Responses of a Tallgrass Prairie Spider (Araneae) Community to Various Burn Seasons and Its Importance to Tallgrass Prairie Management

Total Page:16

File Type:pdf, Size:1020Kb

Responses of a Tallgrass Prairie Spider (Araneae) Community to Various Burn Seasons and Its Importance to Tallgrass Prairie Management 237 Chapter 11 Responses of a Tallgrass Prairie Spider (Araneae) Community to Various Burn Seasons and Its Importance to Tallgrass Prairie Management David J. Wade and Robert E. Roughley1 Department of Entomology, University of Manitoba Winnipeg, Manitoba, Canada R3T 2N2 Abstract. A four-year study was conducted in which spiders were used as bioindicators to determine if there was an optimal season to burn tallgrass prairie. The burn seasons examined were spring, summer, and fall. Overall, the species diversity of the spider community in the burned areas was not significantly different from the unburned areas for any burn season, although some significant differences occurred within the first year following the burns. Spider abundance decreased following each burn season treatment and the recovery period varied depending on the burn season. Burn season also affected the structure of the spider communities in that the summer and fall burn treatments became dominated by Pardosa distincta (Blackwall) rather than the initially dominant P. moesta Banks. The use of a mosaic of burn season treatments is recommended to maximize the diversity of spiders within the tallgrass prairie habitat. Résumé. Nous avons réalisé une étude de quatre ans afin de déterminer s’il existe une saison optimale pour les brûlis en prairies à herbes hautes en utilisant des araignées en guise de bioindicateurs. Les brûlis ont été effectués au printemps, en été ou en automne. Dans l’ensemble, la diversité des espèces d’araignées mesurée dans les zones brûlées n’était pas significativement différente de celle mesurée dans les zones non brûlées, sans égard à la saison choisie pour les brûlis, même si certaines différences significatives s’observaient au cours de la première année suivant les brûlis. L’abondance des araignées a diminué après chaque saison de brûlis, et la période de rétablissement a varié en fonction de la saison choisie. Le choix de la saison des brûlis a également influé sur la structure des communautés d’arachnides : dans les zones soumises à des brûlis d’été ou d’automne, le Pardosa distincta (Blackwall) est devenu dominant et a remplacé l’espèce qui dominait auparavant, le P. moesta Banks. On recommande de recourir à une mosaïque de traitements saisonniers afin de maximiser la diversité des araignées dans l’habitat de la prairie à herbes hautes. Introduction Approximately 300 years ago, tallgrass prairie covered 570,000 km2 of North America (Howe 1994), extending from southern Saskatchewan and Manitoba, south to Texas, and eastward to Iowa (Robertson et al. 1997). Only 1% of this habitat remains in North America and less than 1% in Manitoba (Morgan 1994; Robertson et al. 1997; Nature Conservancy of Canada 2000). The main tallgrass prairie sites in Manitoba are the Tall Grass Prairie Preserve (1,820 ha), the St. Charles Rifle Range (SCRR; 192 ha), and the Living Prairie Museum (12 ha). Tallgrass prairie is adapted to disturbance, and active management requires regular disturbances such as fire, grazing, or mowing (Howe 1994; Schwartz and Hermann 1997). Prior to European settlement, tallgrass prairie was regularly burned by lightning strikes in 1 Deceased. Wade, D. J. and R. E. Roughley. 2010. Responses of a Tallgrass Prairie Spider (Araneae) Community to Various Burn Seasons and Its Importance to Tallgrass Prairie Management. In Arthropods of Canadian Grasslands (Volume 1): Ecology and Interactions in Grassland Habitats. Edited by J. D. Shorthouse and K. D. Floate. Biological Survey of Canada. pp. 237-249. © 2010 Biological Survey of Canada. ISBN 978-0-9689321-4-8 doi:10.3752/9780968932148.ch11 238 D. J. Wade and R. E. Roughley late summer or early autumn and by Aboriginal people purposely igniting the habitat in the early spring or autumn (Warren et al. 1987; Collins 1990; Howe 1994; Schwartz and Hermann 1997). Fire is currently the most widely used management technique, with spring burns being most common (Schwartz and Hermann 1997; Collins and Steinauer 1998). Spring burns favour late season grasses such as big bluestem and other key tallgrass prairie grass species (Schwartz and Hermann 1997), although summer burns may maximize plant diversity (Howe 1994). Without regular disturbances, the plant community becomes dominated by few species that reduce species richness and productivity (Reed 1997; Schwartz and Hermann 1997; Collins and Steinauer 1998). However, the disturbance regime necessary to maintain high diversity and productivity has not yet been determined (Howe 1994; Collins and Steinauer 1998). The effects of fire on the spider (Araneae) fauna of prairie habitats are not well-known (see reviews by Warren et al. 1987; Reed 1997; Bell et al. 2001). Spiders are important predators and can survive the physical effects of fire by finding protection in places such as cracks in the soil (Warren et al. 1987). However, because of the upper lethal temperature of most spiders, biologists hypothesize that the majority of spiders are not able to survive a fire incident and that they recolonize following the burn (Bell et al. 2001). Spider survival after a fire also depends on the availability of prey, both its density and diversity, in the burned area (Warren et al. 1987). The pioneer spider fauna in grasslands following fire includes certain species of linyphiids, theridiids, and lycosids (Riechert and Reeder 1972; Bell et al. 2001). These species prefer bare ground, are more tolerant to microclimate changes, and are relatively less dependent on vegetation for web construction (especially lycosids) (Bell et al. 2001). These pioneering species often decline in numbers over time as the habitat recovers from the effects of fire and as old-growth species increase in abundance (Bellet al. 2001). In general, species diversity increases over time following fire in grasslands, but the short-term responses can vary (Bell et al. 2001). Bell et al. (2001) recommended that more studies be done to examine the effect of different burn regimes on spider communities. They also recommended that burning be conducted on large connected habitats with a rotation of regimes to conserve the highest species richness and range of stand ages. Maintaining refugia and keeping the inter-burn period long enough are also important so that the spider fauna can recover (Harper et al. 2000). Although no studies have been done of the impact of fire on spiders in tallgrass prairie in Manitoba, some have been conducted in similar tallgrass prairie habitats in Illinois (Rice 1932; Harper et al. 2000), Wisconsin (Riechert and Reeder 1972), and Kansas (Nagel 1973). Harper et al. (2000) found that spider abundance significantly decreased in the 10 weeks following a spring burn. Spider abundance was more negatively affected in the enclosure study sites (i.e., closed system), suggesting that recolonization from unburned areas is important for spiders. Rice (1932) found that spider numbers were lower in burned versus unburned subclimax tallgrass prairie following a spring burn. Riechert and Reeder (1972) saw the same trend on two separate prairie plots. On a subclimax prairie site, spider abundance recovered within a week and species composition favoured vagrant species. However, on a climax site, spider abundance did not recover after 45 days, albeit species composition was unaffected. These researchers also observed that spiders moved from burned areas to unburned areas. The long-term effect of burning on the spider community was inconclusive in their study. In the year following the burn, spider abundance on the climax prairie site had returned to pre-burn levels, whereas levels at the subclimax prairie site remained below pre-burn levels. Similarly, Nagel (1973) found that spider abundance was lower in the burned versus unburned prairie following a spring burn on a prairie in Response of spiders to fire in tallgrass prairie 239 Kansas. Johnson (1995) found that spider abundance and density was higher in annually burned Spartina pectinata Link wetlands, but species composition was similar. This increase in spider abundance was correlated with increases in insect prey. Howe (1994) predicted that fire season would affect the resultant tallgrass plant community from observations that species (1) differ in response to thatch removal and soil warming, (2) have different seeding phenologies and germination requirements, and (3) differ in patterns of rhizome recruitment. His prediction was validated for the tallgrass prairie plant community on the SCRR (Sveinson 2001). By extension, fire season also is predicted to affect spiders. Spider species have different phenologies and peak activity periods (Aitchison 1984) and differentially migrate into burned areas (Riechert and Reeder 1972; Harper et al. 2000). The objectives of this study were to determine (1) the effect of burn season on the spider community, (2) the optimal burn cycle interval, and (3) the optimal burn season for tallgrass prairie management. This research was part of a multidisciplinary study that also used the plant and ground beetle (Coleoptera: Carabidae) communities as bioindicators to evaluate the effectiveness of burn season as a tool for tallgrass prairie management. The results for these other bioindicators are discussed in Sveinson (2001), Roughley (2001), and Roughley et al. (see Chapter 10). A secondary component of the study was to determine the uniqueness of the tallgrass prairie spider and ground beetle fauna compared with the adjacent aspen forest fauna, the results of which are discussed in Roughley et al. (2006). Study Area The study was conducted at the SCRR, located just to the northwest of Winnipeg, Manitoba (49°54′35.1″ N, 97°20′47.3″ W). The 192 ha property is owned by the Canadian Department of National Defence and includes 47.9 ha of high-quality tallgrass prairie (Morgan 1994). The area has remained undisturbed for at least 100 years, but a portion of the study area may have been cultivated until 50 years ago. This area was coined the “go-back” prairie by Morgan (1994).
Recommended publications
  • SPIDERS of WASHINGTON COUNTY, MISSISSIPPI Orrey P. Young Southern Field Crop Insect Management Laboratory USDA-ARS, P.O. Box
    Young, O . P., T. C . Lockley and G . B . Edwards . 1989 . Spiders of Washington County, Mississippi . J . Arachnol ., 17 :27-41 . SPIDERS OF WASHINGTON COUNTY, MISSISSIPPI Orrey P. Young Southern Field Crop Insect Management Laboratory USDA-ARS, P.O. Box 346 Stoneville, Mississippi 38776 USA Timothy C. Lockley Imported Fire Ant Station USDA-APHIS-PPQ 3505 25th Avenue Gulfport, Mississippi 39501 USA and G. B. Edwards Florida State Collection of Arthropods Division of Plant Industry Florida Dept. Agric. & Cons . Serv. P.O. Box 1269 Gainesville, Florida 32602 USA ABSTRACT Over a seven-year period, approximately 35,000 spiders representing 26 families, 133 genera, and 234 species were captured in Washington County, Mississippi, by pitfall, sweepnet, vacuum, bag, and hand. Specimens were collected in 10 different habitat types and in four vegetational strata . Old-field habitats yielded the most species (152) and residential lawns the fewest (14) . Considering all habitats sampled, the ground layer produced 111 species, the herbaceous strata 133, the shrub layer 49, and the tree strata 30 species . The sweepnet method of capture obtained 128 species, pitfall 95, hand 61, vacuum 53, and bagging 19 species. The largest number of species were obtained in spring and early summer (maximum of 125 in May), with the fewest in mid-winter (Jan . = 24) . Twenty-one species were considered abundant, 51 common, 67 uncommon, and 95 rare . Additions to the state list of Dorris (1972) number 102 species, for a new state total of 364 species . A comparison with the North American fauna and with other surveys indicates that Washington County is underrepresented both in cursorial forms active on the soil surface and web-spinning forms typical of undisturbed habitats .
    [Show full text]
  • Effect of Formica Aserva Forel (Hymenoptera: Formicidae) on Ground Dwelling Arthropods in Central British Columbia
    EFFECT OF FORMICA ASERVA FOREL (HYMENOPTERA: FORMICIDAE) ON GROUND DWELLING ARTHROPODS IN CENTRAL BRITISH COLUMBIA by Kendra Gail Schotzko B.S., University of Idaho, 2008 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN NATURAL RESOURCES AND ENVIRONMENTAL STUDIES (BIOLOGY) UNIVERSITY OF NORTHERN BRITISH COLUMBIA June 2012 © Kendra G. Schotzko, 2012 Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-94131-7 Our file Notre reference ISBN: 978-0-494-94131-7 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Spiders (Araneae) of Churchill, Manitoba: DNA Barcodes And
    Blagoev et al. BMC Ecology 2013, 13:44 http://www.biomedcentral.com/1472-6785/13/44 RESEARCH ARTICLE Open Access Spiders (Araneae) of Churchill, Manitoba: DNA barcodes and morphology reveal high species diversity and new Canadian records Gergin A Blagoev1*, Nadya I Nikolova1, Crystal N Sobel1, Paul DN Hebert1,2 and Sarah J Adamowicz1,2 Abstract Background: Arctic ecosystems, especially those near transition zones, are expected to be strongly impacted by climate change. Because it is positioned on the ecotone between tundra and boreal forest, the Churchill area is a strategic locality for the analysis of shifts in faunal composition. This fact has motivated the effort to develop a comprehensive biodiversity inventory for the Churchill region by coupling DNA barcoding with morphological studies. The present study represents one element of this effort; it focuses on analysis of the spider fauna at Churchill. Results: 198 species were detected among 2704 spiders analyzed, tripling the count for the Churchill region. Estimates of overall diversity suggest that another 10–20 species await detection. Most species displayed little intraspecific sequence variation (maximum <1%) in the barcode region of the cytochrome c oxidase subunit I (COI) gene, but four species showed considerably higher values (maximum = 4.1-6.2%), suggesting cryptic species. All recognized species possessed a distinct haplotype array at COI with nearest-neighbour interspecific distances averaging 8.57%. Three species new to Canada were detected: Robertus lyrifer (Theridiidae), Baryphyma trifrons (Linyphiidae), and Satilatlas monticola (Linyphiidae). The first two species may represent human-mediated introductions linked to the port in Churchill, but the other species represents a range extension from the USA.
    [Show full text]
  • Colonization Dynamics of Agroecosystem Spider Assemblages After Snow-Melt in Quebec (Canada)
    2012. The Journal of Arachnology 40:48–58 Colonization dynamics of agroecosystem spider assemblages after snow-melt in Quebec (Canada) Raphae¨l Royaute´ and Christopher M. Buddle1: Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada Abstract. Spiders are important generalist predators in agroecosystems, yet early season colonization is poorly understood, especially in northern regions. We investigated colonization patterns of spiders in agricultural fields after snow-melt in four cornfields in southwestern Quebec (Canada). Paired pitfall traps were associated with two drift fences to obtain data about immigration to and emigration from the fields and were placed at increasing distances from a deciduous forest border. Control traps were placed four meters inside the forest. Seventy-four species were collected, dominated by Linyphiidae and Lycosidae. Most of the fauna was already active during the first weeks of collection, and early season assemblages differed from late season assemblages. A significant ecotone effect was found for spider abundance, species richness and species composition. This study stresses the importance of early season spider activity in agroecosystems, and this context is relevant to a period of colonization by the dominant, active spider species. Keywords: Agroecosystems, early season assemblage composition, dispersal, Linyphiidae, Lycosidae Generalist arthropod predators, including spiders, are season, when spider abundance is high (e.g., Hibbert & important biocontrol agents in agroecosystems (Riechert & Buddle 2008; Sackett et al. 2008, 2009). This can bias our Lawrence 1997; Symondson et al. 2002; Stiling & Cornelissen understanding of the way colonization proceeds in northern 2005) and, when seen as a species assemblage, can exert top- countries where certain taxa remain active and forage under down effects on many agricultural pests (Riechert & Bishop the snow layer (e.g., Lycosidae and Lyniphiidae, Aitchison 1990; Carter & Rypstra 1995).
    [Show full text]
  • List of Ohio Spiders
    List of Ohio Spiders 2 August 2021 Richard A. Bradley Department of EEO Biology Ohio State University Museum of Biological Diversity 1315 Kinnear Road Columbus, OH 43212 This list is based on published specimen records of spider species from Ohio. Additional species that have been recorded during the Ohio Spider Survey (beginning 1994) are also included. I would very much appreciate any corrections; please mail them to the above address or email ([email protected]). 676 [+6] Species Mygalomorphae Antrodiaetidae (foldingdoor spiders) (2) Antrodiaetus robustus (Simon, 1890) Antrodiaetus unicolor (Hentz, 1842) Atypidae (purseweb spiders) (3) Sphodros coylei Gertsch & Platnick, 1980 Sphodros niger (Hentz, 1842) Sphodros rufipes (Latreille, 1829) Euctenizidae (waferdoor spiders) (1) Myrmekiaphila foliata Atkinson, 1886 Halonoproctidae (trapdoor spiders) (1) Ummidia audouini (Lucas, 1835) Araneomorphae Agelenidae (funnel weavers) (14) Agelenopsis emertoni Chamberlin & Ivie, 1935 | Agelenopsis kastoni Chamberlin & Ivie, 1941 | Agelenopsis naevia (Walckenaer, 1805) grass spiders Agelenopsis pennsylvanica (C.L. Koch, 1843) | Agelnopsis potteri (Blackwell, 1846) | Agelenopsis utahana (Chamberlin & Ivie, 1933) | Coras aerialis Muma, 1946 Coras juvenilis (Keyserling, 1881) Coras lamellosus (Keyserling, 1887) Coras medicinalis (Hentz, 1821) Coras montanus (Emerton, 1889) Tegenaria domestica (Clerck, 1757) barn funnel weaver In Wadotes calcaratus (Keyserling, 1887) Wadotes hybridus (Emerton, 1889) Amaurobiidae (hackledmesh weavers) (2) Amaurobius
    [Show full text]
  • 1 CHECKLIST of ILLINOIS SPIDERS Over 500 Spider Species Have Been
    1 CHECKLIST OF ILLINOIS SPIDERS Over 500 spider species have been reported to occur in Illinois. This checklist includes 558 species, and there may be records in the literature that have eluded the author’s attention. This checklist of Illinois species has been compiled from sources cited below. The initials in parentheses that follow each species name and authorship in the list denote the paper or other source in which the species was reported. Locality data, dates of collection, and other information about each species can be obtained by referring to the indicated sources. (AAS) American Arachnological Society Spider Species List for North America, published on the web site of the American Arachnological Society: http://americanarachnology.org/AAS_information.html (B&N) Beatty, J. A. and J. M. Nelson. 1979. Additions to the Checklist of Illinois Spiders. The Great Lakes Entomologist 12:49-56. (JB) Beatty, J. A. 2002. The Spiders of Illinois and Indiana, their Geolographical Affinities, and an Annotated Checklist. Proc. Ind. Acad. Sci. 1:77-94. (BC) Cutler, B. 1987. A Revision of the American Species of the Antlike Jumping Spider Genus Synageles (Araneae: Salticidae). J. Arachnol.15:321-348. (G&P) Gertsch, W. J. And N. I. Platnick. 1980. A Revision of the American Spiders of the Family Atypidae (Araneae, Mygalomorphae). Amer. Mus. Novitates 2704:1-39. (BK) Kaston, B. J. 1955. Check List of Illinois Spiders. Trans. Ill. State Acad. Sci. 47: 165- 172. (SK) Kendeigh, S. C. 1979. Invertebrate Populations of the Deciduous Forest Fluctuations and Relations to Weather. Illinois Biol. Monog. 50:1-107.
    [Show full text]
  • “There Would Doubtless Be a Just Feeling of Pride
    “There would doubtless be a just feeling of pride and satisfaction in the heart of a naturalist who could say that he had made himself thoroughly acquainted with all the species of a particular group of animals, had learned their most secret habits, and mastered their several relations to the objects, animate and inanimate, which surrounded them. But perhaps a still keener pleasure is enjoyed by one who carries about with him some problem of the kind but partially solved, and who, holding in his hand the clue which shall guide him onwards, sees in each new place that he visits fresh opportunities of discovery.” J. Traherne Moggridge Harvesting Ants and Trap-door Spiders, page 180 Saville, Edwards and Co., London 1874 University of Alberta Composition and structure of spider assemblages in layers of the mixedwood boreal forest after variable retention harvest by Jaime H. Pinzón A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Wildlife Ecology and Management Department of Renewable Resources ©Jaime H. Pinzón Fall 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.
    [Show full text]
  • A SAMPLING of FOREST-FLOOR SPIDERS (ARANEAE) by EXPELLANT, MOOSEHORN NATIONAL WILDLIFE REFUGE, MAINE Daniel T. Jennings' Northea
    Jennings, D . T., W. M . Vander Haegen and A . M . Narahara . 1990 . A sampling of forest-floor spiders (Araneae) by expellant . Moosehorn National Wildlife Refuge, Maine . J. Arachnol ., 18 :173-179 . A SAMPLING OF FOREST-FLOOR SPIDERS (ARANEAE) BY EXPELLANT, MOOSEHORN NATIONAL WILDLIFE REFUGE, MAINE Daniel T. Jennings' Northeastern Forest Experiment Station USDA Building University of Maine Orono, Maine 04469 USA W. Matthew Vander Haegen and Annie M . Narahara Maine Cooperative Fish and Wildlife Research Unit 240 Nutting Hall University of Maine Orono, Maine 04469 USA ABSTRACT Spiders of 14 families, 34 genera, and at least 36 species were collected by formalin extraction from sub-litter habitats of the forest floor, Moosehorn National Wildlife Refuge, Washington County, Maine, in 1987 . Species per family ranged from I to 7 ; the Erigonidae had the richest representation with 19 .4% of all species . Most species (64 .0%) were represented by sexually mature spiders ; the ratio of female to male spiders was 3 .2:1 . Species of web-spinning spiders outnumbered species of hunting spiders 2 to 1 . Numbers of spiders/0 .25 m2 circular plot ranged from I to 4 ; mean overall density of sub-litter spiders was 1 .12 ± 0 .17 SE, where N = 36 plots . Most (67 .3%) of the spiders were associated with only one forest-stand type, possibly indicating species-habitat specificity . INTRODUCTION Spiders are increasingly recognized as important components of forest ecosystems (e.g., Moulder and Reichle 1972) ; however, relatively few studies have addressed the forest-floor araneofauna of particular forest-stand types . For northeastern forests of the United States and Canada, spruce-fir (Picea-Abies) stands have received the most attention (Freitag et al .
    [Show full text]
  • Response of Macroarthropod Assemblages to the Loss of Hemlock (Tsuga Canadensis), a Foundation Species Tara E
    Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College Biology Faculty Research and Scholarship Biology 2013 Response of macroarthropod assemblages to the loss of hemlock (Tsuga canadensis), a foundation species Tara E. Sackett Sydne Record Bryn Mawr College, [email protected] Sharon Bewick Benjamin Baiser Nathan J. Sanders See next page for additional authors Let us know how access to this document benefits ouy . Follow this and additional works at: http://repository.brynmawr.edu/bio_pubs Part of the Biology Commons Custom Citation Sackett, T. E., S. Record, S. Bewick, B. Baiser, N. J. Sanders, and A. M. Ellison. 2011. Response of macroarthropod assemblages to the loss of hemlock (Tsuga canadensis), a foundation species. Ecosphere 2(7):1-16. This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/bio_pubs/18 For more information, please contact [email protected]. Authors Tara E. Sackett, Sydne Record, Sharon Bewick, Benjamin Baiser, Nathan J. Sanders, and Aaron M. Ellison This article is available at Scholarship, Research, and Creative Work at Bryn Mawr College: http://repository.brynmawr.edu/ bio_pubs/18 Response of macroarthropod assemblages to the loss of hemlock (Tsuga canadensis), a foundation species 1,4, 2 3 2 1 TARA E. SACKETT, SYDNE RECORD, SHARON BEWICK, BENJAMIN BAISER, NATHAN J. SANDERS, 2 AND AARON M. ELLISON 1Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, Tennessee 37996 USA 2Harvard Forest, Harvard University, 324 North Main Street, Petersham, Massachusetts 01366 USA 3NIMBioS, University of Tennessee, 1534 White Avenue, Knoxville, Tennessee 37996 USA Abstract.
    [Show full text]
  • Coleoptera: Curculionidae) in an Organic Apple Orchard Using Molecular Gut-Content Analysis
    insects Article Elucidating the Common Generalist Predators of Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae) in an Organic Apple Orchard Using Molecular Gut-Content Analysis Jason M. Schmidt 1,2,*, Zsofia Szendrei 1 and Matthew Grieshop 1 1 Department of Entomology, Michigan State University, 578 Wilson Rd., East Lansing, MI 48824, USA; [email protected] (Z.S.); [email protected] (M.G.) 2 Department of Entomology, University of Georgia, 2360 Rainwater Rd., Tifton, GA 31793, USA * Correspondence: [email protected]; Tel.: +1-229-386-7251 Academic Editors: Andrew G. S. Cuthbertson and Eric W. Riddick Received: 22 April 2016; Accepted: 20 June 2016; Published: 24 June 2016 Abstract: Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), plum curculio, is a serious direct pest of North American tree fruit including, apples, cherries, peaches and plums. Historically, organophosphate insecticides were used for control, but this tool is no longer registered for use in tree fruit. In addition, few organically approved insecticides are available for organic pest control and none have proven efficacy as this time. Therefore, promoting biological control in these systems is the next step, however, little is known about the biological control pathways in this system and how these are influenced by current mechanical and cultural practices required in organic systems. We used molecular gut-content analysis for testing field caught predators for feeding on plum curculio. During the study we monitored populations of plum curculio and the
    [Show full text]
  • Recolonisation Des Mares D'un Fen En Restauration Par Les Araignées Et Les
    Recolonisation des mares d’un fen en restauration par les araignées et les dytiques Mémoire André-Philippe Drapeau Picard Maîtrise en biologie végétale Maître ès sciences (M.Sc.) Québec, Canada © André-Philippe Drapeau Picard, 2016 Recolonisation des mares d’un fen en restauration par les araignées et les dytiques Mémoire André-Philippe Drapeau Picard Sous la direction de : Line Rochefort, directrice de recherche Maxim Larrivée, codirecteur de recherche Résumé La technique du transfert muscinal, largement appliquée pour la restauration des tourbières perturbées par l’extraction de la tourbe en Amérique du Nord, vise le retour d’un couvert végétal dominé par des mousses accumulatrices de tourbe. Bien qu’efficace en ce sens, l’approche ne restaure pas l’hétérogénéité des habitats qui supportent la grande biodiversité des tourbières naturelles. Les mares de tourbière sont des habitats auxquels une faune et une flore caractéristiques sont associées et qui contribuent significativement à la biodiversité des tourbières. La création de mares dans les tourbières restaurées devrait y augmenter l’hétérogénéité des habitats et, ainsi, la biodiversité. Dans virtuellement tous les écosystèmes, les arthropodes sont diversifiés et abondants, et ils sont sensibles aux variations environnementales à une échelle fine, ce qui fait d’eux des indicateurs écologiques intéressants. Pour ce projet, 21 mares réparties dans deux classes de profondeur (profondes et peu profondes) et trois classes de végétation (mousses, arbustes et plantes graminoïdes) ont été aménagées lors de la restauration d’une tourbière minérotrophe dans la région du Bas-Saint-Laurent. Les mares de quatre tourbières des environs ont été inventoriées en tant qu’écosystème de référence.
    [Show full text]
  • A Complete List of the Spiders of British Columbia (2006)
    A Complete list of the spiders of British Columbia (2006) The list of spiders of British Columbia was completed by Robb Bennett, David Blades, Don Buckle, Charles Dondale, and Rick C. West in 2006. It is based upon a spider database initially developed by Blades for use within the Royal British Columbia Museum and revised and updated by Bennett. Locality data were recorded primarily from specimens in the RBCM and the Canadian National Collection (Agriculture & Agri- Food Canada, Ottawa). This list builds upon earlier lists of BC spiders prepared by Erik Thorn (1967) and West, Dondale, and Richard Ring (1984 & 1988) and referenced in "Spiders (Araneae) and Araneology in British Columbia (Bennett. 2001. Journal of the Entomological Society of British Columbia, 98:83-90 LINK). Nomenclature follows the authoritative spider taxonomy and bibliography website, Norman Platnick's "The World Spider Catalog" (http://research.amnh.org/entomology/spiders/catalog/index.html). In a few instances, linyphiid species nomenclature follows Buckle, D.J., Carroll, D., Crawford, D.L., and Roth, V.D. 2001. Linyphiidae and Pimoidae of America north of Mexico: Checklist, synonymy, and literature. Fabreries, Supplement 10:89-191. Note: Taxonomy follows Norm Platnick's "World Spider Catalog" Common names follow Breen, R. G. et al. 2003. Common Names of Arachnids. American Arachnological Society Committee on Common Names of Arachnids (http://www.americanarachnology.org/acn5.pdf). Agelenidae Agelenopsis actuosa (Gertsch & Ivie) 1936 – Grass Spider Global: Southern
    [Show full text]