Notes on the Habits of Mice, Moles and Shrews
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MAMMALS of OHIO F I E L D G U I D E DIVISION of WILDLIFE Below Are Some Helpful Symbols for Quick Comparisons and Identfication
MAMMALS OF OHIO f i e l d g u i d e DIVISION OF WILDLIFE Below are some helpful symbols for quick comparisons and identfication. They are located in the same place for each species throughout this publication. Definitions for About this Book the scientific terms used in this publication can be found at the end in the glossary. Activity Method of Feeding Diurnal • Most active during the day Carnivore • Feeds primarily on meat Nocturnal • Most active at night Herbivore • Feeds primarily on plants Crepuscular • Most active at dawn and dusk Insectivore • Feeds primarily on insects A word about diurnal and nocturnal classifications. Omnivore • Feeds on both plants and meat In nature, it is virtually impossible to apply hard and fast categories. There can be a large amount of overlap among species, and for individuals within species, in terms of daily and/or seasonal behavior habits. It is possible for the activity patterns of mammals to change due to variations in weather, food availability or human disturbances. The Raccoon designation of diurnal or nocturnal represent the description Gray or black in color with a pale most common activity patterns of each species. gray underneath. The black mask is rimmed on top and bottom with CARNIVORA white. The raccoon’s tail has four to six black or dark brown rings. habitat Raccoons live in wooded areas with Tracks & Skulls big trees and water close by. reproduction Many mammals can be elusive to sighting, leaving Raccoons mate from February through March in Ohio. Typically only one litter is produced each year, only a trail of clues that they were present. -
Controlling the Eastern Mole
Agriculture and Natural Resources FSA9095 Controlling the Eastern Mole Dustin Blakey Introduction known about the Eastern Mole, and County Extension Agent successful control in landscapes Agriculture Few things in this world are requires a basic understanding of more frustrating than spending valu their biology. able time and money on a landscape Rebecca McPeake only to have it torn up by wildlife. Mole Biology Associate Professor and Moles’ underground habits aerate the Extension Wildlife soil and reduce grubs, but their Moles spend most of their lives Specialist digging is cause for homeowner underground feeding on invertebrate complaints, making them one of the animals living in the soil. A mole’s most destructive mammals that can diet sharply reflects the diversity of inhabit our landscapes. the fauna found in its environment. In Arkansas, moles primarily feed on earthworms, grubs and other inverte brates. Moles lack the dental struc ture to chew plant material (seeds, roots, etc.) for food and, as a result, subsist strictly as carnivores. Occasionally moles will cut surface vegetation and bring it down to their nest, as bedding, but this is not eaten. Figure 1. Rarely seen on the surface, moles are uniquely designed for their underground existence. Photo printed with permission by Ann and Rob Simpson. Contrary to popular belief, moles are not rodents. Mice, squirrels and gophers are all rodents. Moles are insectivores in the family Talpidae. Figure 2. Moles lack the dental structure This animal family survives by to chew plant material and subsist feeding on invertebrate prey. There mostly on earthworms and other invertebrates. are seven species of moles in North America, but the Eastern Mole Moles are well-adapted to living (Scalopus aquaticus L.) is the species underground. -
Controlled Animals
Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3. -
Checklist of Rodents and Insectivores of the Mordovia, Russia
ZooKeys 1004: 129–139 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.1004.57359 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of rodents and insectivores of the Mordovia, Russia Alexey V. Andreychev1, Vyacheslav A. Kuznetsov1 1 Department of Zoology, National Research Mordovia State University, Bolshevistskaya Street, 68. 430005, Saransk, Russia Corresponding author: Alexey V. Andreychev ([email protected]) Academic editor: R. López-Antoñanzas | Received 7 August 2020 | Accepted 18 November 2020 | Published 16 December 2020 http://zoobank.org/C127F895-B27D-482E-AD2E-D8E4BDB9F332 Citation: Andreychev AV, Kuznetsov VA (2020) Checklist of rodents and insectivores of the Mordovia, Russia. ZooKeys 1004: 129–139. https://doi.org/10.3897/zookeys.1004.57359 Abstract A list of 40 species is presented of the rodents and insectivores collected during a 15-year period from the Republic of Mordovia. The dataset contains more than 24,000 records of rodent and insectivore species from 23 districts, including Saransk. A major part of the data set was obtained during expedition research and at the biological station. The work is based on the materials of our surveys of rodents and insectivo- rous mammals conducted in Mordovia using both trap lines and pitfall arrays using traditional methods. Keywords Insectivores, Mordovia, rodents, spatial distribution Introduction There is a need to review the species composition of rodents and insectivores in all regions of Russia, and the work by Tovpinets et al. (2020) on the Crimean Peninsula serves as an example of such research. Studies of rodent and insectivore diversity and distribution have a long history, but there are no lists for many regions of Russia of Copyright A.V. -
Lipotyphla: Talpidae: Euroscaptor)
Proceedings of the Zoological Institute RAS Vol. 320, No. 2, 2016, рр. 193–220 УДК 599.362 (597) SECRETS OF THE UNDERGROUND VIETNAM: AN UNDERESTIMATED SPECIES DIVERSITY OF ASIAN MOLES (LIPOTYPHLA: TALPIDAE: EUROSCAPTOR) E.D. Zemlemerova1, A.A. Bannikova1, V.S. Lebedev2, V.V. Rozhnov3, 5 and A.V. Abramov4, 5* 1Lomonosov Moscow State University, Vorobievy Gory, 119991 Moscow, Russia; e-mails: [email protected], [email protected] 2Zoological Museum, Moscow State University, B. Nikitskaya 6, 125009 Moscow, Russia; e-mail: [email protected] 3A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow 119071, Russia; e-mail: [email protected] 4Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia; e-mail: [email protected] 5Joint Vietnam-Russian Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam ABSTRACT A study of the Southeast Asian moles of the genus Euroscaptor based on a combined approach, viz. DNA sequence data combined with a multivariate analysis of cranial characters, has revealed a high cryptic diversity of the group. An analysis of mitochondrial cytochrome b gene and five nuclear genes has revealed two deeply divergent clades: the western one (E. klossi + E. malayana + E. longirostris from Sichuan + Euroscaptor spp. from northern Vietnam and Yunnan, China), and the eastern one (E. parvidens s.l. + E. subanura). The pattern of genetic variation in the genus Euroscaptor discovered in the present study provides support for the existence of several cryptic lineages that could be treated as distinct species based on their genetic and morphological distinctness and geographical distribution. -
On the Original Description of the Sacred Shrew, Sorex Religiosa I. Geoffroy Saint-Hilaire, 1826 [Nec 1827] (Mammalia: Soricidae)
Bionomina, 9: 50–53 (2015) ISSN 1179-7649 (print edition) www.mapress.com/bionomina/ Article BIONOMINA Copyright © 2015 • Magnolia Press ISSN 1179-7657 (online edition) http://dx.doi.org/10.11646/bionomina.9.1.5 http://zoobank.org/urn:lsid:zoobank.org:pub:790065A5-5351-4E9F-9BA6-6A4F9B10BEC0 On the original description of the Sacred Shrew, Sorex religiosa I. Geoffroy Saint-Hilaire, 1826 [nec 1827] (Mammalia: Soricidae) Neal WOODMAN USGS Patuxent Wildlife Research Center, MRC-111, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, U.S.A. <[email protected]> Abstract The original description of the Egyptian Pygmy Shrew or Sacred Shrew, Sorex religiosus I. Geoffroy Saint-Hilaire (Mammalia: Soricidae: Crocidura religiosa), was based on mummies obtained by Joseph Passalacqua from the ancient Egyptian necropolis at Thebes, Egypt. The description and naming of this species is commonly credited to Geoffroy Saint-Hilaire’s (1827) compendium and review of shrews in the Mémoires du Muséum d’Histoire naturelle. However, this author also described this species in two earlier publications. The first was in a footnote to Passalacqua’s (1826) Catalogue raisonné et historique des antiquités découvertes en Égypte; the second in January 1827 in the 11th volume of the Dictionnaire classique d’Histoire naturelle. In each case, he explained what he considered to be the distinguishing characteristics of the species and presented its common and scientific names. Priority, therefore, goes to Geoffroy Saint- Hilaire’s description in Passalacqua’s (1826) Catalogue. Key words: Insectivora, Sorex, Crocidura, mummy, systematics, taxonomy Introduction The Egyptian Pygmy Shrew or Sacred Shrew, Sorex religiosus I. -
Activity of the European Mole Talpa Europaea (Talpidae, Insectivora) in Its Burrows in the Republic of Mordovia
FORESTRY IDEAS, 2021, vol. 27, No 1 (61): 59–67 ACTIVITY OF THE EUROPEAN MOLE TALPA EUROPAEA (TALPIDAE, INSECTIVORA) IN ITS BURROWS IN THE REPUBLIC OF MORDOVIA Alexey Andreychev Department of Zoology, National Research Mordovia State University, Saransk 430005, Russia. E-mail: [email protected] Received: 16 February 2021 Accepted: 18 April 2021 Abstract A new method of studying the activity of European mole Talpa europaea (Linnaeus, 1758) with use of digital portable voice recorders is developed. European mole demonstrates polyphasic activity pattern – three peaks of activity alternate three peaks of relative rest. Moles are found to have activity peaks from 23:00 to 3:00 h, from 6:00 to 9:00 h and from 15:00 to 18:00 h, and three periods of rest: from 3:00 to 6:00 h, from 9:00 to 15:00 h and from 18:00 to 23:00 h. Mole’s rest is relative since animals show low activity during periods of rest. Average daily interval between mole passes is 2.5 h. Duration of audibility of continuous single European mole pass by the mi- crophone varies from 11 to 120 seconds. On average, it is 37.5 seconds. Key words: animals, daily activity, day-night activity, voice recorder. Introduction where light factor is essential (Shilov 2001). Activity of many mammals is in- In many countries, the European mole Tal- vestigated under various conditions of the pa europaea (Linnaeus, 1758) is an object light regime. For underground animals, of constant modern research (Komarnicki especially for the different mole species, 2000, Prochel 2006, Kang et al. -
Small Mammal Survey of the Nulhegan Basin Division of the Silvio 0
Small Mammal Survey of the Nulhegan Basin Division of the Silvio 0. Conte NFWR and the State of Vermont's West Mountain Wildlife Management Area, Essex County Vermont • Final Report March 15, 2001 C. William Kilpatrick Department of Biology University of Vermont Burlington, Vermont 05405-0086 A total of 19 species of small mammals were documented from the Nulhegan Basin Division of the Silvio 0. Conte National Fish and Wildlife Refuge (NFWR) and the West Mountain Wildlife Management Area Seventeen of these species had previously been documented from Essex County, but specimens of the little brown bat (Jr{yotis lucifugu.s) and the northern long-eared bat (M septentrionalis) represent new records for this county. Although no threatened or endangered species were found in this survey, specimens of two rare species were captured including a water shrew (Sorex palustris) and yellow-nosed voles (Microtus chrotorrhinus). Population densities were relatively low as reflected in a mean trap success of 7 %, and the number of captures of two species, the short-tailed shrew (Blarina brevicauda) and the deer mouse (Peromyscus maniculatus), were noticeably low. Low population densities were observed in northern hardwood forests, a lowland spruce-fir forest, a black spruce/dwarf shrub bog, and most clear-cuts, whereas the high population densities were found along talus slopes, in a mixed hardwood forest with some • rock ledges, and in a black spruce swamp. The highest species diversity was found in a montane yellow birch-red spruce forest, a black spruce swamp, a beaver/sedge meadow, and a talus slope within a mixed forest. -
Species of Conservation Concern SC SWAP 2015
Supplemental Volume: Species of Conservation Concern SC SWAP 2015 Moles Guild Hairy-tailed Mole (Parascalops breweri) Star-nosed Mole (Condylura cristata) Contributors (2005): Mary Bunch (SCDNR), Mark Ford (VA Tech), and David Webster (UNC-W) Reviewed and Edited (2012): Steve Fields (Culture and Heritage Museums) and David Webster (UNC-W) DESCRIPTION Taxonomy and Basic Description Three species of moles occur in South Carolina. These include the eastern mole, (Scalopus aquaticus) which is widely distributed and common. The other 2 species, the star-nosed mole (Condylura cristata) and hairy-tailed mole (Parascalops breweri), are less commonly encountered in South Carolina. All 3 possess velvety fur; eyes that are small and concealed in the fur; and large well-developed forelimbs with backward facing palms and long claws. They also lack external ear structures. The star-nosed mole was first described by Linnaeus in Star-nosed Mole Photo courtesy of ATBI 1758. Two subspecies are recognized for the star-nosed mole: Condylura cristata cristata and Condylura cristata parva. Star-nosed moles in South Carolina are considered to be C. c. parva (Peterson and Yates 1980). As the name implies, the rostrum of the star-nosed mole is star-like and consists of 22 fleshy appendages. Total length of this species ranges from 153 to 238 mm (6.24 to 9.3 in.). The moderately haired tail is approximately one-third to one- half the body length. The fur is black or a black-brown on the back (Peterson and Yates 1980; Webster et al. 1985; Laerm et al. 2005a). The hairy-tailed mole, first described by Bachman Hairy-tailed Mole Photo by E.B. -
Hedgehogs and Other Insectivores
ANIMALS OF THE WORLD Hedgehogs and Other Insectivores What is an insectivore? Do hedgehogs make good pets? What is a mole’s favorite meal? Read Hedgehogs and Other Insectivores to find out! What did you learn? QUESTIONS 1. Shrews live on every continent except ... 4. The largest member of the mole family is a. North America the ... b. Asia and South America a. Blind mole c. Europe b. European mole d. Antarctica and Australia c. Star-nosed mole d. Russian desman mole 2. Moonrats live in ... a. Southeast Asia 5. What type of insectivore is this? b. Southwest Asia c. Southeast Europe d. Southwest Europe 3. The smallest mammal in North America is the ... a. Hedgehog 6. What type of insectivore is this? b. Pygmy shrew c. Mouse d. Rat TRUE OR FALSE? _____ 1. There are 400 kinds of _____ 4. Shrews live about one to two insectivores. years in captivity. _____ 2. Hedgehogs have been known to _____ 5. Solenodons can grow to nearly eat poisonous snakes. 3 feet in length. _____ 3. Hedgehogs do not spit on _____ 6. Hedgehogs make good pets and themselves. can help control pests in gardens and homes. © World Book, Inc. All rights reserved. ANSWERS 1. d. Antarctica and Australia. According 4. d. Russian desman mole. According to section “Where in the World Do Insectivores to section “Which Is the Largest Member of Live?” on page 8, we know that “Insectivores the Mole Family?” on page 46, we know that live almost everywhere. Shrews, for example, “Desmans are larger than moles, growing live on every continent except Australia and to lengths of 14 inches (36 centimeters) from Antarctica.” So, the correct answer is D. -
Environmental DNA (Edna) Metabarcoding of Pond Water As a Tool To
1 Environmental DNA (eDNA) metabarcoding of pond water as a tool to 2 survey conservation and management priority mammals 3 4 Lynsey R. Harpera,b*, Lori Lawson Handleya, Angus I. Carpenterc, Muhammad Ghazalid, Cristina 5 Di Muria, Callum J. Macgregore, Thomas W. Logana, Alan Lawf, Thomas Breithaupta, Daniel S. 6 Readg, Allan D. McDevitth, and Bernd Hänflinga 7 8 a Department of Biological and Marine Sciences, University of Hull, Hull, HU6 7RX, UK 9 b Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, 10 Illinois, USA 11 c Wildwood Trust, Canterbury Rd, Herne Common, Herne Bay, CT6 7LQ, UK 12 d The Royal Zoological Society of Scotland, Edinburgh Zoo, 134 Corstorphine Road, Edinburgh, EH12 6TS, UK 13 e Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK 14 f Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK 15 g Centre for Ecology & Hydrology (CEH), Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK 16 h Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of 17 Salford, Salford, M5 4WT, UK 18 19 *Corresponding author: [email protected] 20 Lynsey Harper, Illinois Natural History Survey, Prairie Research Institute, University of Illinois 21 at Urbana-Champaign, Champaign, Illinois, USA 22 ©2019, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http:// 23 creativecommons.org/licenses/by-nc-nd/4.0/ 1 24 Abstract 25 26 Environmental DNA (eDNA) metabarcoding can identify terrestrial taxa utilising aquatic habitats 27 alongside aquatic communities, but terrestrial species’ eDNA dynamics are understudied. -
Effective Mole Control Gary L
Extension W-11-2002 FSchool ofactSheet Natural Resources, 2021 Coffey Road, Columbus, Ohio 43210 Effective Mole Control Gary L. Comer, Jr., Extension Agent, Water Quality & Natural Resources, Logan County Amanda D. Rodewald, Assistant Professor of Wildlife Ecology and Extension Specialist, School of Natural Resources, The Ohio State University here are six species of moles in North America, and Tthree of these may occur in your yard (Eastern Mole, Hairy-tailed Mole, and Star-nosed Mole). Of these, the East- ern Mole (Scalopus aquaticus) is most common in Ohio. Moles are about the size of chipmunks (6-8 inches in length) and can weigh three to six ounces. Each year a mole can have one lit- ter of two to six young, depending on the health of the female. Gestation lasts about five to six weeks, which means that you can expect litters anywhere from mid-April through May. Be- lieve it or not, young moles have less than a 50% chance of surviving long enough to reproduce. Moles are insectivores (they eat insects), and they may con- trol some insect outbreaks. However, mole activity can also cause considerable damage to lawns. This damage is usually in the form of tunnels and/or mounds in lawn that can be un- sightly, disturb root systems, and provide cover or travel lanes for other small mammals. Often mole damage could be reduced or eliminated by not encroaching If you are like most homeowners, you are probably confused on the mole natural habitat. This wood lot is an example of wildlife by all of the conflicting “advice” on mole control.