Exploring Saturn's Moons

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Saturn's Moons Exploring Saturn’s Moons 1 Moon Distance Aegaeon 0.047039 Hyperion 0.415918 Polydeuces 0.105982 Dione 0.105985 Mimas 0.052068 Titan 0.343159 Helene 0.105990 Telesto 0.082741 Rhea 0.148029 Enceladus 0.066245 Calypso 0.082739 Iapetus 1.000000 Saturn’s moon Iapetus is located at a distance of 3.6 million kilometers from Saturn, but Saturn has 24 moons located closer to Saturn than Iapetus. The table above gives the distances from Saturn of a few of the well-known moons in terms of the distance to Iapetus. For example at a distance of ‘0.5’ its true distance is 0.5 x the distance to Iapetus or 1,800,000 km. Problem 1 – Order the moons in terms of their increasing distance from Saturn by sorting the decimal values from smallest to largest. Problem 2 - Which moon is closer than 0.35 but farther away than 0.33? Problem 3 – Which pair of moons are within 0.000002 of each other? Problem 4 – Which two moons differ in distance by 0.29612? Space Math http://spacemath.gsfc.nasa.gov Answer Key 1 Problem 1 – Order the moons in terms of their increasing distance from Saturn by sorting the decimal values from smallest to largest. Moon Distance Moon Distance Aegaeon 0.047039 Aegaeon 0.047039 Hyperion 0.415918 Mimas 0.052068 Polydeuces 0.105982 Enceladus 0.066245 Dione 0.105985 Calypso 0.082739 Mimas 0.052068 Telesto 0.082741 Titan 0.343159 Polydeuces 0.105982 Helene 0.105990 Dione 0.105985 Telesto 0.082741 Helene 0.105990 Rhea 0.148029 Rhea 0.148029 Enceladus 0.066245 Titan 0.343159 Calypso 0.082739 Hyperion 0.415918 Iapetus 1.000000 Iapetus 1.000000 Problem 2 - Which moon is closer than 0.35 but farther away than 0.33? Answer: Titan is located at 0.343159 Problem 3 – Which pair of moons are within 0.000002 of each other? Answer: Calypso is at 0.082739 and Telesto is at 0.082741 which differ by 0.000002 Problem 4 – Which two moons differ in distance by 0.29612? Answer: Titan is at 0.343159 and Aegaeon is at 0.047039 which differ by 0.29612. Space Math http://spacemath.gsfc.nasa.gov .
Recommended publications
  • Arxiv:1912.09192V2 [Astro-Ph.EP] 24 Feb 2020
    Draft version February 25, 2020 Typeset using LATEX preprint style in AASTeX62 Photometric analyses of Saturn's small moons: Aegaeon, Methone and Pallene are dark; Helene and Calypso are bright. M. M. Hedman,1 P. Helfenstein,2 R. O. Chancia,1, 3 P. Thomas,2 E. Roussos,4 C. Paranicas,5 and A. J. Verbiscer6 1Department of Physics, University of Idaho, Moscow, ID 83844 2Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca NY 14853 3Center for Imaging Science, Rochester Institute of Technology, Rochester NY 14623 4Max Planck Institute for Solar System Research, G¨ottingen,Germany 37077 5APL, John Hopkins University, Laurel MD 20723 6Department of Astronomy, University of Virginia, Charlottesville, VA 22904 ABSTRACT We examine the surface brightnesses of Saturn's smaller satellites using a photometric model that explicitly accounts for their elongated shapes and thus facilitates compar- isons among different moons. Analyses of Cassini imaging data with this model reveals that the moons Aegaeon, Methone and Pallene are darker than one would expect given trends previously observed among the nearby mid-sized satellites. On the other hand, the trojan moons Calypso and Helene have substantially brighter surfaces than their co-orbital companions Tethys and Dione. These observations are inconsistent with the moons' surface brightnesses being entirely controlled by the local flux of E-ring par- ticles, and therefore strongly imply that other phenomena are affecting their surface properties. The darkness of Aegaeon, Methone and Pallene is correlated with the fluxes of high-energy protons, implying that high-energy radiation is responsible for darkening these small moons. Meanwhile, Prometheus and Pandora appear to be brightened by their interactions with nearby dusty F ring, implying that enhanced dust fluxes are most likely responsible for Calypso's and Helene's excess brightness.
    [Show full text]
  • Cassini Update
    Cassini Update Dr. Linda Spilker Cassini Project Scientist Outer Planets Assessment Group 22 February 2017 Sols%ce Mission Inclina%on Profile equator Saturn wrt Inclination 22 February 2017 LJS-3 Year 3 Key Flybys Since Aug. 2016 OPAG T124 – Titan flyby (1584 km) • November 13, 2016 • LAST Radio Science flyby • One of only two (cf. T106) ideal bistatic observations capturing Titan’s Northern Seas • First and only bistatic observation of Punga Mare • Western Kraken Mare not explored by RSS before T125 – Titan flyby (3158 km) • November 29, 2016 • LAST Optical Remote Sensing targeted flyby • VIMS high-resolution map of the North Pole looking for variations at and around the seas and lakes. • CIRS last opportunity for vertical profile determination of gases (e.g. water, aerosols) • UVIS limb viewing opportunity at the highest spatial resolution available outside of occultations 22 February 2017 4 Interior of Hexagon Turning “Less Blue” • Bluish to golden haze results from increased production of photochemical hazes as north pole approaches summer solstice. • Hexagon acts as a barrier that prevents haze particles outside hexagon from migrating inward. • 5 Refracting Atmosphere Saturn's• 22unlit February rings appear 2017 to bend as they pass behind the planet’s darkened limb due• 6 to refraction by Saturn's upper atmosphere. (Resolution 5 km/pixel) Dione Harbors A Subsurface Ocean Researchers at the Royal Observatory of Belgium reanalyzed Cassini RSS gravity data• 7 of Dione and predict a crust 100 km thick with a global ocean 10’s of km deep. Titan’s Summer Clouds Pose a Mystery Why would clouds on Titan be visible in VIMS images, but not in ISS images? ISS ISS VIMS High, thin cirrus clouds that are optically thicker than Titan’s atmospheric haze at longer VIMS wavelengths,• 22 February but optically 2017 thinner than the haze at shorter ISS wavelengths, could be• 8 detected by VIMS while simultaneously lost in the haze to ISS.
    [Show full text]
  • Volvo-Wheel-Brochure.Pdf
    S40, V50 (2004.5 on) VOLVO ALLOY WHEELS Adaro: Silverstone Caligo: Silverstone Castalia: Silverstone Cepheus: Silverstone Clava: Black Chrome Cygnus: Silverstone Medea: Silver Bright Medusa: Silver Bright Sagitta: Silver Bright Sculptor: Silver Bright Stylla: Silverstone S40, V40 (up to model year 2004) Adaro (15”) Adrastea (16”) Amalthea (17”) Andromeda (16”) Antlia (15”) Aquarius (17”) Ares (16”) Argo (15”) Argon (15”) Ares: Silver Bright Crater: Silver Cronus: Silver Bright Galactica: Silverstone Helia: Silver Spectra: Dark Silver Stellar: Silverstone Telesto: Silverstone C70 Andromeda: Silver Bright Ariane (15”) Arrakis (17”) Atlantis (18”) Caligo (16”) Canisto (17”) Capella (18”) Castalia (16”) Centaurus (16”) Cepheus (16”) Canisto: White Silver and Anthracite Centaurus: White Silver Ceres: Silver Bright Comet C: Silver Bright Cratos: Silver Bright Helios: Dark Silver Helium: White Silver Propus C: Silverstone Solar: Silver Bright Triton: Silver Zeus: Silver Bright Ceres (16”) Cetus (15”) Clava (16”) Columba (16”) Comet (17”) Crater (16”) Cratos (17”) Cronos (16”) Cygnus (16”) S60, S80, V70 (2001 on) Adrastea: Silverstone (excluding S80, XC70) Amalthea: Silver Bright Argon: Silverstone (excluding XC70) Arrakis: Silver Bright (S60, S80 only) Capella: Silver Bright Icarus: Silverstone Interceptor: Silver Bright (S60, S80 only) Lysithea: Silverstone (excluding XC70) Metis: Silverstone Mimas: Silverstone (excluding S80, XC70) Miram: Silverstone Galactica (16”) Helia (16”) Helium (16”) Icarus (16”) Interceptor (17”) Lysithea (15”) Medea
    [Show full text]
  • The Orbits of Saturn's Small Satellites Derived From
    The Astronomical Journal, 132:692–710, 2006 August A # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE ORBITS OF SATURN’S SMALL SATELLITES DERIVED FROM COMBINED HISTORIC AND CASSINI IMAGING OBSERVATIONS J. N. Spitale CICLOPS, Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301; [email protected] R. A. Jacobson Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 C. C. Porco CICLOPS, Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 and W. M. Owen, Jr. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 Received 2006 February 28; accepted 2006 April 12 ABSTRACT We report on the orbits of the small, inner Saturnian satellites, either recovered or newly discovered in recent Cassini imaging observations. The orbits presented here reflect improvements over our previously published values in that the time base of Cassini observations has been extended, and numerical orbital integrations have been performed in those cases in which simple precessing elliptical, inclined orbit solutions were found to be inadequate. Using combined Cassini and Voyager observations, we obtain an eccentricity for Pan 7 times smaller than previously reported because of the predominance of higher quality Cassini data in the fit. The orbit of the small satellite (S/2005 S1 [Daphnis]) discovered by Cassini in the Keeler gap in the outer A ring appears to be circular and coplanar; no external perturbations are appar- ent. Refined orbits of Atlas, Prometheus, Pandora, Janus, and Epimetheus are based on Cassini , Voyager, Hubble Space Telescope, and Earth-based data and a numerical integration perturbed by all the massive satellites and each other.
    [Show full text]
  • Titan and the Moons of Saturn Telesto Titan
    The Icy Moons and the Extended Habitable Zone Europa Interior Models Other Types of Habitable Zones Water requires heat and pressure to remain stable as a liquid Extended Habitable Zones • You do not need sunlight. • You do need liquid water • You do need an energy source. Saturn and its Satellites • Saturn is nearly twice as far from the Sun as Jupiter • Saturn gets ~30% of Jupiter’s sunlight: It is commensurately colder Prometheus • Saturn has 82 known satellites (plus the rings) • 7 major • 27 regular • 4 Trojan • 55 irregular • Others in rings Titan • Titan is nearly as large as Ganymede Titan and the Moons of Saturn Telesto Titan Prometheus Dione Titan Janus Pandora Enceladus Mimas Rhea Pan • . • . Titan The second-largest moon in the Solar System The only moon with a substantial atmosphere 90% N2 + CH4, Ar, C2H6, C3H8, C2H2, HCN, CO2 Equilibrium Temperatures 2 1/4 Recall that TEQ ~ (L*/d ) Planet Distance (au) TEQ (K) Mercury 0.38 400 Venus 0.72 291 Earth 1.00 247 Mars 1.52 200 Jupiter 5.20 108 Saturn 9.53 80 Uranus 19.2 56 Neptune 30.1 45 The Atmosphere of Titan Pressure: 1.5 bars Temperature: 95 K Condensation sequence: • Jovian Moons: H2O ice • Saturnian Moons: NH3, CH4 2NH3 + sunlight è N2 + 3H2 CH4 + sunlight è CH, CH2 Implications of Methane Free CH4 requires replenishment • Liquid methane on the surface? Hazy atmosphere/clouds may suggest methane/ ethane precipitation. The freezing points of CH4 and C2H6 are 91 and 92K, respectively. (Titan has a mean temperature of 95K) (Liquid natural gas anyone?) This atmosphere may resemble the primordial terrestrial atmosphere.
    [Show full text]
  • The Gravity Field and Interior Structure of Dione
    The gravity field and interior structure of Dione Marco Zannoni1*, Douglas Hemingway2,3, Luis Gomez Casajus1, Paolo Tortora1 1Dipartimento di Ingegneria Industriale, Università di Bologna, Forlì, Italy 2Department of Earth & Planetary Science, University of California Berkeley, Berkeley, California, USA 3Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC, USA *Corresponding author. Abstract During its mission in the Saturn system, Cassini performed five close flybys of Dione. During three of them, radio tracking data were collected during the closest approach, allowing estimation of the full degree-2 gravity field by precise spacecraft orbit determination. 6 The gravity field of Dione is dominated by J2 and C22, for which our best estimates are J2 x 10 = 1496 ± 11 and 6 C22 x 10 = 364.8 ± 1.8 (unnormalized coefficients, 1-σ uncertainty). Their ratio is J2/C22 = 4.102 ± 0.044, showing a significative departure (about 17-σ) from the theoretical value of 10/3, predicted for a relaxed body in slow, synchronous rotation around a planet. Therefore, it is not possible to retrieve the moment of inertia directly from the measured gravitational field. The interior structure of Dione is investigated by a combined analysis of its gravity and topography, which exhibits an even larger deviation from hydrostatic equilibrium, suggesting some degree of compensation. The gravity of Dione is far from the expectation for an undifferentiated hydrostatic body, so we built a series of three-layer models, and considered both Airy and Pratt compensation mechanisms. The interpretation is non-unique, but Dione’s excess topography may suggest some degree of Airy-type isostasy, meaning that the outer ice shell is underlain by a higher density, lower viscosity layer, such as a subsurface liquid water ocean.
    [Show full text]
  • Hesiod Theogony.Pdf
    Hesiod (8th or 7th c. BC, composed in Greek) The Homeric epics, the Iliad and the Odyssey, are probably slightly earlier than Hesiod’s two surviving poems, the Works and Days and the Theogony. Yet in many ways Hesiod is the more important author for the study of Greek mythology. While Homer treats cer- tain aspects of the saga of the Trojan War, he makes no attempt at treating myth more generally. He often includes short digressions and tantalizes us with hints of a broader tra- dition, but much of this remains obscure. Hesiod, by contrast, sought in his Theogony to give a connected account of the creation of the universe. For the study of myth he is im- portant precisely because his is the oldest surviving attempt to treat systematically the mythical tradition from the first gods down to the great heroes. Also unlike the legendary Homer, Hesiod is for us an historical figure and a real per- sonality. His Works and Days contains a great deal of autobiographical information, in- cluding his birthplace (Ascra in Boiotia), where his father had come from (Cyme in Asia Minor), and the name of his brother (Perses), with whom he had a dispute that was the inspiration for composing the Works and Days. His exact date cannot be determined with precision, but there is general agreement that he lived in the 8th century or perhaps the early 7th century BC. His life, therefore, was approximately contemporaneous with the beginning of alphabetic writing in the Greek world. Although we do not know whether Hesiod himself employed this new invention in composing his poems, we can be certain that it was soon used to record and pass them on.
    [Show full text]
  • The Sources and Dynamical Mechanisms Responsible for Differing Regolith Cover on Satellites Embedded in Saturn’S E Ring
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2790.pdf WHY SO MUTED? THE SOURCES AND DYNAMICAL MECHANISMS RESPONSIBLE FOR DIFFERING REGOLITH COVER ON SATELLITES EMBEDDED IN SATURN’S E RING. S. J. Morrison1 and S. G. Zaidi1, 1Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State Uni- versity, University Park, PA, 16802, USA ([email protected]) Introduction: Saturn’s E ring, sourced primarily by resonances with Tethys and Dione. We also numerically cryovolcanic material erupted from Enceladus, extends integrate E ring particle trajectories including these outward from Enceladus’ orbit to beyond Dione’s orbit forces using the integrator package REBOUND and RE- [1][2]. Amongst the satellites embedded in this ring, BOUNDx [10-12]. We use initial orbits for the Satur- there are observed differences in regolith cover. In par- nian System from [13] and estimated masses for the tad- ticular, the small satellites Telesto, Calypso, Helene, pole moons from [7] that assume an average density of and Polydeuces have more muted surfaces, an absence 0.6 g/cc. We include Saturn’s gravitational harmonics of small craters, and downslope transport of regolith up to J4 and plasma drag forces arising from collisions within large craters than observed on Tethys and Dione with co-rotating O+ ions, the primary constituent of on similar distance scales [3][4]. However, these small plasma in the region of the Saturnian system of interest. satellites orbit in a different dynamical environment: Results: To provide insight into whether outwardly Telesto and Calypso are on leading and trailing tadpole drifting E ring particles should accumulate in the 1:1 orbits about the L4 and L5 Lagrange points in the co- resonances with Tethys and Dione, we compare the orbital 1:1 mean motion resonance with Tethys, respec- timescale for a particle of a given size to drift across the tively, as are Helene and Polydeuces tadpoles of Dione maximum libration width of this resonance to the corre- [e.g.
    [Show full text]
  • Observing the Universe
    ObservingObserving thethe UniverseUniverse :: aa TravelTravel ThroughThrough SpaceSpace andand TimeTime Enrico Flamini Agenzia Spaziale Italiana Tokyo 2009 When you rise your head to the night sky, what your eyes are observing may be astonishing. However it is only a small portion of the electromagnetic spectrum of the Universe: the visible . But any electromagnetic signal, indipendently from its frequency, travels at the speed of light. When we observe a star or a galaxy we see the photons produced at the moment of their production, their travel could have been incredibly long: it may be lasted millions or billions of years. Looking at the sky at frequencies much higher then visible, like in the X-ray or gamma-ray energy range, we can observe the so called “violent sky” where extremely energetic fenoena occurs.like Pulsar, quasars, AGN, Supernova CosmicCosmic RaysRays:: messengersmessengers fromfrom thethe extremeextreme universeuniverse We cannot see the deep universe at E > few TeV, since photons are attenuated through →e± on the CMB + IR backgrounds. But using cosmic rays we should be able to ‘see’ up to ~ 6 x 1010 GeV before they get attenuated by other interaction. Sources Sources → Primordial origin Primordial 7 Redshift z = 0 (t = 13.7 Gyr = now ! ) Going to a frequency lower then the visible light, and cooling down the instrument nearby absolute zero, it’s possible to observe signals produced millions or billions of years ago: we may travel near the instant of the formation of our universe: 13.7 By. Redshift z = 1.4 (t = 4.7 Gyr) Credits A. Cimatti Univ. Bologna Redshift z = 5.7 (t = 1 Gyr) Credits A.
    [Show full text]
  • Diameter/Density Table of Planetary Bodies Budapest 2011
    Cosmic Materials Space Research Group Eötvös Loránd University Diameter/Density table of Planetary boDies Budapest 2011 3 2 >10 >6 >5.5 >5 >4.5 >4 >3.75 >3.5 >3.25 >3 >2.75 >2.5 >2.25 >2 >1.75 >1.5 >1.25 >1 >0.75 >0.5 >0.25 >0 g/cm m Puffy 8 k Puffy 7 m WASP-17b k M HAT-P-1b m 0 171000 0.51 . 247000 0.16 . k 0 9 0 1 1130K 6 0 6 1 0 , 2-75 4 0 3 HD 209458 7 6 5 Osiris , > 1 3 > 2800K 6 187000 0.4 . 5 1 WASP-14b > 182000 5.5 . 1187K 10 165K 778.5 134K 1433 HAT-P-2b Jupiter Saturn 139000 12-14 . 142984 1.33 34% 120536 0.69 34% 0 9 0 0 2 0 8 5 , 8 8 , 6 1 6 7 > 7 > > 1650K 6 712K 4 Kepler-4b GJ 436 b 51000 2.86 . 62000 1.4 . 0 2 0 0 3 0 4 , 6 4 , 8 72K ice giant 4503 4 76K ice giant 2876 8 3 > Neptune 3 > Uranus 1500K 3 > 49528 1.64 29% 51118 1.27 30% Corot-7b 20,000 5-10 . 900K? 13 Ocean Planet 2 Mu Arae c GJ 1214 b 34000 1.8-2.5. 10M ? . 300K? 127 0 8 0 0 5 Kepler-22b 0 2 1 2 9 1 30000 ?? .? 9 1 > 1 > > 1180K 2 287K 149 735K 108 55Cnc-e Earth Venus 15000? 6? . 12742 5.51 29% 12102 5.20 90% 0 9 0 0 8 0 6 2 6 9 > 9 > > 200-340K 58 210K 228 Galilean Jupiter III Mercury Mars Ganymede 4878 5.43 12% 6792 3.93 25% 5268 1.94 43% Saturn VI 0 0 0 2 Titan 0 8 7 8 4 > 5152 1.88 22% ] 4 > > Galilean Jupiter IV m k [ Callisto R ] 4820 1.83 22% E m Galilean Jupiter I 136199 SDO 10120 T k E [ Io Moon Eris M A R 3660 3.53 63% 3474 3.35 12% ~2600 2.2-2.5 86% I D E 0 T 0 0 8 0 4 1 E 4 2 > 2 > M > A I D Uranus III Galilean Jupiter II 136108 TNO 6452 Neptune I Uranus II Saturn V Triton Titania Umbirel Rhea Europa Haumea 1576 1.71 17% 1569 3.01 67% 1960×996 2.6-3.3 1353 2.06 76% Uranus I 1169 1.4 10% 1532 1.24 94*% 134340 KBO5874 Ariel Saturn VIII 0 1162 1.66 23% 5 0 0 .
    [Show full text]
  • Rev 215 SOST Segment Titan Rainclouds 2015-129T08:15:00-131T18:00:00 Rhea No Targeted Flybys; Highlights
    Rev 215 SOST Segment Titan rainclouds 2015-129T08:15:00-131T18:00:00 Rhea No targeted flybys; Highlights: CIRS distant observation (ISS, VIMS, UVIS in ridealong) from 129T16:45-22:20 of Tethys and Dione to understand the spatially resolved thermal inertia, “Pacman” shape, and global energy balance. Tethys large solar phase angle; Dione moderate. Tethys (above); Dione (below) ISS Plume PIE observation at 130T00:30 (06:35 duration); another plume non-PIE on day 151 (not SOST segment) ISS outer irregular rock observation at 130T22:25 CIRS PDT Design for 10+ hours. The goal is to determine the dynamical state (rotation period and pole position). Helene Rev 215 SOST Segment, cont’d. Titan rainclouds Rhea Flyby of Polydeuces BEST EVER by a factor of 2 Polydeuces is a Dione Lagrangian that was discovered by Cassini. The goal of this observation is to study its morphology, size, albedo, and derive its composition to understand its origin and relationship to Dione and other moons. Observation starts at 129T22:20 (May 10, 2015), with a closest approach around 34,000 with a moderate solar phase angle. This is just the resolution where features (craters, CIRS PDT Design etc.) may start to appear on this irregular moon. Polydeuces, Cassini’s own satellite Helene Hyperion observing campaign (Not a PIE) Rhea On rev 216-217 (XD Segment) there is a ~34,000 ORS Hyperion Flyby designed to cover regions that may have poorly imaged (Hyperion is in chaotic rotation, so the location will be a surprise). The solar phase angle is moderate throughout the observing period, which is ideal for mapping geologic Features.
    [Show full text]
  • 1247 (Created: Wednesday, April 14, 2021 at 1:32:54 PM Eastern Standard Time) - Overview
    JWST Proposal 1247 (Created: Wednesday, April 14, 2021 at 1:32:54 PM Eastern Standard Time) - Overview 1247 - Saturn Cycle: 1, Proposal Category: GTO INVESTIGATORS Name Institution E-Mail Dr. Leigh Fletcher (PI) (ESA Member) University of Leicester [email protected] Matthew Tiscareno (CoI) SETI Institute [email protected] Dr. Stefanie N. Milam (CoI) (US Admin CoI) NASA Goddard Space Flight Center [email protected] OBSERVATIONS Folder Observation Label Observing Template Science Target Saturn Observations 301 System NIRCam 1 NIRCam Imaging (637) SATURN-CENTRE 312 Pandora NIRSpec NIRSpec IFU Spectroscopy (617) PANDORA 314 Epimetheus NIRSpec NIRSpec IFU Spectroscopy (611) EPIMETHEUS 318 Pallene NIRSpec NIRSpec IFU Spectroscopy (633) PALLENE 319 Telesto NIRSpec NIRSpec IFU Spectroscopy (613) TELESTO 341 System NIRCam 2 NIRCam Imaging (637) SATURN-CENTRE 665 Saturn Background MI MIRI Medium Resolution Spectroscopy (2) SATURN-OFFSET RI 330 Saturn Rings MIRI MIRI Medium Resolution Spectroscopy (600) SATURN-RINGS 666 Saturn North Pole MIR MIRI Medium Resolution Spectroscopy (634) SATURN-75N I 667 Saturn 45N MIRI MIRI Medium Resolution Spectroscopy (635) SATURN-45N 668 Saturn 15N MIRI MIRI Medium Resolution Spectroscopy (636) SATURN-15N ABSTRACT 1 JWST Proposal 1247 (Created: Wednesday, April 14, 2021 at 1:32:54 PM Eastern Standard Time) - Overview Reconnaissance of the Saturn system with NIRCam will test the capacity of JWST to detect faint moons around bright planets, via comparison to the faint targets already detected by Cassini, which will be useful for ERS and GO observers of other planetary systems. Furthermore, the NIRCam images should be sensitive to discovering new moons significantly fainter than any that Cassini has discovered.
    [Show full text]