At the Seashore 299 300 MRI of the Ankle: Trauma and Overuse Disclosure

Total Page:16

File Type:pdf, Size:1020Kb

At the Seashore 299 300 MRI of the Ankle: Trauma and Overuse Disclosure William J. Weadock, M.D. of the Presents The 18 th atRadiology the Seashore Friday, March 17, 2017 South Seas Island Resort Captiva Island, Florida Educational Symposia TABLE OF CONTENTS Friday, March 17, 2017 Ankle MRI: Trauma and Overuse (Corrie M. Yablon, M.D.) ............................................................................................ 299 Challenging Abdominal CT and MR Cases (William J. Weadock, M.D., FACR) ............................................................... 315 Knee MRI: A Pattern-Based Approach to Interpretation (Corrie M. Yablon, M.D.) ......................................................... 319 Complications of Aortic Endografts (William J. Weadock, M.D., FACR) ........................................................................... 339 SAVE THE DATE - 19 th Annual Radiology at the Seashore 299 300 MRI of the Ankle: Trauma and Overuse Disclosure Corrie M. Yablon, M.D. None Associate Professor Learning Objectives Introduction • Identify key anatomy on ankle MRI focusing on ligaments • MR protocol of the ankle • Discuss common injury patterns seen on ankle MRI • Ankle anatomy on MRI • Explain causes of ankle impingement • Case-based tutorial of pathology • Describe sites of nerve compression Protocol Planes Best to Evaluate… • Sag T1, STIR Axial Coronal • Ax T1, T2FS • Ankle tendons • Deltoid ligaments • Tibiofibular ligaments • Talar dome/ankle joint • Cor PDFS • Anterior, posterior talofibular • Plantar fascia • Optional coronal GRE for talar dome ligaments • Sinus tarsi cartilage • Sinus tarsi • Dedicated ankle chimney coil is best Sagittal – Quad knee coil or flex coil • Achilles • Plantar fascia • Sinus tarsi • Ankle joint 301 Axial Plane Axial Plane Achilles Lateral collateral ligaments involved Flexors, extensors, peroneals in 80-90% of ankle injuries: • Ant. Talofibular Anterior inferior tibiofibular ligament • Calcaneofibular Posterior inferior tibiofibular ligament • Post. Talofibular Flexor retinaculum Superior extensor retinaculum Superior peroneal retinaculum Axial T1 Sagittal Plane Coronal Plane • Achilles • Deltoid ligament complex • Plantar Fascia seldom injured • Tibiotalar joint • Subtalar joints • Spring ligament • Sinus Tarsi – Contains talocalcaneal ligaments • Plantar fascia – Cervical lig – Inferior extensor retinaculum – Interosseous lig – Maintains hindfoot stability – Injury coexists with lateral collateral ligament sprains/ tears, inflammatory arthropathy or PTT tear • Sinus Tarsi Syndrome Lateral parasagittal T1 Coronal PDFS – Lateral ankle pain and hindfoot instability – See obliteration of the normal fat in the sinus Coronal Plane Spring Ligament Tarsal Tunnel: Spring Ligament • Superior: Medial malleolus Complex • Lateral: Talus, calcaneus Originates at sustentaculum tali • Medial: Flexor retinaculum • Floor: Abductor Hallucis Muscle Attaches to navicular Contents: • PTT, FHL, FDL AH Runs deep to PTT • PT N,A,V Tarsal tunnel syndrome: • PT nerve compressed by: Plantar fascia: 3 cords Axial PDFS Coronal PDFS – Soft tissue mass, ganglion, nerve sheath tumor Toye et al AJR 2005 302 Spring Ligament Medial Ankle Anatomy • Functions to maintain arch • Deltoid ligament/ MCL • Degeneration associated with PTT – 6 components? dysfunction – Variably seen on dissection/ MRI • Failure leads to pes planus • Tibiospring ligament – Anterior Image from Knee Surg Sports Traumatol Arthrosc (2010) 18:557–569 Lateral Ankle Anatomy Lateral Ligaments • Anterior tibiofibular ligament, • Anterior tibiofibular ligament, PTibFibL PTibFibL • LCL complex • LCL complex – ATFL, CFL, PTFL – ATFL, CFL, PTFL • Retinacula • Sinus tarsi ligaments – Superior & inferior peroneal – Talocalcaneal interosseous – Superior & inferior extensor – Cervical • Peroneal tendons – Brevis, longus Image from Knee Surg Sports Traumatol Arthrosc (2010) 18:557–569 Image from Knee Surg Sports Traumatol Arthrosc (2010) 18:557–569 Hindfoot Lateral Ligaments • Bifurcate Ligament – Anterior process of calcaneus to navicular and cuboid – Inversion injury Lateral Ankle Pain – +/- avulsion of anterior process of calcaneus • Cervical ligament • Calcaneocuboid ligament Image from Knee Surg Sports Traumatol Arthrosc (2010) 18:557-569 303 Chronic Lateral Ankle Pain Diagnosis MR Grading System for Ligament Sprains • Anterior talofibular ligament tear I Mild sprain Soft tissue edema around ligament • Calcaneofibular ligament tear • Talar dome contusion Thickening / edema of ligament with signal II Partial thickness tear • Osteochondral lesion abnormality • Inversion injury III Complete tear Complete disruption or avulsion of ligament Grade II Sprain of ATFL Lateral Ankle Pain After Inversion Injury • Ankle sprain • Peroneal tendon injury • Osteochondral injury of talar dome • Lateral talar process fracture • Sinus tarsi syndrome • Anterior impingement • Synovial cysts • Subtalar ankle instability Normal Sprain 304 Lateral Ankle Pain Axial PD FS Coronal PD FS Sag STIR Lateral Ankle Pain After Inversion Injury • Peroneal pathology associated with repeated inversion injuries/ severe ankle sprains • P brevis prone to splitting Medial Ankle Pain – Between fibula, p longus – P longus migrates into substance of p brevis • Chronic retromalleolar pain • Snapping Medial Ankle Pain PTT Longitudinal Split Tear • PTT tears usually occur near medial malleolus • Loss of longitudinal arch when torn, causing flat foot • Middle aged/older women, RA • Increased incidence with accessory navicular bones • Also assoc. w/sinus tarsi syndrome, DJD of posterior subtalar joint 305 Chronic Medial Ankle Pain Os Naviculare Type II • If major portion of PTT inserts onto navicular, then foot may deviate into valgus • Abnormal signal, motion at synchondrosis >> djd • Pes planus • Spring ligament injury (arrowheads) Chronic Pain - Patient 1 Patient 2 Patient 2 Calcaneonavicular Coalition • Tarsal coalitions common (6% population) • Calcaneonavicular (usually asymptomatic) and talocalcaneal (middle facet of subtalar joint) most common • Type I: Osseous, Type II: Cartilagenous, Type III: Fibrous, or combination • Associated with secondary DJD in posterior subtalar joint 306 Medial Ankle Pain Since Childhood Talocalcaneal Coalition • Occurs medially most often • Middle facet of talus most common facet • Coalitions usually present in childhood or teen years – May ossify in teen years • History of sprains, chronic pain, limited subtalar motion • May predispose to tarsal tunnel syndrome Anterior Pain, Palpable Mass Anterior Tibial Tendon Tear • ATT has single blood supply from AT artery – Increased risk for ischemia, injury in older pts • Tears seen with increasing age, running on hills, diabetes, PVD • Can present as a mass Runner With Heel Pain Posterior Ankle Pain 307 Calcaneal Stress Fracture • Can be occult on radiograph • Can be associated with a large amount of edema in the surrounding muscle – Large degree of periosteal edema Sudden Pain While Playing Tennis Achilles Rupture • Athletic activity 30-50 yrs • Concentric loading – Basketball, tennis, racquetball • RA, SLE, DM, gout • M:F 6:1 • Younger – tears at musculotendinous junction Chronic Posterior Pain Achilles Tendinosis / Partial Tear • Middle, long distance running • Tennis, volleyball, track and field, soccer • Diabetics • Fluoroquinolones 308 Achilles Tendinosis Posterior Heel Pain • Occurs at: – Insertion at calcaneus – Watershed – 2-6 cm proximal to calcaneus • Decreased vascularity • Musculotendinous junction Haglund Deformity Posterior heel pain when patient runs more than 15 minutes • Insertional Achilles tendinosis • Associated with bony posterosuperior calcaneal prominence – “Pump bump” – Impinges on Achilles tendon above the level of the distal insertion • Retro- Achilles bursitis • Retrocalcaneal bursitis • Thickened distal Achilles tendon – Can lead to fraying and tear Normal Symptomatic Accessory Soleus and Achilles Tendonopathy • Inserts into achilles or calcaneus • Can present as mass on medial side of ankle • Exertional pain secondary to ischemia during exercise – localized compartment syndrome 309 Posterior Impingement Symptoms Chronic Lateral Hindfoot Pain Sag T1 Sag STIR Coronal T2FS Coronal T1FS post Sinus Tarsi Syndrome Plantar Pain • Sinus Tarsi, lateral hindfoot pain, subtalar instability • Injury to contents of tarsal canal, sinus – Inversion injury – Decreased venous outflow >> fibrosis, nerve irritation • Effaced Sinus Tarsi fat • Synovitis, fibrosis, ligament disruption • Associated with PTT, spring ligament dysfunction 310 Plantar Fasciitis Ruptured Plantar Fascia • Lateral, central, medial components – Central cord most common • Low signal on all sequences • Should not exceed 4 mm in thickness • Runners, obese older women, seronegative spondylarthropathies (bilat) • MR: thickened fascia near attachment to calcaneus, increased T2 signal, surrounding edema, may see calcaneal edema Radiographics 2000 Mar-Apr;20(2):333-52. Posterior Ankle Pain Os Trigonum Syndrome • Posterior ankle impingement syndrome – Pain, disruption of cartilaginous synchondrosis between os trigonum and lateral tubercle of posterior talar process – Repetitive microtrauma • Os is compressed between FHL and PTFL on extreme dorsiflexion • Os compressed between calcaneus and tibia on extreme plantar flexion • Os trigonum hyperintense T2 • Hyperintense edema/synovitis posterior to talus, in posterior talus • FHL tenosynovitis Nerves of the Ankle • Common entrapment neuropathies of the ankle • Sural nerve Nerve Compression Syndromes • Tibial nerve in tarsal
Recommended publications
  • Total HIP Replacement Exercise Program 1. Ankle Pumps 2. Quad
    3 sets of 10 reps (30 ea) 2 times a day Total HIP Replacement Exercise Program 5. Heel slides 1. Ankle Pumps Bend knee and pull heel toward buttocks. DO NOT GO Gently point toes up towards your nose and down PAST 90* HIP FLEXION towards the surface. Do both ankles at the same time or alternating feet. Perform slowly. 2. Quad Sets Slowly tighten thigh muscles of legs, pushing knees down into the surface. Hold for 10 count. 6. Short Arc Quads Place a large can or rolled towel (about 8”diameter) under the leg. Straighten knee and leg. Hold straight for 5 count. 3. Gluteal Sets Squeeze the buttocks together as tightly as possible. Hold for a 10 count. 7. Knee extension - Long Arc Quads Slowly straighten operated leg and try to hold it for 5 sec. Bend knee, taking foot under the chair. 4. Abduction and Adduction Slide leg out to the side. Keep kneecap pointing toward ceiling. Gently bring leg back to pillow. May do both legs at the same time. Copywriter VHI Corp 3 sets of 10 reps (30 ea) 2 times a day Total HIP Replacement Exercise Program 8. Standing Stair/Step Training: Heel/Toe Raises: 1. The “good” (non-operated) leg goes Holding on to an immovable surface. UP first. Rise up on toes slowly 2. The “bad” (operated) leg goes for a 5 count. Come back to foot flat and lift DOWN first. toes from floor. 3. The cane stays on the level of the operated leg. Resting positions: To Stretch your hip to neutral position: 1.
    [Show full text]
  • Human Functional Anatomy 213 the Ankle and Foot In
    2 HUMAN FUNCTIONAL ANATOMY 213 JOINTS OF THE FOOT THE ANKLE AND FOOT IN LOCOMOTION THE HINDFOOT -(JOINTS OF THE TALUS) THIS WEEKS LAB: Forearm and hand TROCHLEAR The ankle, and distal tibiofibular joints READINGS BODY The leg and sole of foot Subtalar joint (Posterior talocalcaneal) 1. Stern – Core concepts – sections 99, 100 and 101 (plus appendices) HEAD 2. Faiz and Moffat – Anatomy at a Glance – Sections 50 and 51 Talocalcaneonavicular 3. Grants Method:- The bones and sole of foot & Joints of the lower limb & Transverse tarsal joints or any other regional textbook - similar sections IN THIS LECTURE I WILL COVER: Joints related to the talus Ankle Subtalar Talocalcaneonavicular THE MID FOOT Transverse tarsal Other tarsal joints THE FOREFOOT Toe joints METATARSAL AND PHALANGEAL Ligaments of the foot JOINTS (same as in the hand) Arches of the foot Except 1st metatarsal and Hallux Movements of the foot & Compartments of the leg No saddle joint at base is 1st metatarsal The ankle in Locomotion Metatarsal head is bound by deep Ankle limps transverse metatarsal ligament 1. Flexor limp Toes are like fingers 2. Extensor limp Same joints, Lumbricals, Interossei, Extensor expansion Axis of foot (for abduction-adduction) is the 2nd toe. 3 4 JOINTS OF THE FOOT JOINTS OF THE FOOT (2 joints that allow inversion and eversion) DISTAL TIBIOFIBULAR SUBTALAR (Posterior talocalcaneal) JOINT Syndesmosis (fibrous joint like interosseous membrane) Two (or three) talocalcaneal joints Posterior is subtalar Fibres arranged to allow a little movement Anterior (and middle) is part of the talocalcaneonavicular. With a strong interosseus ligament running between them (tarsal sinus) THE TALOCALCANEONAVICULAR JOINT The head of the talus fits into a socket formed from the: The anterior talocalcaneal facets.
    [Show full text]
  • Anatomic Anterolateral Ligament Reconstruction of the Knee Leads to Overconstraint at Any Fixation Angle
    AJSM PreView, published on July 12, 2016 as doi:10.1177/0363546516652607 Winner of the 2016 Excellence In Research Award Anatomic Anterolateral Ligament Reconstruction of the Knee Leads to Overconstraint at Any Fixation Angle Jason M. Schon,* BS, Gilbert Moatshe,*yz MD, Alex W. Brady,* MSc, Raphael Serra Cruz,*§ MD, Jorge Chahla,* MD, Grant J. Dornan,* MSc, || # Travis Lee Turnbull,* PhD, Lars Engebretsen,y MD, PhD, and Robert F. LaPrade,*{ MD, PhD Investigation performed at the Department of Biomedical Engineering of the Steadman Philippon Research Institute, Vail, Colorado, USA Background: Anterior cruciate ligament (ACL) tears are one of the most common injuries among athletes. However, the ability to fully restore rotational stability with ACL reconstruction (ACLR) remains a challenge, as evidenced by the persistence of rotational instability in up to 25% of patients after surgery. Advocacy for reconstruction of the anterolateral ligament (ALL) is rapidly increasing because some biomechanical studies have reported that the ALL is a significant contributor to internal rotational stability of the knee. Hypothesis/Purpose: The purpose of this study was to assess the effect of ALL reconstruction (ALLR) graft fixation angle on knee joint kinematics in the clinically relevant setting of a concomitant ACLR and to determine the optimal ALLR graft fixation angle. It was hypothesized that all fixation angles would significantly reduce rotational laxity compared with the sectioned ALL state. Study Design: Controlled laboratory study. Methods: Ten nonpaired fresh-frozen human cadaveric knees underwent a full kinematic assessment in each of the following states: (1) intact; (2) anatomic single-bundle (SB) ACLR with intact ALL; (3) anatomic SB ACLR with sectioned ALL; (4) anatomic SB ACLR with 7 anatomic ALLR states using graft fixation angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90°; and (5) sectioned ACL and ALL.
    [Show full text]
  • The Anterolateral Ligament of the Knee: What the Radiologist Needs to Know
    26 The Anterolateral Ligament of the Knee: What the Radiologist Needs to Know Pieter Van Dyck, MD, PhD1 ElineDeSmet,MD1 Valérie Lambrecht, MD2 Christiaan H. W. Heusdens, MD3 Francis Van Glabbeek, MD, PhD3 Filip M. Vanhoenacker, MD, PhD1,2,4 Jan L. Gielen, MD, PhD1 Paul M. Parizel, MD, PhD1 1 Department of Radiology, Antwerp University Hospital and Address for correspondence Pieter Van Dyck, MD, PhD, Department University of Antwerp, Edegem, Belgium of Radiology, Antwerp University Hospital and University of Antwerp 2 Department of Radiology, Ghent University Hospital, Ghent, Belgium Wilrijkstaat 10, 2650 Edegem, Belgium 3 Department of Orthopaedics, Antwerp University Hospital and (e-mail: [email protected]). University of Antwerp, Edegem, Belgium 4 Department of Radiology, AZ Sint-Maarten, Duffel, Belgium Semin Musculoskelet Radiol 2016;20:26–32. Abstract The anterolateral ligament (ALL) was recently identified as a distinct component of the anterolateral capsule of the human knee joint with consistent origin and insertion sites. Biomechanical studies revealed that the current association between the pivot shift and Keywords an injured anterior cruciate ligament (ACL) should be loosened and that the rotational ► anterolateral component of the pivot shift is significantly affected by the ALL. This may change the ligament clinical approach toward ACL-injured patients presenting with anterolateral rotatory ► anterior cruciate instability (ALRI), the most common instability pattern after ACL rupture. Radiologists ligament rupture should be aware of the importance of the ALL to ACL injuries. They should not overlook ► anterolateral rotatory pathology of the anterolateral knee structures, including the ALL, when reviewing MR instability images of the ACL-deficient knee.
    [Show full text]
  • Sports Ankle Injuries Assessment and Management
    FOCUS Sports injuries Sports ankle injuries Drew Slimmon Peter Brukner Assessment and management Background Case study Lucia is a female, 16 years of age, who plays netball with the Sports ankle injuries present commonly in the general state under 17s netball team. She presents with an ankle injury practice setting. The majority of these injuries are inversion sustained at training the previous night. She is on crutches and plantar flexion injuries that result in damage to the and is nonweight bearing. Examination raises the possibility of lateral ligament complex. a fracture, but X-ray is negative. You diagnose a severe lateral Objective ligament sprain and manage Lucia with ice, a compression The aim of this article is to review the assessment and bandage and a backslab initially. She then progresses through management of sports ankle injuries in the general practice a 6 week rehabilitation program and you recommend she wear setting. an ankle brace for at least 6 months. Discussion Assessment of an ankle injury begins with a detailed history to determine the severity, mechanism and velocity of the injury, what happened immediately after and whether there is a past history of inadequately rehabilitated ankle injury. Examination involves assessment of weight bearing, inspection, palpation, movement, and application of special examination tests. Plain X-rays may be helpful to exclude a fracture. If the diagnosis is uncertain, consider second The majority of ankle injuries are inversion and plantar line investigations including bone scan, computerised flexion injuries that result in damage to the lateral tomography or magnetic resonance imaging, and referral to a ligament complex (Figure 1).
    [Show full text]
  • Morphological Characteristics of the Lateral Talocalcaneal Ligament: a Large-Scale Anatomical Study
    Surgical and Radiologic Anatomy (2019) 41:25–28 https://doi.org/10.1007/s00276-018-2128-8 ANATOMIC VARIATIONS Morphological characteristics of the lateral talocalcaneal ligament: a large-scale anatomical study Mutsuaki Edama1,2 · Ikuo Kageyama2 · Takaniri Kikumoto1 · Tomoya Takabayashi1 · Takuma Inai1 · Ryo Hirabayashi1 · Wataru Ito1 · Emi Nakamura1 · Masahiro Ikezu1 · Fumiya Kaneko1 · Akira Kumazaki3 · Hiromi Inaba4 · Go Omori3 Received: 9 August 2018 / Accepted: 4 September 2018 / Published online: 30 October 2018 © Springer-Verlag France SAS, part of Springer Nature 2018 Abstract Purpose The purpose of this study is to clarify the morphological characteristics of the lateral talocalcaneal ligament (LTCL). Methods This study examined 100 legs from 54 Japanese cadavers. The LTCL was classified into three types: Type I, the LTCL branches from the calcaneofibular ligament (CFL); Type II, the LTCL is independent of the CFL and runs parallel to the calcaneus; and Type III, the LTCL is absent. The morphological features measured were fiber bundle length, fiber bundle width, and fiber bundle thickness. Results The LTCL was classified as Type I in 18 feet (18%), Type II in 24 feet (24%), and Type III in 58 feet (58%). All LTCLs were associated with the anterior talofibular ligament at the talus. There was no significant difference in morphologi- cal characteristics by Type for each ligament. Conclusions The LTCL was similar to the CFL in terms of fiber bundle width and fiber bundle thickness. Keywords Calcaneofibular · Ligament · Subtalar joint · Gross anatomy Introduction features, as well as complex three-dimensional mobility, making it a challenge to conduct quantitative evaluations. Of patients with chronic ankle instability, 42% [6] present Ligaments that are associated with the stability of the with mechanical instability of the talocrural joint, and 58% subtalar joint include the calcaneofibular ligament (CFL), have mechanical instability of the subtalar joint [3], each of the lateral talocalcaneal ligament (LTCL), the interosseous them at high percentages.
    [Show full text]
  • Mcilroy's Ankle Injury Explained
    McIlroy’s Ankle Injury Explained By Eva Nugent MISCP The Anterior Talofibular Ligament is big news this week because of world number 1 golf player Rory McIlroy’s injury sustained while having a football “kick about” with friends. McIlroy reports sustaining a “total rupture of his left ATFL and damage to the associated ankle joint capsule”. This unfortunate injury has put his golf season in doubt with the Open Championship starting just next week the 16th of July. But what exactly is the ATFL? And what does the rehabilitation for this injury involve? The Anterior Talofibular Ligament is one of three ligaments that make of the lateral ligament complex of the ankle joint. It originates at the fibular malleoulus of the lateral shin bone (fibula) and runs forward to and attaches to the Talus (ankle bone). The other two ligaments are the Posterior talofibular ligament (PTFL) and the Calcaneofibular ligament (CFL). The function of these ligaments is to provide stability and support to the ankle joint. The ATFL specifically prevents the anterior translation of the shin in relation to the foot/ankle. The ATFL is the most commonly injured ankle ligament and is most vulnerable when the foot is pointing downwards and inwards as the body’s centre of gravity rolls over the ankle (plantarflexed and inverted position). This is commonly described as “going over on your ankle”. It is commonly injured in sports like football or GAA where unpredictable fast turns or cutting movements are involved. This is referred to as an ankle sprain and results in damage to the fibres of the ligament as they are overstretched.
    [Show full text]
  • How to Self-Bandage Your Leg(S) and Feet to Reduce Lymphedema (Swelling)
    Form: D-8519 How to Self-Bandage Your Leg(s) and Feet to Reduce Lymphedema (Swelling) For patients with lower body lymphedema who have had treatment for cancer, including: • Removal of lymph nodes in the pelvis • Removal of lymph nodes in the groin, or • Radiation to the pelvis Read this resource to learn: • Who needs self-bandaging • Why self-bandaging is important • How to do self-bandaging Disclaimer: This pamphlet is for patients with lymphedema. It is a guide to help patients manage leg swelling with bandages. It is only to be used after the patient has been taught bandaging by a clinician at the Cancer Rehabilitation and Survivorship (CRS) Clinic at Princess Margaret Cancer Centre. Do not self-bandage if you have an infection in your abdomen, leg(s) or feet. Signs of an infection may include: • Swelling in these areas and redness of the skin (this redness can quickly spread) • Pain in your leg(s) or feet • Tenderness and/or warmth in your leg(s) or feet • Fever, chills or feeling unwell If you have an infection or think you have an infection, go to: • Your Family Doctor • Walk-in Clinic • Urgent Care Clinic If no Walk-in clinic is open, go to the closest hospital Emergency Department. 2 What is the lymphatic system? Your lymphatic system removes extra fluid and waste from your body. It plays an important role in how your immune system works. Your lymphatic system is made up of lymph nodes that are linked by lymph vessels. Your lymph nodes are bean-shaped organs that are found all over your body.
    [Show full text]
  • Ankle Fusion Protocol
    Phone: 574.247.9441 ● Fax: 574.247.9442 ● www.sbortho.com ANKLE FUSION PROTOCOL This is the fusion of the tibia and the talus for ankle joint arthritis. Your ankle will lose the majority of its up and down motion, but typically retain some side to side motion. Occasionally the subtalar joint (between the talus and calcaneus) also needs to be fused, which further stiffens the ankle. Bone graft (typically allograft/cadaver bone or Augment, a synthetic graft) is used, and screws, staples, plates, and/or a metal rod are inserted to hold the bones together as they heal. Below is a general outline for these fusion procedures. MD recommendations and radiographic evidence of healing can always affect the timeline. **This is a guideline for recovery, and specific changes may be indicated on an individual basis** Preoperative Physical Therapy Pre surgical Gait Training, Balance Training, Crutch Training and Knee Scooter Training Phase I- Protection (Weeks 0 to 6) GOALS: - Cast or boot for 6 weeks - Elevation, ice, and medication to control pain and swelling - Non-weight bearing x 6 weeks - Hip and knee AROM, hip strengthening - Core and upper extremity strengthening WEEK 0-2: Nonweightbearing in splint - elevate the leg above the heart to minimize swelling 23 hours/day - ice behind the knee 30 min on/30 min off (Vascutherm or ice bag) - minimize activity and focus on rest 1ST POSTOP (5-7 DAYS): Dressing changed, cast applied - continue strict elevation, ice, NWB WEEKS 2-3: Sutures removed, cast changed WEEKS 4-5: Return for another cast change
    [Show full text]
  • SUBTALAR JOINT RECONSTRUCTION by George E
    SUBTALAR JOINT RECONSTRUCTION By George E. Quill, Jr., M.D. The single axis subtalar joint is a hinge joining the talus and calcaneus that allows adaptation of the foot on uneven ground. This joint modifies the forces of ambulation imposed on the rest of the skeleton and influences the performance of the more distal foot articulations as well. When the structure and function of this joint are altered by trauma, instability, arthritis, infection, or tarsal coalition, subtalar reconstruction, usually in the form of arthrodesis, may prove to be a very successful procedure in treating the patient's resultant disability. The subtalar joint is, in this author's opinion, a very under appreciated joint. Even though it is estimated that up to 3 percent of the general population may have an asymptomatic talocalcaneal coalition present from a very young age and function very well, patients with a stiffened subtalar joint secondary to post-traumatic subtalar osteoarthrosis have very poor biomechanical function. Many patients presenting with "ankle " pain or who have pain from an ankle sprain that "just won't go away", may actually have subtalar pathology as an etiology for their discomfort. It is the astute orthopaedic surgeon who can recognize and successfully treat this pathology. Subtalar arthrodesis performed for the appropriate indications has proven to be one of this author's most gratifying, time-tested procedures in alleviating pain and improving function in patients so affected. Therefore, it is prudent that we understand the anatomic and functional aspects of the subtalar joint. The subtalar joint consists of three separate facets for articulation between the talus and calcaneus (Figure 1).
    [Show full text]
  • Active Ankle & Foot Range of Motion Exercises
    1501 North Bickett Blvd. Suite E ~ Louisburg, NC 27549 ~ Phone (919) 497-0445 ~ Fax (919) 497-0118 ACTIVE ANKLE & FOOT RANGE OF MOTION EXERCISES Do each exercise _____ times a day. Repeat each exercise ______ times. ANKLE ALPHABET o Moving only your ankle and foot, “write” each letter of the alphabet from A to Z. o Keep your leg straight. o Do not bend your knee or hip. o The letters will start out small and get larger as your ankle motion improves. ANKLE PUMPS o Move your foot up and down as if pushing down or letting up on a gas pedal in a car. ANKLE INVERSION / EVERSION o Move your foot side to side as if mimicking a windshield wiper. o Be sure not to move knee while performing exercise *If you have any questions about these guidelines – or the appropriateness of any other activities – please call Orthopaedic Specialists of North Carolina at (919) 497-0445. 1501 North Bickett Blvd. Suite E ~ Louisburg, NC 27549 ~ Phone (919) 497-0445 ~ Fax (919) 497-0118 ANKLE CIRCLES o Make circles with your foot. o Go clockwise then repeat counter clockwise. TOE CURLS o Moving only your toes, curl and uncurl each digit as far as possible within your pain free range. o Option: Pick-up marbles with toes 1 at a time for 5 minutes. TOE CURLS WITH TOWEL o Bunch up a towel curling your toes TOWEL SLIDES o Moving only your ankle and keeping your heel planted, slide the towel to the inside, then outside. *If you have any questions about these guidelines – or the appropriateness of any other activities – please call Orthopaedic Specialists of North Carolina at (919) 497-0445.
    [Show full text]
  • PATIENT INFORMATION Ankle Arthritis
    PATIENT INFORMATION Ankle Arthritis The ankle joint The ankle is a very complex joint. It is actually made up of two joints: the true ankle joint and the subtalar ankle joint. The ankle joint consists of three bones held together by cartilage and ligaments. The tibia forms the inside of the true ankle joint. The fibula forms the outside of the true ankle joint. The talus is the underneath part of the true ankle joint. The true ankle joint allows you to move your foot up and down. The subtalar joint consists of two bones, the talus on top and calcaneus on the bottom. The subtalar joint allows you to move your foot from side to side. What is ankle arthritis? Most ankle arthritis is caused by wear and tear which reduces the shiny cartilage that lines the joint causing bone to rub on bone which is painful. (However, there are other forms of arthritis that affect the ankle, for example, rheumatoid arthritis.) Early symptoms of ankle arthritis are pain and perhaps swelling and stiffness, especially after prolonged activity including standing or walking, or after high impact activities, for example running. If you have ankle arthritis, pain, swelling and stiffness can become more frequent as the disease progresses. Eventually you will probably feel pain most of the time, even when you are not active. Healthy ankle joint Arthritic ankle joint Source: Trauma & Orthopaedics Reference No: 5417-3 Issue date: 01/03/2021 Review date: 01/03/2024 Page: 1 of 6 Osteoarthritis is often secondary to damage to the joint, for example as a result of a previous fracture, repeated sprains of the ankle, malalignment of the joint or infection.
    [Show full text]