bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.979732; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Title: Axial Elongation of Caudalized Human Pluripotent Stem Cell Organoids Mimics Neural Tube Development Short title: Axial Elongation of Human Neural Tube Organoids One sentence summary: Here, the authors introduce an organoid model for neural tube development that demonstrates robust Wnt- dependent axial elongation, epithelial compartmentalization, establishment of neural and mesodermal progenitor populations, and morphogenic responsiveness to changes in BMP signaling. Authors: A. R. G. Libby1,2†, D. A. Joy2,3†, N. H. Elder1,2+, E. A. Bulger1,2+, M. Z. Krakora2, E. A. Gaylord1, F. Mendoza- Camacho2, T. C. McDevitt2,4* Affiliations: 1 Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, CA 2 Gladstone Institutes, San Francisco, CA 3 UC Berkeley-UC San Francisco Graduate Program in Bioengineering, San Francisco, CA 4 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA * Corresponding author:
[email protected] † These authors contributed equally to this work. + These authors contributed equally to this work. Abstract: During mammalian embryogenesis, axial elongation of the neural tube is critical for establishing the anterior- posterior body axis, but is difficult to interrogate directly because it occurs post-implantation. Here we report an organoid model of neural tube extension using human induced pluripotent stem cell (hiPSC) aggregates that recapitulates morphologic and gene expression patterns of neural tube development.