Ostreid Herpesvirus Type 1 Replication and Host Response in Adult Pacific

Total Page:16

File Type:pdf, Size:1020Kb

Ostreid Herpesvirus Type 1 Replication and Host Response in Adult Pacific Segarra et al. Veterinary Research 2014, 45:103 http://www.veterinaryresearch.org/content/45/1/103 VETERINARY RESEARCH RESEARCH Open Access Ostreid herpesvirus type 1 replication and host response in adult Pacific oysters, Crassostrea gigas Amélie Segarra1, Laury Baillon1, Delphine Tourbiez1, Abdellah Benabdelmouna1, Nicole Faury1, Nathalie Bourgougnon2 and Tristan Renault1* Abstract Since 2008, massive mortality outbreaks associated with OsHV-1 detection have been reported in Crassostrea gigas spat and juveniles in several countries. Nevertheless, adult oysters do not demonstrate mortality in the field related to OsHV-1 detection and were thus assumed to be more resistant to viral infection. Determining how virus and adult oyster interact is a major goal in understanding why mortality events are not reported among adult Pacific oysters. Dual transcriptomics of virus-host interactions were explored by real-time PCR in adult oysters after a virus injection. Thirty-nine viral genes and five host genes including MyD88, IFI44, IkB2, IAP and Gly were measured at 0.5, 10, 26, 72 and 144 hours post infection (hpi). No viral RNA among the 39 genes was detected at 144 hpi suggesting the adult oysters are able to inhibit viral replication. Moreover, the IAP gene (oyster gene) shows significant up-regulation in infected adults compared to control adults. This result suggests that over-expression of IAP could be a reaction to OsHV-1 infection, which may induce the apoptotic process. Apoptosis could be a main mechanism involved in disease resistance in adults. Antiviral activity of haemolymph againstherpessimplexvirus(HSV-1)wasnotsignificantly different between infected adults versus control. Introduction infection of C. gigas spat with viral suspension [19,20]. In 1972, virus particles morphologically similar to herpesvi- These abnormal mortalities have not occurred among ruses were first reported in an invertebrate, the Eastern oys- C. gigas adults in France. Nevertheless, virus DNA and ter, Crassostrea virginica, from the USA [1]. Since then, the proteins can be detected in adult oysters in the ab- new family Malacoherpesviridae in the order Herpesvirales sence of mortality [21,22]. Similar observations were has been created in order to include a virus named ostreid reported in vertebrate herpesviruses such as channel herpesvirus type 1 (OsHV-1) infecting different bivalve spe- catfish virus (CCV) in channel catfish adults [23], or cies [2-4]. OsHV-1 is reported in mass mortality outbreaks Oncorhynchus masou virus in salmonid adults [24]. In observed among Pacific oysters less than one year old [5-8]. vertebrates, the strategies that herpesviruses use to infect Considering the economic importance of shellfish culture, cells during lytic or latent infection have been studied tools have been previously developed for rapid virus detec- intensively [25]. However, Information on these aspects of tion [5,9-12] and the OsHV-1 genome has been fully se- infection by OsHV-1 is rudimentary. quenced from purified virus particles [3]. Oysters have an efficient defense mechanism based on Since 2008, mass mortality outbreaks (with rates of up innate immunity. Studies have demonstrated that the to 80%) were reported in C. gigas spat and juveniles in immune system of C. gigas is capable of recognizing Europe, New Zealand and Australia [13-15] and were as- virus infection with resulting variations in expression of sociated with virus variants [16-18]. The role of OsHV-1 genes involved in virus recognition, signaling and im- in these mortalities has been underlined by experimental munity, that is Myeloid Differentiation factor 88, IkB2, Interferon-induced protein 44, Glypican and apoptosis * Correspondence: [email protected] inhibitor [26-29]. Due to the lack of molluscan cell 1Ifremer (Institut Français de Recherche pour l’Exploitation de la Mer), Unité lines for culturing OsHV-1, antiviral activities of mol- Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire de lusks are often tested against another virus, using a plaque Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390 La Tremblade, France assay [28,30-32]. Crassostrea gigas heamolymph contains Full list of author information is available at the end of the article © 2014 Segarra et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Segarra et al. Veterinary Research 2014, 45:103 Page 2 of 10 http://www.veterinaryresearch.org/content/45/1/103 a compound(s) that inhibits herpes simplex virus type 1 Mortality was monitored during a period of 144 h and (HSV-1) replication in Vero cells [28,30,31]. To date, in- cumulative mortality was defined daily for each condi- vestigations into in vitro antiviral responses of C. gigas tion (oysters infected with OsHV-1 or injected with ster- after an OsHV-1 infection have not been undertaken. ile artificial seawater). Although experimental protocols have been developed recently to reproduce the viral infection in laboratory Plasma and tissue sample collection conditions [19,20] the dynamic processes of infection For both families (A1 and A2), haemolymph was col- have not been studied in experimental conditions at the lected from six live oysters with a sterile syringe (1 ml, adult stage. Terumo) from the pericardial cavity and pooled for each In this context, adult oysters appear as animals of tank, condition and family. These samples were collected interest to study host and OsHV-1 interactions. Based at 0.5, 10, 26, 72 and 144 hours post-infection (hpi). on previous observations adult oysters are assumed to Haemolymph pools were centrifuged at 300 rpm during be more resistant to viral infection. 10 min at 4 °C then filtered at 0.22 μm in order to study In this study, we explored what happens in adult antiviral activity. All plasma samples (without haemo- oysters after a virus injection through monitoring cytes) were stored at −80 °C. mortality, antiviral activities and viral and oyster gene Two pieces of mantle were sampled from two live in- expression. dividuals per tank (6 individuals per time/condition) from both families. A piece of mantle (50 to 100 mg) Material and methods was disposed in a tube containing 1 mL of TRIZOL® Animals and experimental infection design Reagent™ (Ambion®) and frozen at −80 °C for further Two families of Pacific oysters, Crassostrea gigas, with RNA extraction. The second piece of mantle was dir- different genetic backgrounds were used in this study. ectly frozen at −20 °C for DNA extraction. Two families, A1 and A2, were produced using different genitors (one male and one female for each family) in DNA and RNA extraction and cDNA synthesis the Ifremer facilities located in La Tremblade (Charente DNA extraction was performed using a QiAamp tissue Maritime, France) in 2010. They were characterized by mini kit® (QIAgen) according to the manufacturer’sproto- high survival rates during their first year of life when col. Elution was performed in 100 μL of AE buffer pro- spat were reared in the field [33]. Experimental infec- vided in the kit. tions were carried out using oysters from both families Total RNA was extracted using TRIZOL® Reagent™ (two years old, 6 cm in length for A1 and 19 months (Ambion®) according to the manufacturer’s recommen- old, 4 cm in length for A2). For each family, 240 oysters dation. Total RNA was treated with Turbo™ DNAse were “anaesthetized” during 4 h in a solution containing (Ambion®) to remove genomic DNA. The RNA quality magnesium chloride (MgCl2, 50 g/L) in seawater (1 v)/ and quantity were determined using NanoDrop 2000 distilled water (4 v) [34]. One hundred μL of an OsHV-1 (Thermo Scientific) and Bioanalyser 2100 (Agilent). (μVar [16]) suspension at 1.106 copies of viral DNA/μL First-strand cDNA synthesis was carried out using the were injected into the adductor muscle of 120 oysters SuperScript ® III First-Strand Synthesis System (Invitrogen) per family [19,20]. Similarly, 120 adults from each family using 8000 ng of treated RNA. Reactions lacking RT were were injected with 100 μL of sterile artificial seawater as performed after each DNAse treatment using real-time controls. Pacific oysters were then placed in four tanks PCR in order to control the absence of oyster and/or virus (30 oysters per tank/condition) containing 5 L of filtered genomic DNA. seawater (1 μm) at 22 °C. One tank per condition was dedicated to survival record and the three other were OsHV-1 DNA quantification dedicated to sample collection. The absence of bacterial Viral DNA quantification was carried out by real-time contamination of the viral suspension was tested before PCR in duplicate using a Mx3000 Thermocycler (Agilent) each challenge. The viral suspension was spread onto a according to previously described protocols [11,35]. Amp- Petri dish which contained marine agar and no bacteria lification reactions were performed in a total volume of were observed. 20 μL to study oyster gene or viral gene expression. Each Twenty oyster spat (7 months old, 3 cm in length) well contained 5 μLofDNA,10μL of Brillant III Ultra- were simultaneously injected in order to confirm that Fast SYBR® Green PCR Master Mix (Agilent), 2 μLofeach the virus suspension was infectious and mortality was primer (3 μM) and 1 μL of distilled water. Real time PCR monitored without sample collection. Spat were pro- cycling conditions were as follow: 3 min at 95 °C, followed duced at the Ifremer facilities (La Tremblade, Charente by 40 cycles of amplification at 95 °C for 5 s, 60 °C for Maritime, France) from wild oysters which were col- 20 s.
Recommended publications
  • Trunkloads of Viruses
    COMMENTARY Trunkloads of Viruses Philip E. Pellett Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA Elephant populations are under intense pressure internationally from habitat destruction and poaching for ivory and meat. They also face pressure from infectious agents, including elephant endotheliotropic herpesvirus 1 (EEHV1), which kills ϳ20% of Asian elephants (Elephas maximus) born in zoos and causes disease in the wild. EEHV1 is one of at least six distinct EEHV in a phylogenetic lineage that appears to represent an ancient but newly recognized subfamily (the Deltaherpesvirinae) in the family Herpesviridae. lephant endotheliotropic herpesvirus 1 (EEHV1) causes a rap- the Herpesviridae (the current complete list of approved virus tax- Downloaded from Eidly progressing and usually fatal hemorrhagic disease that ons is available at http://ictvonline.org/). In addition, approxi- occurs in the wild in Asia and affects ϳ20% of Asian elephant mately 200 additional viruses detected using methods such as (Elephas maximus) calves born in zoos in the United States and those described above await formal consideration (V. Lacoste, Europe (1). About 60% of juvenile deaths of captive elephants are personal communication). With very few exceptions, the amino attributed to such infections. Development of control measures acid sequence of a small conserved segment of the viral DNA poly- has been hampered by the lack of systems for culture of the virus in merase (ϳ150 amino acids) is sufficient to not only reliably iden- laboratories. Its genetic study has been restricted to analysis of tify a virus as belonging to the evolutionary lineage represented by blood, trunk wash fluid, and tissue samples collected during nec- the Herpesviridae, but also their subfamily, and in most cases a http://jvi.asm.org/ ropsies.
    [Show full text]
  • Comparative Analysis, Distribution, and Characterization of Microsatellites in Orf Virus Genome
    www.nature.com/scientificreports OPEN Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome Basanta Pravas Sahu1, Prativa Majee 1, Ravi Raj Singh1, Anjan Sahoo2 & Debasis Nayak 1* Genome-wide in-silico identifcation of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036–1,181 microsatellites per strain. The further screening revealed the presence of 83–107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6–8.4 and 53.0–59.5 bp/ kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6–0.8 and 12.1–17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD signifcantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-signifcantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)- x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs.
    [Show full text]
  • WSC 10-11 Conf 13 Layout Template
    The Armed Forces Institute of Pathology Department of Veterinary Pathology Conference Coordinator Matthew Wegner, DVM WEDNESDAY SLIDE CONFERENCE 2010-2011 Conference 13 8 December 2010 Conference Moderator: Tim Walsh, DVM, Diplomate ACVP CASE I: 10-4242 / 10-6076 (AFIP 3170327). protozoa. Tubule epithelium is expanded by numerous multicellular protozoa consisting of large, 100-150 µm Signalment: 30 Sydney rock oysters, QX resistant sporangiosorae containing 8-16 sporonts, each 10-15 broodstock, (Saccostrea glomerata). µm, tear-shaped and 2-3 spherical, refractile eosinophilic spores. Occasional intraluminal History: 100% of oysters were at risk with 25% sick sporangiosorae are noted. There is marked increase in and 75% mortality. granular enterocytes with diapedesis of haemocytes across tubule epithelium. Surrounding Leydig tissue is Gross Pathology: The oysters varied in size (53.6 ± diffusely collapsed and infiltrated by low to moderate 8.9 mm shell height). They were in poor condition numbers of haemocytes. Underlying the gill and palp with minimal gonadal development (1.6 ± 0.9 on a 1-5 epithelium, moderate infiltrates of haemocytes are scale) and pale digestive glands (1.9 ± 0.9 on a 1-3 noted diffusely in the Leydig tissue. scale). On close examination, several of the oysters appeared to be dead. Contributor’s Morphologic Diagnosis: Digestive gland: Adenitis, proliferative, chronic, multifocal, Laboratory Results: Of the 30 oysters examined by severe, with haemocyte accumulation and myriad PCR, 24 (80%) were confirmed positive for Marteilia intracellular protozoa consistent with Marteilia sydnei; sydnei. Confirmation of a successful DNA extraction Sydney rock oyster (Saccostrea glomerata). from each oyster was done using a second PCR specific for Saccostrea glomerata (Sydney rock oyster) Contributor’s Comment: Diseases caused by DNA.
    [Show full text]
  • Analysis of Clinical Ostreid Herpesvirus 1 (Malacoherpesviridae) Specimens by Sequencing Amplified Fragments from Three Virus Ge
    Journal of Virology Archimer May 2012 vol. 86 (10), Pages 5942-5947 http://archimer.ifremer.fr http://dx.doi.org/10.1128/JVI.06534-11 © 2012, American Society for Microbiology. All Rights Reserved. Analysis of Clinical Ostreid Herpesvirus 1 (Malacoherpesviridae) is available on the publisher Web site Webpublisher the on available is Specimens by Sequencing Amplified Fragments from Three Virus Genome Areas Tristan Renaulta, *, Pierrick Moreaua, Nicole Faurya, Jean-François Pepina, Amélie Segarraa and Stephen Webbb authenticated version authenticated - a Ifremer (Institut Français pour la Recherche et l'Exploitation de la Mer), Laboratoire de Génétique et de Pathologie, Ronce les Bains, La Tremblade, France b Cawthron Institute, Nelson, New Zealand *: Corresponding author : Tristan Renault, Tel. : 33 5 46 76 26 26 ; Fax: 33 5 46 76 26 11 email address : Tristan.Renault@ifremer Abstract: Although there are a number of ostreid herpesvirus 1 (OsHV-1) variants, it is expected that the true diversity of this virus will be known only after the analysis of significantly more data. To this end, we analyzed 72 OsHV-1 “specimens” collected mainly in France over an 18-year period, from 1993 to 2010. Additional samples were also collected in Ireland, the United States, China, Japan, and New Zealand. Three virus genome regions (open reading frame 4 [ORF4], ORF35, -36, -37, and -38, and ORF42 and -43) were selected for PCR analysis and sequencing. Although ORF4 appeared to be the most polymorphic genome area, distinguishing several genogroups, ORF35, -36, -37, and -38 and ORF42 and -43 also showed variations useful in grouping subpopulations of this virus.
    [Show full text]
  • Virus–Host Interactions and Their Roles in Coral Reef Health and Disease
    !"#$"%& Virus–host interactions and their roles in coral reef health and disease Rebecca Vega Thurber1, Jérôme P. Payet1,2, Andrew R. Thurber1,2 and Adrienne M. S. Correa3 !"#$%&'$()(*+%&,(%--.#(+''/%!01(1/$%0-1$23++%(#4&,,+5(5&$-%#6('+1#$0$/$-("0+708-%#0$9(&17( 3%+7/'$080$9(4+$#3+$#6(&17(&%-($4%-&$-1-7("9(&1$4%+3+:-10'(70#$/%"&1'-;(<40#(=-80-5(3%+807-#( &1(01$%+7/'$0+1($+('+%&,(%--.(80%+,+:9(&17(->34&#0?-#($4-(,01@#("-$5--1(80%/#-#6('+%&,(>+%$&,0$9( &17(%--.(-'+#9#$->(7-',01-;(A-(7-#'%0"-($4-(70#$01'$08-("-1$40'2&##+'0&$-7(&17(5&$-%2'+,/>12( &##+'0&$-7(80%+>-#($4&$(&%-(/10B/-($+('+%&,(%--.#6(540'4(4&8-(%-'-08-7(,-##(&$$-1$0+1($4&1( 80%/#-#(01(+3-12+'-&1(#9#$->#;(A-(493+$4-#0?-($4&$(80%/#-#(+.("&'$-%0&(&17(-/@&%9+$-#( 791&>0'&,,9(01$-%&'$(50$4($4-0%(4+#$#(01($4-(5&$-%('+,/>1(&17(50$4(#',-%&'$010&1(C#$+19D('+%&,#($+( 01.,/-1'-(>0'%+"0&,('+>>/10$9(791&>0'#6('+%&,(",-&'401:(&17(70#-&#-6(&17(%--.("0+:-+'4->0'&,( cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest $4&$($4-(01.,/-1'-(+.(80%/#-#(+1(%--.(./1'$0+1(0#(&1(-##-1$0&,('+>3+1-1$(+.($4-#-(:,+"&,,9( 0>3+%$&1$(-180%+1>-1$#; To p - d ow n e f f e c t s Viruses infect all cellular life, including bacteria and evidence that macroorganisms play important parts in The ecological concept that eukaryotes, and contain ~200 megatonnes of carbon the dynamics of viroplankton; for example, sponges can organismal growth and globally1 — thus, they are integral parts of marine eco- filter and consume viruses6,7.
    [Show full text]
  • HSV-1 Reprogramming of the Host Transcriptional Environment By
    Title Page HSV-1 reprogramming of the host transcriptional environment by Sarah E. Dremel B.S., University of Minnesota Twin Cities, 2015 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2020 Committee Page UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Sarah E. Dremel It was defended on March 20, 2020 and approved by Jennifer Bomberger, Associate Professor, Department of Microbiology and Molecular Genetics Fred Homa, Professor, Department of Microbiology and Molecular Genetics Nara Lee, Assistant Professor, Department of Microbiology and Molecular Genetics Martin Schmidt, Professor, Department of Microbiology and Molecular Genetics Dissertation Director: Neal DeLuca, Professor, Department of Microbiology and Molecular Genetics ii Copyright © by Sarah E. Dremel 2020 iii Abstract HSV-1 reprogramming of the host transcriptional environment Sarah E. Dremel, PhD University of Pittsburgh, 2020 Herpes Simplex Virus-1 (HSV-1) is a ubiquitous pathogen of the oral and genital mucosa. The 152 kilobase double stranded DNA virus employs a coordinated cascade of transcriptional events to efficiently generate progeny. Using Next Generation Sequencing (NGS) techniques we were able to determine a global, unbiased view of both the host and pathogen. We propose a model for how viral DNA replication results in the differential utilization of cellular factors that function in transcription initiation. Our work outlines the various cis- and trans- acting factors utilized by the virus for this complex transcriptional program. We further elucidated the critical role that the major viral transactivator, ICP4, plays throughout the life cycle.
    [Show full text]
  • Viruses in Transplantation - Not Always Enemies
    Viruses in transplantation - not always enemies Virome and transplantation ECCMID 2018 - Madrid Prof. Laurent Kaiser Head Division of Infectious Diseases Laboratory of Virology Geneva Center for Emerging Viral Diseases University Hospital of Geneva ESCMID eLibrary © by author Conflict of interest None ESCMID eLibrary © by author The human virome: definition? Repertoire of viruses found on the surface of/inside any body fluid/tissue • Eukaryotic DNA and RNA viruses • Prokaryotic DNA and RNA viruses (phages) 25 • The “main” viral community (up to 10 bacteriophages in humans) Haynes M. 2011, Metagenomic of the human body • Endogenous viral elements integrated into host chromosomes (8% of the human genome) • NGS is shaping the definition Rascovan N et al. Annu Rev Microbiol 2016;70:125-41 Popgeorgiev N et al. Intervirology 2013;56:395-412 Norman JM et al. Cell 2015;160:447-60 ESCMID eLibraryFoxman EF et al. Nat Rev Microbiol 2011;9:254-64 © by author Viruses routinely known to cause diseases (non exhaustive) Upper resp./oropharyngeal HSV 1 Influenza CNS Mumps virus Rhinovirus JC virus RSV Eye Herpes viruses Parainfluenza HSV Measles Coronavirus Adenovirus LCM virus Cytomegalovirus Flaviviruses Rabies HHV6 Poliovirus Heart Lower respiratory HTLV-1 Coxsackie B virus Rhinoviruses Parainfluenza virus HIV Coronaviruses Respiratory syncytial virus Parainfluenza virus Adenovirus Respiratory syncytial virus Coronaviruses Gastro-intestinal Influenza virus type A and B Human Bocavirus 1 Adenovirus Hepatitis virus type A, B, C, D, E Those that cause
    [Show full text]
  • Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
    viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date.
    [Show full text]
  • Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
    Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates.
    [Show full text]
  • Whole-Proteome Phylogeny of Large Dsdna Virus Families by an Alignment-Free Method
    Whole-proteome phylogeny of large dsDNA virus families by an alignment-free method Guohong Albert Wua,b, Se-Ran Juna, Gregory E. Simsa,b, and Sung-Hou Kima,b,1 aDepartment of Chemistry, University of California, Berkeley, CA 94720; and bPhysical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 Contributed by Sung-Hou Kim, May 15, 2009 (sent for review February 22, 2009) The vast sequence divergence among different virus groups has self-organizing maps (18) have also been used to understand the presented a great challenge to alignment-based sequence com- grouping of viruses. parison among different virus families. Using an alignment-free In the previous alignment-free phylogenomic studies using l-mer comparison method, we construct the whole-proteome phylogeny profiles, 3 important issues were not properly addressed: (i) the for a population of viruses from 11 viral families comprising 142 selection of the feature length, l, appears to be without logical basis; large dsDNA eukaryote viruses. The method is based on the feature (ii) no statistical assessment of the tree branching support was frequency profiles (FFP), where the length of the feature (l-mer) is provided; and (iii) the effect of HGT on phylogenomic relationship selected to be optimal for phylogenomic inference. We observe was not considered. HGT in LDVs has been documented by that (i) the FFP phylogeny segregates the population into clades, alignment-based methods (19–22), but these studies have mostly the membership of each has remarkable agreement with current searched for HGT from host to a single family of viruses, and there classification by the International Committee on the Taxonomy of has not been a study of interviral family HGT among LDVs.
    [Show full text]
  • Three Virus Genome Areas Sequencing Amplified
    Analysis of Clinical Ostreid Herpesvirus 1 (Malacoherpesviridae) Specimens by Sequencing Amplified Fragments from Three Virus Genome Areas Downloaded from Tristan Renault, Pierrick Moreau, Nicole Faury, Jean-François Pepin, Amélie Segarra and Stephen Webb J. Virol. 2012, 86(10):5942. DOI: 10.1128/JVI.06534-11. Published Ahead of Print 14 March 2012. Updated information and services can be found at: http://jvi.asm.org/ http://jvi.asm.org/content/86/10/5942 These include: REFERENCES This article cites 21 articles, 9 of which can be accessed free at: http://jvi.asm.org/content/86/10/5942#ref-list-1 on May 6, 2014 by IFREMER BIBLIOTHEQUE LA PEROUSE CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ Analysis of Clinical Ostreid Herpesvirus 1 (Malacoherpesviridae) Specimens by Sequencing Amplified Fragments from Three Virus Genome Areas Downloaded from Tristan Renault,a Pierrick Moreau,a Nicole Faury,a Jean-François Pepin,a Amélie Segarra,a and Stephen Webbb Ifremer (Institut Français pour la Recherche et l’Exploitation de la Mer), Laboratoire de Génétique et de Pathologie, Ronce les Bains, La Tremblade, France,a and Cawthron Institute, Nelson, New Zealandb Although there are a number of ostreid herpesvirus 1 (OsHV-1) variants, it is expected that the true diversity of this virus will be known only after the analysis of significantly more data. To this end, we analyzed 72 OsHV-1 “specimens” collected mainly in France over an 18-year period, from 1993 to 2010.
    [Show full text]
  • Virome Capture Sequencing Enables Sensitive Viral Diagnosis and Comprehensive Virome Analysis
    RESEARCH ARTICLE crossmark Virome Capture Sequencing Enables Sensitive Viral Diagnosis and Comprehensive Virome Analysis Thomas Briese,a,b Amit Kapoor,a,c Nischay Mishra,a Komal Jain,a Arvind Kumar,a Omar J. Jabado,a W. Ian Lipkina,b,c,d Center for Infection and Immunity,a Department of Epidemiology, Mailman School of Public Health,b Department of Pathology and Cell Biology,c and Department of Neurology,d College of Physicians and Surgeons, Columbia University, New York, New York, USA T. Briese and A. Kapoor contributed equally to this work. ABSTRACT Insensitivity and technical complexity have impeded the implementation of high-throughput nucleic acid sequenc- ing in differential diagnosis of viral infections in clinical laboratories. Here, we describe the development of a virome capture sequencing platform for vertebrate viruses (VirCapSeq-VERT) that increases the sensitivity of sequence-based virus detection and characterization. The system uses ~2 million probes that cover the genomes of members of the 207 viral taxa known to infect vertebrates, including humans. A biotinylated oligonucleotide library was synthesized on the NimbleGen cleavable array plat- form and used for solution-based capture of viral nucleic acids present in complex samples containing variable proportions of viral and host nucleic acids. The use of VirCapSeq-VERT resulted in a 100- to 10,000-fold increase in viral reads from blood and tissue homogenates compared to conventional Illumina sequencing using established virus enrichment procedures, including filtration, nuclease treatments, and RiboZero rRNA subtraction. VirCapSeq-VERT had a limit of detection comparable to that of agent-specific real-time PCR in serum, blood, and tissue extracts.
    [Show full text]