynchus clarkii clarkii, was listed as threatened by National Marine Fisheries Service and the U.S. Fish and Wildlife Service FR 64(64): 16397-414. Subsequently, the Fish and Wildlife Service assumed sole regulatory jurisdiction. Based on changes in forest management regulation, the latest information indicating better than expected total populations in a large portion of the area, and an improved understanding of the ability of freshwater forms to produce anadromous progeny, the Fish and Wildlife Service withdrew the listing proposal in 2002. Current and Historical Status This Distinct Population Segment (DPS) includes populations in the Columbia River and its tributaries downstream from the Klickitat River in Washington and Fifteenmile Creek in Oregon to the Columbia River estuary; and the Willamette River and its tributaries downstream from Willamette Falls, to its confluence with the Columbia River, as well as in tributaries of Gray's Harbor and Willapa Bay. The southwestern Washington-lower Columbia River region historically supported highly productive coastal cutthroat trout populations. Coastal cutthroat trout are well distributed in most river basins in this geographic region, although probably in lower numbers relative to historical population sizes.
    [Show full text]
  • Woodlice in Britain and Ireland: Distribution and Habitat Is out of Date Very Quickly, and That They Will Soon Be Writing the Second Edition
    • • • • • • I att,AZ /• •• 21 - • '11 n4I3 - • v., -hi / NT I- r Arty 1 4' I, • • I • A • • • Printed in Great Britain by Lavenham Press NERC Copyright 1985 Published in 1985 by Institute of Terrestrial Ecology Administrative Headquarters Monks Wood Experimental Station Abbots Ripton HUNTINGDON PE17 2LS ISBN 0 904282 85 6 COVER ILLUSTRATIONS Top left: Armadillidium depressum Top right: Philoscia muscorum Bottom left: Androniscus dentiger Bottom right: Porcellio scaber (2 colour forms) The photographs are reproduced by kind permission of R E Jones/Frank Lane The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the Culture Centre of Algae and Protozoa. ITE contributes to, and draws upon, the collective knowledge of the 13 sister institutes which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from natural or man- made change. The results of this research are available to those responsible for the protection, management and wise use of our natural resources. One quarter of ITE's work is research commissioned by customers, such as the Department of Environment, the European Economic Community, the Nature Conservancy Council and the Overseas Development Administration. The remainder is fundamental research supported by NERC. ITE's expertise is widely used by international organizations in overseas projects and programmes of research.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Market-Sized Cutthroat Trout Technical Report Western Regional Aquaculture Center
    Feeds for Production of Market-sized Cutthroat Trout Technical Report WESTERN REGIONAL AQUACULTURE CENTER Gary Fornshell, University of Idaho Christopher Myrick, Colorado State University Madison Powell, University of Idaho Wendy Sealey, United States Fish and Wildlife Service United States Department of Agriculture National Institute of Food and Agriculture 1 PROJECT PARTICIPANTS Christopher Myrick, Colorado State University Cheyenne Owens, Colorado State University Biswamitra Patro, University of Idaho Madison Powell, University of Idaho Pat Blaufuss, University of Idaho Tracy Kennedy, University of Idaho Wendy Sealey, United States Fish and Wildlife Service Brian Ham, United States Fish and Wildlife Service Gary Fornshell, University of Idaho Jeremy Liley, Liley Fisheries, Inc. David Brock, Rangen, Inc. Jackie Zimmerman, Skretting USA Rick Barrows, Aquatic Feed Technologies, LLC Photo credits: Cover: Gary Fornshell Above: iStock.com/KaraGrubis 2 Table of Contents Introduction: Why Consider Cutthroat Trout? 1 Snake River Cutthroat Trout—A Culturable Cutthroat 2 Is Raising Fish for the Recreational Market Worthwhile? 3 Overcoming Challenges to Raising Cutthroat Trout 3 Fish Nutrition 101—A Primer on Feed Formulation 3 Feed Pellet Texture Matters 5 Cutthroat Trout Growth—Does It Match Rainbow Trout? 5 Thermal Growth Coefficient 5 Comparing Rainbow and Cutthroat Trout Performance 6 Suggested Readings 10 Acknowledgments 11 Figures 1. Snake River cutthroat trout. 1 2. Map showing the distribution of extant cutthroat trout 2 subspecies in the western United States. 3. Juvenile Snake River cutthroat trout ready for stocking. 3 4. Classic bell-shaped growth-temperature curve. 6 5. Sigmoid growth curve. Based on Fish Hatchery Management, Second Edition, Gary Wedemeyer, editor 7 6.
    [Show full text]
  • 2018 Bibliography of Taxonomic Literature
    Bibliography of taxonomic literature for marine and brackish water Fauna and Flora of the North East Atlantic. Compiled by: Tim Worsfold Reviewed by: David Hall, NMBAQCS Project Manager Edited by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] APEM Ltd. Date of Issue: February 2018 Bibliography of taxonomic literature 2017/18 (Year 24) 1. Introduction 3 1.1 References for introduction 5 2. Identification literature for benthic invertebrates (by taxonomic group) 5 2.1 General 5 2.2 Protozoa 7 2.3 Porifera 7 2.4 Cnidaria 8 2.5 Entoprocta 13 2.6 Platyhelminthes 13 2.7 Gnathostomulida 16 2.8 Nemertea 16 2.9 Rotifera 17 2.10 Gastrotricha 18 2.11 Nematoda 18 2.12 Kinorhyncha 19 2.13 Loricifera 20 2.14 Echiura 20 2.15 Sipuncula 20 2.16 Priapulida 21 2.17 Annelida 22 2.18 Arthropoda 76 2.19 Tardigrada 117 2.20 Mollusca 118 2.21 Brachiopoda 141 2.22 Cycliophora 141 2.23 Phoronida 141 2.24 Bryozoa 141 2.25 Chaetognatha 144 2.26 Echinodermata 144 2.27 Hemichordata 146 2.28 Chordata 146 3. Identification literature for fish 148 4. Identification literature for marine zooplankton 151 4.1 General 151 4.2 Protozoa 152 NMBAQC Scheme – Bibliography of taxonomic literature 2 4.3 Cnidaria 153 4.4 Ctenophora 156 4.5 Nemertea 156 4.6 Rotifera 156 4.7 Annelida 157 4.8 Arthropoda 157 4.9 Mollusca 167 4.10 Phoronida 169 4.11 Bryozoa 169 4.12 Chaetognatha 169 4.13 Echinodermata 169 4.14 Hemichordata 169 4.15 Chordata 169 5.
    [Show full text]
  • 10Th International Congress on Marine Corrosion and Fouling, University of Melbourne, February 1999
    10th International Congress on Marine Corrosion and Fouling, University of Melbourne, February 1999 Additional Papers John A Lewis (Editor) Maritime Platforms Division Aeronautical and Maritime Research Laboratory DSTO-GD-0287 ABSTRACT This volume contains nineteen papers from the 10th International Congress on Marine Corrosion and Fouling, held at the University of Melbourne in Melbourne, Australia, in February 1999. The scope of the congress was to enhance scientific understanding of the processes and prevention of chemical and biological degradation of materials in the sea. Papers in this volume range across the themes of marine biofilms and bioadhesion, macrofouling processes and effects, methods for prevention of marine fouling, biocides in the marine environment, biodeterioration of wood in the sea, and marine corrosion. RELEASE LIMITATION Approved for public release Published by DSTO Aeronautical and Maritime Research Laboratory 506 Lorimer St Fishermans Bend, Victoria 3207 Australia Telephone: (03) 9626 7000 Fax: (03) 9626 7999 © Commonwealth of Australia 2001 AR-011-880 May 2001 APPROVED FOR PUBLIC RELEASE 10th International Congress on Marine Corrosion and Fouling, University of Melbourne, February 1999 Additional Papers Executive Summary The fouling and corrosion of vessels and structures immersed in the sea continues to pose significant economic and operational costs to the owner. Fouling growth can interfere with the operation of submerged equipment, impose increased loading stresses and accelerate corrosion on marine structures, and adversely affect the performance of ships by increasing hydrodynamic drag, which necessitates the use of more power and fuel to move the ship through the water. Similarly, marine corrosion and biodegradation of materials can compromise the operation and structural integrity of vessels, structures and other immersed equipment.
    [Show full text]