Chapter 7 File System Data Structures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ext4 File System and Crash Consistency
1 Ext4 file system and crash consistency Changwoo Min 2 Summary of last lectures • Tools: building, exploring, and debugging Linux kernel • Core kernel infrastructure • Process management & scheduling • Interrupt & interrupt handler • Kernel synchronization • Memory management • Virtual file system • Page cache and page fault 3 Today: ext4 file system and crash consistency • File system in Linux kernel • Design considerations of a file system • History of file system • On-disk structure of Ext4 • File operations • Crash consistency 4 File system in Linux kernel User space application (ex: cp) User-space Syscalls: open, read, write, etc. Kernel-space VFS: Virtual File System Filesystems ext4 FAT32 JFFS2 Block layer Hardware Embedded Hard disk USB drive flash 5 What is a file system fundamentally? int main(int argc, char *argv[]) { int fd; char buffer[4096]; struct stat_buf; DIR *dir; struct dirent *entry; /* 1. Path name -> inode mapping */ fd = open("/home/lkp/hello.c" , O_RDONLY); /* 2. File offset -> disk block address mapping */ pread(fd, buffer, sizeof(buffer), 0); /* 3. File meta data operation */ fstat(fd, &stat_buf); printf("file size = %d\n", stat_buf.st_size); /* 4. Directory operation */ dir = opendir("/home"); entry = readdir(dir); printf("dir = %s\n", entry->d_name); return 0; } 6 Why do we care EXT4 file system? • Most widely-deployed file system • Default file system of major Linux distributions • File system used in Google data center • Default file system of Android kernel • Follows the traditional file system design 7 History of file system design 8 UFS (Unix File System) • The original UNIX file system • Design by Dennis Ritche and Ken Thompson (1974) • The first Linux file system (ext) and Minix FS has a similar layout 9 UFS (Unix File System) • Performance problem of UFS (and the first Linux file system) • Especially, long seek time between an inode and data block 10 FFS (Fast File System) • The file system of BSD UNIX • Designed by Marshall Kirk McKusick, et al. -
11.7 the Windows 2000 File System
830 CASE STUDY 2: WINDOWS 2000 CHAP. 11 11.7 THE WINDOWS 2000 FILE SYSTEM Windows 2000 supports several file systems, the most important of which are FAT-16, FAT-32, and NTFS (NT File System). FAT-16 is the old MS-DOS file system. It uses 16-bit disk addresses, which limits it to disk partitions no larger than 2 GB. FAT-32 uses 32-bit disk addresses and supports disk partitions up to 2 TB. NTFS is a new file system developed specifically for Windows NT and car- ried over to Windows 2000. It uses 64-bit disk addresses and can (theoretically) support disk partitions up to 264 bytes, although other considerations limit it to smaller sizes. Windows 2000 also supports read-only file systems for CD-ROMs and DVDs. It is possible (even common) to have the same running system have access to multiple file system types available at the same time. In this chapter we will treat the NTFS file system because it is a modern file system unencumbered by the need to be fully compatible with the MS-DOS file system, which was based on the CP/M file system designed for 8-inch floppy disks more than 20 years ago. Times have changed and 8-inch floppy disks are not quite state of the art any more. Neither are their file systems. Also, NTFS differs both in user interface and implementation in a number of ways from the UNIX file system, which makes it a good second example to study. NTFS is a large and complex system and space limitations prevent us from covering all of its features, but the material presented below should give a reasonable impression of it. -
How UNIX Organizes and Accesses Files on Disk Why File Systems
UNIX File Systems How UNIX Organizes and Accesses Files on Disk Why File Systems • File system is a service which supports an abstract representation of the secondary storage to the OS • A file system organizes data logically for random access by the OS. • A virtual file system provides the interface between the data representation by the kernel to the user process and the data presentation to the kernel in memory. The file and directory system cache. • Because of the performance disparity between disk and CPU/memory, file system performance is the paramount issue for any OS Main memory vs. Secondary storage • Small (MB/GB) Large (GB/TB) • Expensive Cheap -2 -3 • Fast (10-6/10-7 sec) Slow (10 /10 sec) • Volatile Persistent Cannot be directly accessed • Directly accessible by CPU by CPU – Interface: (virtual) memory – Data should be first address brought into the main memory Secondary storage (disk) • A number of disks directly attached to the computer • Network attached disks accessible through a fast network - Storage Area Network (SAN) • Simple disks (IDE, SATA) have a described disk geometry. Sector size is the minimum read/write unit of data (usually 512Bytes) – Access: (#surface, #track, #sector) • Smart disks (SCSI, SAN, NAS) hide the internal disk layout using a controller type function – Access: (#sector) • Moving arm assembly (Seek) is expensive – Sequential access is x100 times faster than the random access Internal disk structure • Disk structure User Process Accessing Data • Given the file name. Get to the file’s FCB using the file system catalog (Open, Close, Set_Attribute) • The catalog maps a file name to the FCB – Checks permissions • file_handle=open(file_name): – search the catalog and bring FCB into the memory – UNIX: in-memory FCB: in-core i-node • Use the FCB to get to the desired offset within the file data: (CREATE, DELETE, SEEK, TRUNCATE) • close(file_handle): release FCB from memory Catalog Organization (Directories) • In UNIX, special files (not special device files) called directories contain information about other files. -
File Systems
File Systems Profs. Bracy and Van Renesse based on slides by Prof. Sirer Storing Information • Applications could store information in the process address space • Why is this a bad idea? – Size is limited to size of virtual address space – The data is lost when the application terminates • Even when computer doesn’t crash! – Multiple process might want to access the same data File Systems • 3 criteria for long-term information storage: 1. Able to store very large amount of information 2. Information must survive the processes using it 3. Provide concurrent access to multiple processes • Solution: – Store information on disks in units called files – Files are persistent, only owner can delete it – Files are managed by the OS File Systems: How the OS manages files! File Naming • Motivation: Files abstract information stored on disk – You do not need to remember block, sector, … – We have human readable names • How does it work? – Process creates a file, and gives it a name • Other processes can access the file by that name – Naming conventions are OS dependent • Usually names as long as 255 characters is allowed • Windows names not case sensitive, UNIX family is File Extensions • Name divided into 2 parts: Name+Extension • On UNIX, extensions are not enforced by OS – Some applications might insist upon them • Think: .c, .h, .o, .s, etc. for C compiler • Windows attaches meaning to extensions – Tries to associate applications to file extensions File Access • Sequential access – read all bytes/records from the beginning – particularly convenient for magnetic tape • Random access – bytes/records read in any order – essential for database systems File Attributes • File-specific info maintained by the OS – File size, modification date, creation time, etc. -
Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO
Filesystems HOWTO Filesystems HOWTO Table of Contents Filesystems HOWTO..........................................................................................................................................1 Martin Hinner < [email protected]>, http://martin.hinner.info............................................................1 1. Introduction..........................................................................................................................................1 2. Volumes...............................................................................................................................................1 3. DOS FAT 12/16/32, VFAT.................................................................................................................2 4. High Performance FileSystem (HPFS)................................................................................................2 5. New Technology FileSystem (NTFS).................................................................................................2 6. Extended filesystems (Ext, Ext2, Ext3)...............................................................................................2 7. Macintosh Hierarchical Filesystem − HFS..........................................................................................3 8. ISO 9660 − CD−ROM filesystem.......................................................................................................3 9. Other filesystems.................................................................................................................................3 -
File Systems
“runall” 2002/9/24 page 305 CHAPTER 10 File Systems 10.1 BASIC FUNCTIONS OF FILE MANAGEMENT 10.2 HIERARCHICAL MODEL OF A FILE SYSTEM 10.3 THE USER’S VIEW OF FILES 10.4 FILE DIRECTORIES 10.5 BASIC FILE SYSTEM 10.6 DEVICE ORGANIZATION METHODS 10.7 PRINCIPLES OF DISTRIBUTED FILE SYSTEMS 10.8 IMPLEMENTING DISTRIBUTED FILE SYSTEM Given that main memory is volatile, i.e., does not retain information when power is turned off, and is also limited in size, any computer system must be equipped with secondary memory on which the user and the system may keep information for indefinite periods of time. By far the most popular secondary memory devices are disks for random access purposes and magnetic tapes for sequential, archival storage. Since these devices are very complex to interact with, and, in multiuser systems are shared among different users, operating systems (OS) provide extensive services for managing data on secondary memory. These data are organized into files, which are collections of data elements grouped together for the purposes of access control, retrieval, and modification. A file system is the part of the operating system that is responsible for managing files and the resources on which these reside. Without a file system, efficient computing would essentially be impossible. This chapter discusses the organization of file systems and the tasks performed by the different components. The first part is concerned with general user and implementation aspects of file management emphasizing centralized systems; the last sections consider extensions and methods for distributed systems. 10.1 BASIC FUNCTIONS OF FILE MANAGEMENT The file system, in collaboration with the I/O system, has the following three basic functions: 1. -
Using Hierarchical Folders and Tags for File Management
Using Hierarchical Folders and Tags for File Management A Thesis Submitted to the Faculty of Drexel University by Shanshan Ma in partial fulfillment of the requirement for the degree of Doctor of Philosophy March 2010 © Copyright 2010 Shanshan Ma. All Rights Reserved. ii Dedications This dissertation is dedicated to my mother. iii Acknowledgments I would like to express my sincerest gratitude to my advisor Dr. Susan Wiedenbeck. She encouraged me when I had struggles. She inspired me when I had doubts. The dissertation is nowhere to be found if it had not been for our weekly meetings and numerous discussions. I’m in great debts to all the time and effort that she spent with me in this journey. Thank you to my dissertation committee members, Dr. Michael Atwood, Dr. Xia Lin, Dr. Denise Agosto, and Dr. Deborah Barreau, who have guided me and supported me in the research. The insights and critiques from the committee are invaluable in the writing of this dissertation. I am grateful to my family who love me unconditionally. Thank you my mother for teaching me to be a strong person. Thank you my father and my brother for always being there for me. I would like to thank the iSchool at Drexel University for your generosity in supporting my study and research, for your faculty and staff members who I always had fun to work with, and for the alumni garden that is beautiful all year round. Thank you my friends in Philadelphia and my peer Ph.D. students in the iSchool at Drexel University. -
Introduction to ISO 9660
Disc Manufacturing, Inc. A QUIXOTE COMPANY Introduction to ISO 9660, what it is, how it is implemented, and how it has been extended. Clayton Summers Copyright © 1993 by Disc Manufacturing, Inc. All rights reserved. WHO IS DMI? Disc Manufacturing, Inc. (DMI) manufactures all compact disc formats (i.e., CD-Audio, CD-ROM, CD-ROM XA, CDI, PHOTO CD, 3DO, KARAOKE, etc.) at two plant sites in the U.S.; Huntsville, AL, and Anaheim, CA. To help you, DMI has one of the largest Product Engineering/Technical Support staff and sales force dedicated solely to CD-ROM in the industry. The company has had a long term commitment to optical disc technology and has performed developmental work and manufactured (laser) optical discs of various types since 1981. In 1983, DMI manufactured the first compact disc in the United States. DMI has developed extensive mastering expertise during this time and is frequently called upon by other companies to provide special mastering services for products in development. In August 1991, DMI purchased the U.S. CD-ROM business from the Philips and Du Pont Optical Company (PDO). PDO employees in sales, marketing and technical services were retained. DMI is a wholly-owned subsidiary of Quixote Corporation, a publicly owned corporation whose stock is traded on the NASDAQ exchange as QUIX. Quixote is a diversified technology company composed of Energy Absorption Systems, Inc. (manufactures highway crash cushions), Stenograph Corporation (manufactures shorthand machines and computer systems for court reporting) and Disc Manufacturing, Inc. We would be pleased to help you with your CD project or answer any questions you may have. -
File System Layout
File Systems Main Points • File layout • Directory layout • Reliability/durability Named Data in a File System index !le name directory !le number structure storage o"set o"set block Last Time: File System Design Constraints • For small files: – Small blocks for storage efficiency – Files used together should be stored together • For large files: – ConCguous allocaon for sequenCal access – Efficient lookup for random access • May not know at file creaon – Whether file will become small or large File System Design Opons FAT FFS NTFS Index Linked list Tree Tree structure (fixed, asym) (dynamic) granularity block block extent free space FAT array Bitmap Bitmap allocaon (fixed (file) locaon) Locality defragmentaon Block groups Extents + reserve Best fit space defrag MicrosoS File Allocaon Table (FAT) • Linked list index structure – Simple, easy to implement – SCll widely used (e.g., thumb drives) • File table: – Linear map of all blocks on disk – Each file a linked list of blocks FAT MFT Data Blocks 0 1 2 3 !le 9 block 3 4 5 6 7 8 9 !le 9 block 0 10 !le 9 block 1 11 !le 9 block 2 12 !le 12 block 0 13 14 15 16 !le 12 block 1 17 18 !le 9 block 4 19 20 FAT • Pros: – Easy to find free block – Easy to append to a file – Easy to delete a file • Cons: – Small file access is slow – Random access is very slow – Fragmentaon • File blocks for a given file may be scaered • Files in the same directory may be scaered • Problem becomes worse as disk fills Berkeley UNIX FFS (Fast File System) • inode table – Analogous to FAT table • inode – Metadata • File owner, access permissions, -
430 File Systems Chap
430 FILE SYSTEMS CHAP. 6 6.4 EXAMPLE FILE SYSTEMS In the following sections we will discuss several example file systems, rang- ing from quite simple to highly sophisticated. Since modern UNIX file systems and Windows 2000’s native file system are covered in the chapter on UNIX (Chap. 10) and the chapter on Windows 2000 (Chap. 11) we will not cover those systems here. We will, however, examine their predecessors below. 6.4.1 CD-ROM File Systems As our first example of a file system, let us consider the file systems used on CD-ROMs. These systems are particularly simple because they were designed for write-once media. Among other things, for example, they have no provision for keeping track of free blocks because on a CD-ROM files cannot be freed or added after the disk has been manufactured. Below we will take a look at the main CD- ROM file system type and two extensions to it. The ISO 9660 File System The most common standard for CD-ROM file systems was adopted as an International Standard in 1988 under the name ISO 9660. Virtually every CD- ROM currently on the market is compatible with this standard, sometimes with the extensions to be discussed below. One of the goals of this standard was to make every CD-ROM readable on every computer, independent of the byte order- ing used and independent of the operating system used. As a consequence, some limitations were placed on the file system to make it possible for the weakest operating systems then in use (such as MS-DOS) to read it. -
File Systems Performance Analysis
File Systems Performance Analysis Benchmarking project for the lecture Computer Performance Analysing And Benchmarking lectured by Prof. Thomas M. Stricker at Swiss Federal Institute of Technology Written by Stefan Rondinelli File Systems Performance Analysis Project CONTENTS 0 Introduction 2 1 The Environment 2 1.1 The Hardware 2 1.2 The Software 3 2 Performing the Benchmark 4 2.1 The Proceeding 4 2.2 The Output 5 3 Statistical Analysis of the Data 6 3.1 Computation of Effects 6 3.2 Confidence Intervals 7 3.3 Are the File Systems Significantly Different? 8 4 References 10 - 1 - File Systems Performance Analysis Project 0 Introduction Every operating system has its own file systems. For example Windows uses FAT16(File Allocation Table 16(bits)), FAT32(File Allocation Table 32) and NTFS(Windows NT File System), Linux uses Minix fs, Extended fs and ext2 and a Mac has its (discarded) MFS(Macintosh file system) and HFS(Hierarchical File System) file systems. Sometimes file systems of other operating systems are supported what for example is desired in a dual boot system (e.g. Linux and Windows). When using such a dual boot machine with Linux and Windows, the performance of a file system could be one of the considerations when choosing what file systems to use for the different partitions. In this project I am going to benchmark some file systems and finally to analyze the gathered data statistically as learned in the lecture. 1 The Environment 1.1 The Hardware I used the following hardware for the performance analysis: - CPU: AMD K6II 450Mhz (has a 64kB cache) - RAM: 64MB SDRAM - Hard disk 1: Western Digital Caviar 36400 (6 GB) - Hard disk 2: Western Digital Caviar 33200 (3 GB) - Disk controller: IDE for both hard disks To have the same conditions these components affecting the I/O speed must be the same ones for all the measurements of the performance of the different file systems otherwise the differences in the measured data would rather be due to unequal hardware then to the different implementation of a file system. -
A File Management System Based on Overlapping Sets of Tags
VennTags: A File Management System based on Overlapping Sets of Tags N. Albadri1, Stijn Dekeyser1, Richard Watson1 1University of Southern Queensland, Australia Abstract File systems (FS) are an essential part of operating systems in that they are responsible for storing and organising files and then retrieving those when needed. Because of the high capacity of modern storage devices and the growing number of files stored, the traditional FS model is no longer able to meet modern users’ needs in terms of storing and retrieving files. So using metadata emerges as an efficacy solution for the limitations of file systems. In this paper we propose a new model dubbed VennTags to solve the FS problems. We do this by utilising the idea of overlapping the sets as in Venn diagram, and adopting DAG structure (instead of tree) to achieve that we have used tagging capability and exposed a query language at the level of the API. We evaluate the expressive power of VennTags model that shows its ability to resolve the FS limitations compared to other solutions. Citation: Albadri, N. Dekeyser, S., & Watson, R. (2017). VennTags: A File Management System based on Overlapping Sets of Tags. In iConference 2017 Proceedings, Vol. 2 (pp. 1-14). https://doi.org/10.9776/17002 Keywords: Operating Systems, File systems, metadata, tagging, Directed Acyclic Graph Contact: [email protected], [email protected], [email protected] 1 Introduction Personal computer systems, mobile and cloud-based as well as desktop oriented, are permanent companions in users daily lives, for both private and professional activities.