A Homozygous Loss-Of-Function CAMK2A Mutation Causes Growth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
KRBA1 CRISPR/Cas9 KO Plasmid (M): Sc-429589
SANTA CRUZ BIOTECHNOLOGY, INC. KRBA1 CRISPR/Cas9 KO Plasmid (m): sc-429589 BACKGROUND APPLICATIONS The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and KRBA1 CRISPR/Cas9 KO Plasmid (m) is recommended for the disruption of CRISPR-associated protein (Cas9) system is an adaptive immune response gene expression in mouse cells. defense mechanism used by archea and bacteria for the degradation of for- eign genetic material (4,6). This mechanism can be repurposed for other 20 nt non-coding RNA sequence: guides Cas9 functions, including genomic engineering for mammalian systems, such as to a specific target location in the genomic DNA gene knockout (KO) (1,2,3,5). CRISPR/Cas9 KO Plasmid products enable the U6 promoter: drives gRNA scaffold: helps Cas9 identification and cleavage of specific genes by utilizing guide RNA (gRNA) expression of gRNA bind to target DNA sequences derived from the Genome-scale CRISPR Knock-Out (GeCKO) v2 library developed in the Zhang Laboratory at the Broad Institute (3,5). Termination signal Green Fluorescent Protein: to visually REFERENCES verify transfection CRISPR/Cas9 Knockout Plasmid CBh (chicken β-Actin 1. Cong, L., et al. 2013. Multiplex genome engineering using CRISPR/Cas hybrid) promoter: drives systems. Science 339: 819-823. 2A peptide: expression of Cas9 allows production of both Cas9 and GFP from the 2. Mali, P., et al. 2013. RNA-guided human genome engineering via Cas9. same CBh promoter Science 339: 823-826. Nuclear localization signal 3. Ran, F.A., et al. 2013. Genome engineering using the CRISPR-Cas9 system. Nuclear localization signal SpCas9 ribonuclease Nat. Protoc. 8: 2281-2308. -
Daniel Bernstein, MD Associate Dean for Curriculum and Scholarship Stanford University School of Medicine Alfred Woodley Salter and Mabel G
RESEARCHER PROFILES Daniel Bernstein, MD Associate Dean for Curriculum and Scholarship Stanford University School of Medicine Alfred Woodley Salter and Mabel G. Salter Endowed Professor of Pediatrics (Cardiology) Stanford University Former Division Chief, Pediatric Cardiology Former Director, Children’s Heart Center, Lucile Packard Children’s Hospital at Stanford EMAIL [email protected] PROFILE med.stanford.edu/profiles/Daniel-Bernstein LAB murinecvcore.stanford.edu CURRENT RESEARCH EDUCATION/TRAINING Our recent work has focused on the mechanism by which mutations in sarcomeric proteins such MD New York University as myosin lead to the clinical phenotypes of hypertrophic cardiomyopathy (HCM). Utilizing human induced pluripotent stem cell-derived cardiomyocytes, with mutations induced by CRISPR/Cas9 PEDIATRICS RESIDENCY Montefiore Medical Center gene editing, we are undertaking a multi-scale approach ranging from structural and function studies on the single myosin molecule, to the individual myofibril, to whole cells and to microengineered MEDICAL EDUCATION FELLOWSHIP Albert Einstein College of Medicine tissues. To better understand cardiomyocyte mechano-transduction, we are applying FRET sensors in critical sarcomeric and junctional proteins. We are also studying a large biobank of myocardial PEDIATRIC CARDIOLOGY FELLOWSHIP UCSF samples from patients with HCM, combining transcriptomics and metabolomics with measurements of mitochondrial function to determine the degree to which HCM is a disease of altered cardiac BOARD CERTIFICATION Pediatrics, ABP energetics. These studies will allow us to correlate findings from hiPSC-CMs with actual patient samples. Another focus of our lab has been on the molecular mechanisms of RV hypertrophy Pediatric Cardiology, ABP and its transition to RV failure, and how this differs from LV failure. -
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
Topological Scoring of Protein Interaction Networks
bioRxiv preprint doi: https://doi.org/10.1101/438408; this version posted October 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Topological Scoring of Protein Interaction Networks Mihaela E. Sardiu1, Joshua M. Gilmore1,2, Brad D. Groppe1,3, Arnob Dutta1,4, Laurence Florens1, and Michael P. Washburn1,5‡ 1Stowers Institute for Medical Research, Kansas City, MO 64110 U.S.A. 2Current Address: Boehringer Ingelheim Vetmedica, St. Joseph, MO 64506 U.S.A. 3Current Address: Thermo Fisher Scientific, Waltham, MA 02451, U.S.A. 4Current Address: Department of Cell and Molecular Biology, University of Rhode Island, 287 CBLS, 120 Flagg Road, Kingston, RI 02881. 5 Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA ‡To whom correspondence should be addressed: Michael Washburn, Ph.D. Stowers Institute for Medical Research 1000 E. 50th St. Kansas City, MO 64110 Phone: 816-926-4457 E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/438408; this version posted October 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract It remains a significant challenge to define individual protein associations within networks where an individual protein can directly interact with other proteins and/or be part of large complexes, which contain functional modules. Here we demonstrate the topological scoring (TopS) algorithm for the analysis of quantitative proteomic analyses of affinity purifications. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
DPP9 Is an Endogenous and Direct Inhibitor of the NLRP1 Inflammasome That Guards Against Human Auto-Inflammatory Diseases
bioRxiv preprint doi: https://doi.org/10.1101/260919; this version posted February 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. DPP9 is an endogenous and direct inhibitor of the NLRP1 inflammasome that guards against human auto-inflammatory diseases Franklin L. Zhong1,2,3,*, Kim Robinson2,3, Chrissie Lim1, Cassandra R. Harapas4, Chien- Hsiung Yu4, William Xie2, Radoslaw M. Sobota1, Veonice Bijin Au1, Richard Hopkins1, John E. Connolly1,6,7, Seth Masters4,5 , Bruno Reversade1,2,8,9,10 *, # 1. Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore 138673 2. Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, Singapore 138648 3. Skin Research Institute of Singapore (SRIS), 8A Biomedical Grove, Immunos, Singapore 138648 4. Inflammation division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia. 5. Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010 Australia 6. Institute of Biomedical Studies, Baylor University, Waco, Texas 76712, USA 7. Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Singapore 117545 8. Reproductive Biology Laboratory, Obstetrics and Gynaecology, Academic Medical Center (AMC), Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, Netherlands 9. Department of Paediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore 119228 10. Medical Genetics Department, Koç University School of Medicine, 34010 Istanbul, Turkey * Corresponding authors. F.L.Z., [email protected]; B.R., [email protected] # Lead contact 1 bioRxiv preprint doi: https://doi.org/10.1101/260919; this version posted February 7, 2018. -
Supp Material.Pdf
Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment. -
PRODUCT SPECIFICATION Prest Antigen KRBA1 Product Datasheet
PrEST Antigen KRBA1 Product Datasheet PrEST Antigen PRODUCT SPECIFICATION Product Name PrEST Antigen KRBA1 Product Number APrEST89619 Gene Description KRAB-A domain containing 1 Alternative Gene KIAA1862 Names Corresponding Anti-KRBA1 (HPA050448) Antibodies Description Recombinant protein fragment of Human KRBA1 Amino Acid Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: DLQGLSRGTARRARPLPPDAPPAEPPGLHCSSSQQLLSSTPSCHAAPPAH PLLAHTGGHQSPLPPLVPAALPLQGASPPAASADADVPTSGVAPDGIPER PKEPSSLLGGVQRALQEELWGGEHRDPRW Fusion Tag N-terminal His6ABP (ABP = Albumin Binding Protein derived from Streptococcal Protein G) Expression Host E. coli Purification IMAC purification Predicted MW 31 kDa including tags Usage Suitable as control in WB and preadsorption assays using indicated corresponding antibodies. Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Unit Size 100 µl Concentration Lot dependent Storage Upon delivery store at -20°C. Avoid repeated freeze/thaw cycles. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price. -
Novel Mutations in the Ciliopathy-Associated Gene CPLANE1 (C5orf42) Cause OFD Syndrome Type VI Rather Than Joubert Syndrome
Accepted Manuscript Novel mutations in the ciliopathy-associated gene CPLANE1 (C5orf42) cause OFD syndrome type VI rather than Joubert syndrome Carine Bonnard, Mohammad Shboul, Seyed Hassan Tonekaboni, Alvin Yu Jin Ng, Sumanty Tohari, Kakaly Ghosh, Angeline Lai, Jiin Ying Lim, Ene Choo Tan, Louise Devisme, Morgane Stichelbout, Adila Alkindi, Nazreen Banu, Zafer Yüksel, Jamal Ghoumid, Nadia Elkhartoufi, Lucile Boutaud, Alessia Micalizzi, Maggie Siewyan Brett, Byrappa Venkatesh, Enza Maria Valente, Tania Attié-Bitach, Bruno Reversade, Ariana Kariminejad PII: S1769-7212(17)30410-X DOI: 10.1016/j.ejmg.2018.03.012 Reference: EJMG 3440 To appear in: European Journal of Medical Genetics Received Date: 30 June 2017 Revised Date: 28 March 2018 Accepted Date: 28 March 2018 Please cite this article as: C. Bonnard, M. Shboul, S.H. Tonekaboni, A.Y.J. Ng, S. Tohari, K. Ghosh, A. Lai, J.Y. Lim, E.C. Tan, L. Devisme, M. Stichelbout, A. Alkindi, N. Banu, Z. Yüksel, J. Ghoumid, N. Elkhartoufi, L. Boutaud, A. Micalizzi, M.S. Brett, B. Venkatesh, E.M. Valente, T. Attié-Bitach, B. Reversade, A. Kariminejad, Novel mutations in the ciliopathy-associated gene CPLANE1 (C5orf42) cause OFD syndrome type VI rather than Joubert syndrome, European Journal of Medical Genetics (2018), doi: 10.1016/j.ejmg.2018.03.012. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. -
Media Release for Immediate Release
MEDIA RELEASE FOR IMMEDIATE RELEASE 22 May 2018 New genetic findings explain how embryos form arms and legs New discovery revises biologists’ understanding of how limbs and lungs develop in humans. The current understanding of limb and lung development in humans does not capture the full picture of the process, according to research published in Nature last week. This paper describes the importance of novel genes for limb development, and shows how perceived wisdom about the process was incomplete. An international group of clinicians and researchers from Singapore, Turkey, France, Portugal and India, studied five families with either limb malformations, or tetra-amelia syndrome that is characterised by the absence of lungs and all four limbs. They found that mutations in the RSPO2 gene lead to incomplete limb development. Until now, the RSPO proteins were believed to only work with their receptors called LGRs. Together, RSPO and LGRs were thought to allow limb formation by blocking two key enzymes ZNRF3 and RNF43. Or so we thought. The team then studied mice lacking all three LGRs required for RSPO2’s function, and found that contrary to what was expected they still developed limbs and lungs normally. This indicates that RSPO2 does not need LGRs — disproving the established understanding of how this is happening. “Our results establish that even without the LGR receptors, RSPO2, can bind to other molecules and constitute a master switch that governs limb development,” says Dr Emmanuelle Szenker-Ravi, a co-first author of the study based at Agency of Science, Technology and Research’s (A*STAR) Institute of Medical Biology (IMB) in Singapore. -
Neuralization of Dissociated Xenopus Cells Is Mediated by Ras/MAPK Activation
Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION tive signals that act through Receptor Tyrosine kinases Default neural induction: (RTKs). Growth factors that signal via RTKs, such as neuralization of dissociated Fibroblast Growth Factor (FGF), Insulin-like Growth Factor (IGF), and Hepatocyte Growth Factor (HGF), are Xenopus cells is mediated potent neural inducers in vertebrates (Wilson and Edlund by Ras/MAPK activation 2001; De Robertis and Kuroda 2004; Stern 2004). RTK signaling activates the mitogen-activated protein kinase Hiroki Kuroda,1 Luis Fuentealba, Atsushi Ikeda, (MAPK) known as extracellular signal-regulated protein 2 kinase (ERK) via the Ras pathway, and in this way causes Bruno Reversade, and E.M. De Robertis neural induction. Howard Hughes Medical Institute and Department Two disparate views dominate the neural induction of Biological Chemistry, University of California, field at present. Work in the chick embryo has stressed Los Angeles, California 90095-1662, USA the importance of FGF signaling, whereas work in Xeno- pus has tended to emphasize the requirement for anti- Xenopus embryonic ectodermal cells dissociated for BMPs in neural induction (Harland 2000; Stern 2004). three or more hours differentiate into neural tissue in- We have argued that these apparently conflicting obser- stead of adopting their normal epidermal fate. This de- vations can be reconciled through a molecular mecha- nism in which Ras/MAPK phosphorylation regulates the fault type of neural induction occurs in the absence of BMP transducers Smad1/5/8 (De Robertis and Kuroda Spemann’s organizer signals and is thought to be caused 2004). -
Diapositive 1
Apports des nouvelles technologies de la génomique dans les maladies rares Judith Melki Inserm UMR-1169 & University of Paris Sud CHSF, CHU Bicêtre [email protected] 7681 ccatcttctc tttgtgcatg ttggtctccg tgtcccaatt tcccctttct atagggactg cagtcctaat gaattagacc ccaacaaacg acctgatatt aacttgatta cctccataaa 7801 gatcctattt ctaaataagg ccacattttt ttgagatact aggaattagg acatcaatgt atcttttatg tgacagacat ttcaacccat tagagttacc taacctccct cctaacacca 7921 cttccccttt ataaaatgag gataaaagtg ctgacctcac agggctgtgg agaacctggg gctatgcatg tagaaggatt agcacagtgc ctggcacatg gctggaaggc atcaaatgtt 8041 agctagtatt attatgaaat ggggatatag agccttagag ctcaatttat tttgctttgc ttatacagaa gtccatatgg ataacatttt cctccaactc taaagggcat aatgattttt 8161 cataacagcg taagttgatt tttacatctt gtactttaca aaggaactat atatttgaat aaaatttact ttttatttga gtattgccat gtattcatac tatgatacaa ttgccttgaa 8281 taaatacctt actcccagta agtaaataaa ccctaaatgt taaaaatctg aacaatttaa acatggctag aaaatgcacc ttctatatta ttcctaaaat aaaagaaata aaggctctaa 8401 aatgcaatat tgaattcccc caaccatgct gatgtaggta aactgtattt cagatattgg gaaatagcct cataaactga gaagaacacg gcttttagat tcaagtacat atggattcaa 8521 cttccacctt tacccctaca gctctgtgac cagtgggaag ttatgtagct ttgttcagcc ttggtttctt catctgcgaa attaggaaaa taatactcct tcaaaagtga gagagcgtaa 8641 cctgcagtgg atgaatggat aaacaaaatg tgctatgtac atataatgga atattattca gccttaaaaa ggaaggaaat tctgacacac gctataacat ggattaacct tgagaacatt 8761 atgctaagtg aaataaacca gtcatcaata gacagatact gtattattcc acttatgtga ggtacctaaa gtcatcaaat tcatagaggt aaaaaacata aaggcttttg ccaaggtcca 8881 gggggagggt agaatgagga