Why More Tech Companies Should Put AI Visionaries in the Executive Suite

Total Page:16

File Type:pdf, Size:1020Kb

Why More Tech Companies Should Put AI Visionaries in the Executive Suite Why more tech companies should put AI visionaries in the executive suite Why more tech companies should put AI visionaries in the executive suite by, James Kobielus May 3rd, 2018 Do enterprises really need chief artificial intelligence officers? In most industries, the correct answer would probably be no. For most businesses, AI may never rise to a level of strategic importance that requires a dedicated executive reporting directly to the chief executive. Even so, some high-tech companies might want to consider it. Elevating an AI expert to […] © 2018 Wikibon Research | Page 1 Why more tech companies should put AI visionaries in the executive suite Do enterprises really need chief artificial intelligence officers? In most industries, the correct answer would probably be no. For most businesses, AI may never rise to a level of strategic importance that requires a dedicated executive reporting directly to the chief executive. Even so, some high-tech companies might want to consider it. Elevating an AI expert to C-level status, though often quite expensive, may become strategically necessary if a business’ survival depends on it. In those “bet the business” cases, it may make sense to appoint an executive to oversee an AI center of excellence, direct high-profile AI-based business initiatives, fund ongoing research and development into the enabling technologies and evangelize it among the lines of business. Here’s a SiliconANGLE article from last fall in which Teradata Corp. marshals quantitative research to argue that the day is approaching when C-level AI-focused executives may become essential. And here’s a good interview of former Baidu Inc. Chief Scientist and AI guru Andrew Ng in which he discusses the strategic imperative behind appointing AI masterminds into this role: Among the first companies to appoint chief AI officers may be tech companies in markets that have bet their futures on disruptive AI applications. In recent weeks, we’ve seen several prominent tech companies reorganize with an eye toward boosting their ability to deliver sophisticated AI-driven products across their solution portfolios: ● Apple recently hired John Giannandrea, former Google Inc. chief of AI and machine learning, to take charge of its cross-product AI strategy. He will serve in role equivalent to a chief AI officer, becoming one of 16 executives reporting directly to Apple Inc. CEO Tim Cook. But it’s not clear yet what his priorities or responsibilities will be, or the size of the organization and budget he will control. He is likely to focus on boosting privacy protection in the AI that’s built into Apple’s products, though that would fall short of a strategic vision to innovate in devices, online services or other segments in which his new employer competes. ● Google is creating a new business unit dedicated to integrated AI across its product portfolio. This group falls under Jeff Dean, co-founder of its Google Brain research group. In a sense, Dean might be equated with a chief AI officer, essentially filling a strategic void created by Giannandrea’s recent exit. However, there’s no word on whether he reports directly to Google CEO Sundar Pichai. Regardless, he does not report directly to Larry Page, CEO of parent company Alphabet Inc. ● Microsoft Corp. is moving further away from any notion of converging all AI responsibilities in one senior- level position. It is splitting out its AI efforts into separate groups focused on research, cloud platforms, runtime and development platforms, business applications and mixed reality, respectively. The existing AI + Research group, which infuses key AI technology advances across all product teams, will continue to be led by Harry Shum, who will also co-head an AI ethics committee with Microsoft’s chief legal officer. Scott Guthrie’s existing Cloud product group will add AI platforms, with a focus on infrastructure, runtimes, frameworks, tools and higher-level services around perception, knowledge and cognition. The new AI Cognitive Services & Platform, under Eric Boyd, will drive Microsoft’s AI Platform, AI Fundamentals, Azure ML, AI Tools and Cognitive Services. The existing Business Applications Group, under James Phillips, will add the Customer Service, Marketing and Sales Insights teams and focus on AI-enabling their solutions. And the new AI Perception & Mixed Reality team, under Alex Kipman, will bring together all Microsoft speech, vision, mixed reality and additional perception capabilities into one team. Considering the current vogue for this technology as a competitive differentiator, it may only be a matter of time before one or more high-profile companies appoint an all-powerful “AI czar.” Though it’s not an © 2018 Wikibon Research | Page 2 Why more tech companies should put AI visionaries in the executive suite enterprise solution provider, Facebook Inc. may have already done just that by placing all C-level AI oversight with lead researcher Yann LeCun. However, even if every company were to appoint a C-level AI mover-and-shaker, the plans would come to nothing without people to build the deep learning, natural language processing and other key elements of the AI applications they propose. Rather than focus on top-down strategic initiatives, solution providers are more likely to prioritize bottom-up skills development efforts to build the AI developer ecosystems. Here are some recent industry initiatives in that regard: ● Apple is reportedly on a hiring spree to bring more AI developers onboard to beef up its Siri digital assistant’s conversational user interface capabilities, though they could benefit from someone in a higher-level cloud infrastructure role to build out the backend needed to compete head-on against Google, Microsoft, Amazon.com Inc.’s and IBM Corp.’s more sophisticated AI offerings. ● Amazon, though it hasn’t undertaken any major AI-related reorganization, is recruiting four times as many AI developers for its Alexa conversational UI product than Apple is for Siri. ● Microsoft is opening up its internal AI training to the public. This is part of a broader AI ecosystem push that includes the developer-focused AI School, which provides online videos and other assets to help developers build AI skills. Furthermore, it includes general educational tools for aspiring AI developers and specific guidance on how developers can use Microsoft’s AI tools and services. To the extent that chief AI officers begin to emerge from the expanding AI developer ecosystem, they’re likely to spring up first at the product level, along the lines of how Microsoft has been weaving this technology in its commercial applications. As these product-level AI gurus prove out the success of their offerings, they’re like to be elevated to a cross-product coordinating role, similar to the new responsibilities of Jeff Dean at Google or, it’s to be assumed, Giannandrea’s likely scope at Apple. Here’s a clip of Google’s Ron Bodkin on theCUBE, SiliconANGLE Media’s mobile video studio, at the recent Big Data SV 2018, commenting on Dean’s acknowledged leadership role in that company’s AI initiatives: © 2018 Wikibon Research | Page 3 Why more tech companies should put AI visionaries in the executive suite Jim is Wikibon’s Lead Analyst for Data Science, Deep Learning, and Application Development. Previously, Jim was IBM’s data science evangelist. He managed IBM’s thought leadership, social and influencer marketing programs targeted at developers of big data analytics, machine learning, and cognitive computing applications. Prior to his 5- year stint at IBM, Jim was an analyst at Forrester Research, Current Analysis, and the Burton Group. He is also a prolific blogger, a popular speaker, and a familiar face from his many appearances as an expert on theCUBE and at industry events.” James Kobielus @jameskobielus [email protected] © 2018 Wikibon Research | Page 4.
Recommended publications
  • Identificação De Textos Em Imagens CAPTCHA Utilizando Conceitos De
    Identificação de Textos em Imagens CAPTCHA utilizando conceitos de Aprendizado de Máquina e Redes Neurais Convolucionais Relatório submetido à Universidade Federal de Santa Catarina como requisito para a aprovação da disciplina: DAS 5511: Projeto de Fim de Curso Murilo Rodegheri Mendes dos Santos Florianópolis, Julho de 2018 Identificação de Textos em Imagens CAPTCHA utilizando conceitos de Aprendizado de Máquina e Redes Neurais Convolucionais Murilo Rodegheri Mendes dos Santos Esta monografia foi julgada no contexto da disciplina DAS 5511: Projeto de Fim de Curso e aprovada na sua forma final pelo Curso de Engenharia de Controle e Automação Prof. Marcelo Ricardo Stemmer Banca Examinadora: André Carvalho Bittencourt Orientador na Empresa Prof. Marcelo Ricardo Stemmer Orientador no Curso Prof. Ricardo José Rabelo Responsável pela disciplina Flávio Gabriel Oliveira Barbosa, Avaliador Guilherme Espindola Winck, Debatedor Ricardo Carvalho Frantz do Amaral, Debatedor Agradecimentos Agradeço à minha mãe Terezinha Rodegheri, ao meu pai Orlisses Mendes dos Santos e ao meu irmão Camilo Rodegheri Mendes dos Santos que sempre estiveram ao meu lado, tanto nos momentos de alegria quanto nos momentos de dificuldades, sempre me deram apoio, conselhos, suporte e nunca duvidaram da minha capacidade de alcançar meus objetivos. Agradeço aos meus colegas Guilherme Cornelli, Leonardo Quaini, Matheus Ambrosi, Matheus Zardo, Roger Perin e Victor Petrassi por me acompanharem em toda a graduação, seja nas disciplinas, nos projetos, nas noites de estudo, nas atividades extracurriculares, nas festas, entre outros desafios enfrentados para chegar até aqui. Agradeço aos meus amigos de infância Cássio Schmidt, Daniel Lock, Gabriel Streit, Gabriel Cervo, Guilherme Trevisan, Lucas Nyland por proporcionarem momentos de alegria mesmo a distância na maior parte da caminhada da graduação.
    [Show full text]
  • The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design
    The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design Jeffrey Dean Google Research [email protected] Abstract The past decade has seen a remarkable series of advances in machine learning, and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas, including computer vision, speech recognition, language translation, and natural language understanding tasks. This paper is a companion paper to a keynote talk at the 2020 International Solid-State Circuits Conference (ISSCC) discussing some of the advances in machine learning, and their implications on the kinds of computational devices we need to build, especially in the post-Moore’s Law-era. It also discusses some of the ways that machine learning may also be able to help with some aspects of the circuit design process. Finally, it provides a sketch of at least one interesting direction towards much larger-scale multi-task models that are sparsely activated and employ much more dynamic, example- and task-based routing than the machine learning models of today. Introduction The past decade has seen a remarkable series of advances in machine learning (ML), and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas [LeCun et al. 2015]. Major areas of significant advances ​ ​ include computer vision [Krizhevsky et al. 2012, Szegedy et al. 2015, He et al. 2016, Real et al. 2017, Tan ​ ​ ​ ​ ​ ​ and Le 2019], speech recognition [Hinton et al.
    [Show full text]
  • Vikas Sindhwani Google May 17-19, 2016 2016 Summer School on Signal Processing and Machine Learning for Big Data
    Real-time Learning and Inference on Emerging Mobile Systems Vikas Sindhwani Google May 17-19, 2016 2016 Summer School on Signal Processing and Machine Learning for Big Data Abstract: We are motivated by the challenge of enabling real-time "always-on" machine learning applications on emerging mobile platforms such as next-generation smartphones, wearable computers and consumer robotics systems. On-device models in such settings need to be highly compact, and need to support fast, low-power inference on specialized hardware. I will consider the problem of building small-footprint non- linear models based on kernel methods and deep learning techniques, for on-device deployments. Towards this end, I will give an overview of various techniques, and introduce new notions of parsimony rooted in the theory of structured matrices. Such structured matrices can be used to recycle Gaussian random vectors in order to build randomized feature maps in sub-linear time for approximating various kernel functions. In the deep learning context, low-displacement structured parameter matrices admit fast function and gradient evaluation. I will discuss how such compact nonlinear transforms span a rich range of parameter sharing configurations whose statistical modeling capacity can be explicitly tuned along a continuum from structured to unstructured. I will present empirical results on mobile speech recognition problems, and image classification tasks. I will also briefly present some basics of TensorFlow: a open-source library for numerical computations on data flow graphs. Tensorflow enables large-scale distributed training of complex machine learning models, and their rapid deployment on mobile devices. Bio: Vikas Sindhwani is Research Scientist in the Google Brain team in New York City.
    [Show full text]
  • BRKIOT-2394.Pdf
    Unlocking the Mystery of Machine Learning and Big Data Analytics Robert Barton Jerome Henry Distinguished Architect Principal Engineer @MrRobbarto Office of the CTAO CCIE #6660 @wirelessccie CCDE #2013::6 CCIE #24750 CWNE #45 BRKIOT-2394 Cisco Webex Teams Questions? Use Cisco Webex Teams to chat with the speaker after the session How 1 Find this session in the Cisco Events Mobile App 2 Click “Join the Discussion” 3 Install Webex Teams or go directly to the team space 4 Enter messages/questions in the team space BRKIOT-2394 © 2020 Cisco and/or its affiliates. All rights reserved. Cisco Public 3 Tuesday, Jan. 28th Monday, Jan. 27th Wednesday, Jan. 29th BRKIOT-2600 BRKIOT-2213 16:45 Enabling OT-IT collaboration by 17:00 From Zero to IOx Hero transforming traditional industrial TECIOT-2400 networks to modern IoT Architectures IoT Fundamentals 08:45 BRKIOT-1618 Bootcamp 14:45 Industrial IoT Network Management PSOIOT-1156 16:00 using Cisco Industrial Network Director Securing Industrial – A Deep Dive. Networks: Introduction to Cisco Cyber Vision PSOIOT-2155 Enhancing the Commuter 13:30 BRKIOT-1775 Experience - Service Wireless technologies and 14:30 BRKIOT-2698 BRKIOT-1520 Provider WiFi at the Use Cases in Industrial IOT Industrial IoT Routing – Connectivity 12:15 Cisco Remote & Mobile Asset speed of Trains and Beyond Solutions PSOIOT-2197 Cisco Innovates Autonomous 14:00 TECIOT-2000 Vehicles & Roadways w/ IoT BRKIOT-2497 BRKIOT-2900 Understanding Cisco's 14:30 IoT Solutions for Smart Cities and 11:00 Automating the Network of Internet Of Things (IOT) BRKIOT-2108 Communities Industrial Automation Solutions Connected Factory Architecture Theory and 11:00 Practice PSOIOT-2100 BRKIOT-1291 Unlock New Market 16:15 Opening Keynote 09:00 08:30 Opportunities with LoRaWAN for IOT Enterprises Embedded Cisco services Technologies IOT IOT IOT Track #CLEMEA www.ciscolive.com/emea/learn/technology-tracks.html Cisco Live Thursday, Jan.
    [Show full text]
  • Warned That Big, Messy AI Systems Would Generate Racist, Unfair Results
    JULY/AUG 2021 | DON’T BE EVIL warned that big, messy AI systems would generate racist, unfair results. Google brought her in to prevent that fate. Then it forced her out. Can Big Tech handle criticism from within? BY TOM SIMONITE NEW ROUTES TO NEW CUSTOMERS E-COMMERCE AT THE SPEED OF NOW Business is changing and the United States Postal Service is changing with it. We’re offering e-commerce solutions from fast, reliable shipping to returns right from any address in America. Find out more at usps.com/newroutes. Scheduled delivery date and time depend on origin, destination and Post Office™ acceptance time. Some restrictions apply. For additional information, visit the Postage Calculator at http://postcalc.usps.com. For details on availability, visit usps.com/pickup. The Okta Identity Cloud. Protecting people everywhere. Modern identity. For one patient or one billion. © 2021 Okta, Inc. and its affiliates. All rights reserved. ELECTRIC WORD WIRED 29.07 I OFTEN FELT LIKE A SORT OF FACELESS, NAMELESS, NOT-EVEN- A-PERSON. LIKE THE GPS UNIT OR SOME- THING. → 38 ART / WINSTON STRUYE 0 0 3 FEATURES WIRED 29.07 “THIS IS AN EXTINCTION EVENT” In 2011, Chinese spies stole cybersecurity’s crown jewels. The full story can finally be told. by Andy Greenberg FATAL FLAW How researchers discovered a teensy, decades-old screwup that helped Covid kill. by Megan Molteni SPIN DOCTOR Mo Pinel’s bowling balls harnessed the power of physics—and changed the sport forever. by Brendan I. Koerner HAIL, MALCOLM Inside Roblox, players built a fascist Roman Empire.
    [Show full text]
  • Gmail Smart Compose: Real-Time Assisted Writing
    Gmail Smart Compose: Real-Time Assisted Writing Mia Xu Chen∗ Benjamin N Lee∗ Gagan Bansal∗ [email protected] [email protected] [email protected] Google Google Google Yuan Cao Shuyuan Zhang Justin Lu [email protected] [email protected] [email protected] Google Google Google Jackie Tsay Yinan Wang Andrew M. Dai [email protected] [email protected] [email protected] Google Google Google Zhifeng Chen Timothy Sohn Yonghui Wu [email protected] [email protected] [email protected] Google Google Google Figure 1: Smart Compose Screenshot. ABSTRACT our proposed system design and deployment approach. This system In this paper, we present Smart Compose, a novel system for gener- is currently being served in Gmail. ating interactive, real-time suggestions in Gmail that assists users in writing mails by reducing repetitive typing. In the design and KEYWORDS deployment of such a large-scale and complicated system, we faced Smart Compose, language model, assisted writing, large-scale serv- several challenges including model selection, performance eval- ing uation, serving and other practical issues. At the core of Smart ACM Reference Format: arXiv:1906.00080v1 [cs.CL] 17 May 2019 Compose is a large-scale neural language model. We leveraged Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, state-of-the-art machine learning techniques for language model Justin Lu, Jackie Tsay, Yinan Wang, Andrew M. Dai, Zhifeng Chen, Timothy training which enabled high-quality suggestion prediction, and Sohn, and Yonghui Wu. 2019. Gmail Smart Compose: Real-Time Assisted constructed novel serving infrastructure for high-throughput and Writing. In The 25th ACM SIGKDD Conference on Knowledge Discovery and real-time inference.
    [Show full text]
  • The Machine Learning Journey with Google
    The Machine Learning Journey with Google Google Cloud Professional Services The information, scoping, and pricing data in this presentation is for evaluation/discussion purposes only and is non-binding. For reference purposes, Google's standard terms and conditions for professional services are located at: https://enterprise.google.com/terms/professional-services.html. 1 What is machine learning? 2 Why all the attention now? Topics How Google can support you inyour 3 journey to ML 4 Where to from here? © 2019 Google LLC. All rights reserved. What is machine0 learning? 1 Machine learning is... a branch of artificial intelligence a way to solve problems without explicitly codifying the solution a way to build systems that improve themselves over time © 2019 Google LLC. All rights reserved. Key trends in artificial intelligence and machine learning #1 #2 #3 #4 Democratization AI and ML will be core Specialized hardware Automation of ML of AI and ML competencies of for deep learning (e.g., MIT’s Data enterprises (CPUs → GPUs → TPUs) Science Machine & Google’s AutoML) #5 #6 #7 Commoditization of Cloud as the platform ML set to transform deep learning for AI and ML banking and (e.g., TensorFlow) financial services © 2019 Google LLC. All rights reserved. Use of machine learning is rapidly accelerating Used across products © 2019 Google LLC. All rights reserved. Google Translate © 2019 Google LLC. All rights reserved. Why all the attention0 now? 2 Machine learning allows us to solve problems without codifying the solution. © 2019 Google LLC. All rights reserved. San Francisco New York © 2019 Google LLC. All rights reserved.
    [Show full text]
  • Google's 'Project Nightingale' Gathers Personal Health Data
    Google's 'Project Nightingale' Gathers Personal Health Data on Millions of Americans; Search giant is amassing health records from Ascension facilities in 21 states; patients not yet informed Copeland, Rob . Wall Street Journal (Online) ; New York, N.Y. [New York, N.Y]11 Nov 2019. ProQuest document link FULL TEXT Google is engaged with one of the U.S.'s largest health-care systems on a project to collect and crunch the detailed personal-health information of millions of people across 21 states. The initiative, code-named "Project Nightingale," appears to be the biggest effort yet by a Silicon Valley giant to gain a toehold in the health-care industry through the handling of patients' medical data. Amazon.com Inc., Apple Inc. and Microsoft Corp. are also aggressively pushing into health care, though they haven't yet struck deals of this scope. Share Your Thoughts Do you trust Google with your personal health data? Why or why not? Join the conversation below. Google began Project Nightingale in secret last year with St. Louis-based Ascension, a Catholic chain of 2,600 hospitals, doctors' offices and other facilities, with the data sharing accelerating since summer, according to internal documents. The data involved in the initiative encompasses lab results, doctor diagnoses and hospitalization records, among other categories, and amounts to a complete health history, including patient names and dates of birth. Neither patients nor doctors have been notified. At least 150 Google employees already have access to much of the data on tens of millions of patients, according to a person familiar with the matter and the documents.
    [Show full text]
  • The Pagerank Algorithm and Application on Searching of Academic Papers
    The PageRank algorithm and application on searching of academic papers Ping Yeh Google, Inc. 2009/12/9 Department of Physics, NTU Disclaimer (legal) The content of this talk is the speaker's personal opinion and is not the opinion or policy of his employer. Disclaimer (content) You will not hear physics. You will not see differential equations. You will: ● get a review of PageRank, the algorithm used in Google's web search. It has been applied to evaluate journal status and influence of nodes in a graph by researchers, ● see some linear algebra and Markov chains associated with it, and ● see some results of applying it to journal status. Outline Introduction Google and Google search PageRank algorithm for ranking web pages Using MapReduce to calculate PageRank for billions of pages Impact factor of journals and PageRank Conclusion Google The name: homophone to the word “Googol” which means 10100. The company: ● founded by Larry Page and Sergey Brin in 1998, ● ~20,000 employees as of 2009, ● spread in 68 offices around the world (23 in N. America, 3 in Latin America, 14 in Asia Pacific, 23 in Europe, 5 in Middle East and Africa). The mission: “to organize the world's information and make it universally accessible and useful.” Google Services Sky YouTube iGoogle web search talk book search Chrome calendar scholar translate blogger.com Android product news search maps picasaweb video groups Gmail desktop reader Earth Photo by mr.hero on panoramio (http://www.panoramio.com/photo/1127015)‏ 6 Google Search http://www.google.com/ or http://www.google.com.tw/ The abundance problem Quote Langville and Meyer's nice book “Google's PageRank and beyond: the science of search engine rankings”: The men in Jorge Luis Borges’ 1941 short story, “The Library of Babel”, which describes an imaginary, infinite library.
    [Show full text]
  • 321444 1 En Bookbackmatter 533..564
    Index 1 Abdominal aortic aneurysm, 123 10,000 Year Clock, 126 Abraham, 55, 92, 122 127.0.0.1, 100 Abrahamic religion, 53, 71, 73 Abundance, 483 2 Academy award, 80, 94 2001: A Space Odyssey, 154, 493 Academy of Philadelphia, 30 2004 Vital Progress Summit, 482 Accelerated Math, 385 2008 U.S. Presidential Election, 257 Access point, 306 2011 Egyptian revolution, 35 ACE. See artificial conversational entity 2011 State of the Union Address, 4 Acquired immune deficiency syndrome, 135, 2012 Black Hat security conference, 27 156 2012 U.S. Presidential Election, 257 Acxiom, 244 2014 Lok Sabha election, 256 Adam, 57, 121, 122 2016 Google I/O, 13, 155 Adams, Douglas, 95, 169 2016 State of the Union, 28 Adam Smith Institute, 493 2045 Initiative, 167 ADD. See Attention-Deficit Disorder 24 (TV Series), 66 Ad extension, 230 2M Companies, 118 Ad group, 219 Adiabatic quantum optimization, 170 3 Adichie, Chimamanda Ngozi, 21 3D bioprinting, 152 Adobe, 30 3M Cloud Library, 327 Adonis, 84 Adultery, 85, 89 4 Advanced Research Projects Agency Network, 401K, 57 38 42, 169 Advice to a Young Tradesman, 128 42-line Bible, 169 Adwaita, 131 AdWords campaign, 214 6 Affordable Care Act, 140 68th Street School, 358 Afghan Peace Volunteers, 22 Africa, 20 9 AGI. See Artificial General Intelligence 9/11 terrorist attacks, 69 Aging, 153 Aging disease, 118 A Aging process, 131 Aalborg University, 89 Agora (film), 65 Aaron Diamond AIDS Research Center, 135 Agriculture, 402 AbbVie, 118 Ahmad, Wasil, 66 ABC 20/20, 79 AI. See artificial intelligence © Springer Science+Business Media New York 2016 533 N.
    [Show full text]
  • Deep Learning on Mobile Devices – a Review
    Deep Learning on Mobile Devices – A Review Yunbin Deng FAST Labs, BAE Systems, Inc. Burlington MA 01803 ABSTRACT Recent breakthroughs in deep learning and artificial intelligence technologies have enabled numerous mobile applications. While traditional computation paradigms rely on mobile sensing and cloud computing, deep learning implemented on mobile devices provides several advantages. These advantages include low communication bandwidth, small cloud computing resource cost, quick response time, and improved data privacy. Research and development of deep learning on mobile and embedded devices has recently attracted much attention. This paper provides a timely review of this fast-paced field to give the researcher, engineer, practitioner, and graduate student a quick grasp on the recent advancements of deep learning on mobile devices. In this paper, we discuss hardware architectures for mobile deep learning, including Field Programmable Gate Arrays (FPGA), Application Specific Integrated Circuit (ASIC), and recent mobile Graphic Processing Units (GPUs). We present Size, Weight, Area and Power (SWAP) considerations and their relation to algorithm optimizations, such as quantization, pruning, compression, and approximations that simplify computation while retaining performance accuracy. We cover existing systems and give a state-of-the-industry review of TensorFlow, MXNet, Mobile AI Compute Engine (MACE), and Paddle-mobile deep learning platform. We discuss resources for mobile deep learning practitioners, including tools, libraries, models, and performance benchmarks. We present applications of various mobile sensing modalities to industries, ranging from robotics, healthcare and multi- media, biometrics to autonomous drive and defense. We address the key deep learning challenges to overcome, including low quality data, and small training/adaptation data sets.
    [Show full text]
  • Summer 2017 Issue 11.1
    the THE MAGAZINE OF CARNEGIE MELLON UNIVERSITY’S SCHOOL OF COMPUTER SCIENCE 60 YEARS IN THE MAKING CMU AI is Here SUMMER 2017 ISSUE 11.1 SUMMER 2017 cvr1 Iain Mathews Bhat, Matthews Win Academy Awards for Technical Achievement Computer Science at CMU School of Computer Science alumnus Kiran Bhat and underpins divergent fields and endeavors in today’s world, former Robotics Institute faculty member Iain Matthews all of which LINK SCS to profound received Oscars on February 11, from the Academy of advances in art, culture, nature, Motion Picture Arts and Science, for their work in capturing the sciences and beyond. facial performances. Bhat earned his doctorate in robotics in 2004, and helped design and develop the Industrial Light and Magic facial performance-capture solving system, which transfers facial performances from actors to digital characters in large-scale productions. The system was used in “Rogue One: A Star Wars Story” to resurrect the role of Grand Moff Tarkin, played by the late actor Peter Cushing, as well as to capture Mark Ruffalo’s expressions for his character, the Hulk, in “The Avengers.” Matthews, a post-doctoral researcher and former faculty member in the Robotics Institute working on face modeling and vision-based tracking, was recognized along with his team for the design, engineering and development of the facial-performance capture and solving system at Weta Digital, known as FACETS. Matthews spent two years helping to develop the facial motion capture system for “Avatar” and “Tintin.” With Bhat’s and Matthews’ wins, Carnegie Mellon alumni and faculty have received nine Academy Awards to date.
    [Show full text]