Batoidea; Chondrichthyes)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however, -
Review of Migratory Chondrichthyan Fishes
Convention on the Conservation of Migratory Species of Wild Animals Secretariat provided by the United Nations Environment Programme 14 TH MEETING OF THE CMS SCIENTIFIC COUNCIL Bonn, Germany, 14-17 March 2007 CMS/ScC14/Doc.14 Agenda item 4 and 6 REVIEW OF MIGRATORY CHONDRICHTHYAN FISHES (Prepared by the Shark Specialist Group of the IUCN Species Survival Commission on behalf of the CMS Secretariat and Defra (UK)) For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. REVIEW OF MIGRATORY CHONDRICHTHYAN FISHES IUCN Species Survival Commission’s Shark Specialist Group March 2007 Taxonomic Review Migratory Chondrichthyan Fishes Contents Acknowledgements.........................................................................................................................iii 1 Introduction ............................................................................................................................... 1 1.1 Background ...................................................................................................................... 1 1.2 Objectives......................................................................................................................... 1 2 Methods, definitions and datasets ............................................................................................. 2 2.1 Methodology.................................................................................................................... -
Phylogeny of the Suborder Myliobatidoidei
Title PHYLOGENY OF THE SUBORDER MYLIOBATIDOIDEI Author(s) NISHIDA, Kiyonori Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 37(1-2), 1-108 Issue Date 1990-12 Doc URL http://hdl.handle.net/2115/21887 Type bulletin (article) File Information 37(1_2)_P1-108.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP PHYLOGENY OF THE SUBORDER MYLIOBATIDOIDEI By Kiyonori NISHIDA * Laboratory of Marine Zoology, Faculty of FisJwries, Hokkaido University, Hakodate, Hokkaido 041, Japan Contents Page I. Introduction............................................................ 2 II. Materials .............................................................. 2 III. Methods................................................................ 6 IV. Systematic methodology ................................................ 6 V. Out-group definition .................................................... 9 l. Monophyly of the Rajiformes. 9 2. Higher rajiform phylogeny . 9 3. Discussion ........................................................ 15 VI. Comparative morphology and character analysis . .. 17 l. Skeleton of the Myliobatidoidei. .. 17 1) Neurocranium................................................ 17 2) Visceral arches .............................................. 34 3) Scapulocoracoid (pectoral girdle), pectoral fin and cephalic fin .... 49 4) Pelvic girdle and pelvic fin. 56 5) Vertebrae, dorsal fin and caudal fin ............................ 59 2. Muscle of the Myliobatidoidei ..................................... -
Copyrighted Material
06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago). -
Feeding Habits of the Cockfish, Callorhinchus Callorynchus (Holocephali: Callorhinchidae) from Off Northern Argentina
Neotropical Ichthyology Original article https://doi.org/10.1590/1982-0224-2018-0126 Feeding habits of the cockfish, Callorhinchus callorynchus (Holocephali: Callorhinchidae) from off northern Argentina Correspondence: 1,2 3 1,3 Jorge M. Roman Jorge M. Roman , Melisa A. Chierichetti , Santiago A. Barbini 1,3 [email protected] and Lorena B. Scenna The feeding habits of Callorhinchus callorynchus were investigated in coastal waters off northern Argentina. The effect of body size, seasons and regions was evaluated on female diet composition using a multiple-hypothesis modelling approach. Callorhinchus callorynchus fed mainly on bivalves (55.61% PSIRI), followed by brachyuran crabs (10.62% PSIRI) and isopods (10.13% PSIRI). Callorhinchus callorynchus females showed changes in the diet composition with increasing body size and also between seasons and regions. Further, this species is able to consume larger bivalves as it grows. Trophic level was 3.15, characterizing it as a secondary consumer. We conclude that C. callorynchus showed a behavior of crushing hard prey, mainly on bivalves, brachyuran, gastropods and anomuran crabs. Females of this species shift their diet with increasing body size and in Submitted September 21, 2018 response to seasonal and regional changes in prey abundance or distribution. Accepted December 5, 2019 by Lisa Whitenack Keywords: Chondrichthyes, Diet, Ontogenetic shifts, Southwest Atlantic, Published April 20, 2020 Trophic level. Online version ISSN 1982-0224 Print version ISSN 1679-6225 1 Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata, Funes 3350, B7602AYL, Mar del Plata Neotrop. Ichthyol. Argentina. (JMR) [email protected] 2 Comisión de Investigaciones Científicas, calle 526 e/ 10 y 11, La Plata, Argentina. -
Narcinidae Gill, 1862 - Electric Rays, Numbfish, Blind Torpedos [=Narcininae Gill, 1862, Discopygae Gill, 1862] Notes: Narcininae Gill, 1862P:387 [Ref
FAMILY Narcinidae Gill, 1862 - electric rays, numbfish, blind torpedos [=Narcininae Gill, 1862, Discopygae Gill, 1862] Notes: Narcininae Gill, 1862p:387 [ref. 1783] (subfamily) Narcine [also as group? Narcinae] Discopygae Gill, 1862p:387 [ref. 1783] (group?) Discopyge [stem Discopyg- confirmed by Gill 1895:165 [ref. 31875]] GENUS Benthobatis Alcock, 1898 - blind torpedos [=Benthobatis Alcock [A. W.], 1898:144] Notes: [ref. 92]. Fem. Benthobatis moresbyi Alcock, 1898. Type by monotypy. •Valid as Benthobatis Alcock, 1898 -- (Fechhelm & McEachran 1984 [ref. 5227], Carvalho 1999:233 [ref. 23940], Carvalho et al. 1999:1435 [ref. 24638], Compagno 1999:486 [ref. 25589], Rincon et al. 2001:46 [ref. 25509], Carvalho & Séret 2002:395 [ref. 25996], Carvalho et al. 2002:138 [ref. 26196], McEachran & Carvalho 2003:519 [ref. 26985], Carvalho et al. 2003:926 [ref. 27551], Compagno & Heemstra 2007:43 [ref. 29194]). Current status: Valid as Benthobatis Alcock, 1898. Narcinidae. Species Benthobatis kreffti Rincon et al., 2001 - Brazilian blind electric ray [=Benthobatis kreffti Rincón [G.], Stehmann [M. F. W.] & Vooren [C. M.], 2001:49, Figs. 1-3, 6-8] Notes: [Archive of Fishery and Marine Research v. 49 (no. 1); ref. 25509] Off Cabo de Santa Marta Grande, southern Brazil, 27°25'S, 47°05'W, depth 504-527 meters. Current status: Valid as Benthobatis kreffti Rincón, Stehmann & Vooren, 2001. Narcinidae. Distribution: Western South Atlantic. Habitat: marine. Species Benthobatis marcida Bean & Weed, 1909 - blind torpedo [=Benthobatis marcida Bean [B. A.] & Weed [A. C.], 1909:677, Fig., Benthobatis cervina Bean [B. A.] & Weed [A. C.], 1909:679] Notes: [Proceedings of the United States National Museum v. 36 (no. 1694); ref. -
Migratory Sharks Complete 3 0 0.Pdf
CMS Technical Series No. 15 Review of Migratory Chondrichthyan Fishes Review of Migratory Chondrichthyan Fishes Prepared by the Shark Specialist Group of the IUCN Species Survival Commission on behalf of the CMS Secretariat • CMS Technical Series No. 15 CMS Technical UNEP/CMS Secretariat Public Information Hermann-Ehlers-Str. 10 53113 Bonn, Germany T. +49 228 815-2401/02 F. +49 228 815-2449 www.cms.int Review of Chondrichthyan Fishes IUCN Species Survival Commission’s Shark Specialist Group December 2007 Published by IUCN–The World Conservation Union, the United Nations Environment Programme (UNEP) and the Secretariat of the Convention on the Conservation of Migratory Species of Wild Animals (CMS). Review of Chondrichthyan Fishes. 2007. Prepared by the Shark Specialist Group of the IUCN Species Survival Commission on behalf of the CMS Secretariat. Cover photographs © J. Stafford-Deitsch. Front cover: Isurus oxyrinchus Shortfin mako shark. Back cover, from left: Sphyrna mokarran Great hammerhead shark, Carcharodon carcharias Great white shark, Prionace glauca Blue shark. Maps from Collins Field Guide to Sharks of the World. 2005. IUCN and UNEP/ CMS Secretariat, Bonn, Germany. 72 pages. Technical Report Series 15. This publication was prepared and printed with funding from the CMS Secretariat and Department for the Environment, Food, and Rural Affairs, UK. Produced by: Naturebureau, Newbury, UK. Printed by: Information Press, Oxford, UK. Printed on: 115gsm Allegro Demi-matt produced from sustainable sources. © 2007 IUCN–The World Conservation Union / Convention on Migratory Species (CMS). This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. -
The Morphology and Evolution of the Ventral Gill Arch Skeleton in Batoid Fishes (Chondrichthyes: Batoidea)
<oologzcal Journal ofhe Lznnean SocieQ (199l), 102: 75-100. With 10 figures The morphology and evolution of the ventral gill arch skeleton in batoid fishes (Chondrichthyes: Batoidea) TSUTOMU MIYAKE AND JOHN D. MCEACHRAN Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 431, Canada and Department of Wildlqe and Fisheries Sciences, Texas AdYM University, College Station, TX 77843, U.S.A. Received July 1988, reuised manuscript accepted October I990 The ventral gill arch skeleton was examined in some representatives of batoid fishes. The homology of the components was elucidated by comparing similarities and differences among the components of the ventral gill arches in chondrichthyans, and attempts were made to justify the homology by giving causal mechanisms of chondrogenrsis associated with the vcntral gill arch skeleton. The ceratohyal is present in some batoid fishes, and its functional replacement, the pseudohyal, seems incomplete in most groups of batoid fishes, except in stingrays. The medial fusion of the pseudohyal with successive ceratobranchials occurs to varying degrees among stingray groups. The ankylosis between the last two ceratobranchials occurs uniquely in stingrays, and it serves as part of the insertion of the last pair of coracobranchialis muscles. ‘The basihyal is possibly independently lost in electric rays, the stingray genus Urotrygan (except U. dauzesz) and pelagic myliohatoid stingrays. ‘I‘he first hypobranchial is oriented anteriorly or anteromedially, and it varies in shape and size among batoid fishes. It is represented by rami projecting posterolaterally from the basihyal in sawfishes, guitarfishes and skates. It consists of a small piece ofcartilage which extends anteromedially from the medial end of the first ccratobranchial in electric rays. -
Onchoproteocephalidea, Onchobothriidae) in Elasmobranchs: a Metadata Analysis
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Scott Gardner Publications & Papers Parasitology, Harold W. Manter Laboratory of 2020 Host relationships and geographic distribution of species of Blanchard, 1848 (Onchoproteocephalidea, Onchobothriidae) in elasmobranchs: a metadata analysis Francisco Zaragoza-Tapia Griselda Pulido-Flores Scott L. Gardner Scott Monks Follow this and additional works at: https://digitalcommons.unl.edu/slg Part of the Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, and the Parasitology Commons This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Scott Gardner Publications & Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ZooKeys 940: 1–49 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.940.46352 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Host relationships and geographic distribution of species of Acanthobothrium Blanchard, 1848 (Onchoproteocephalidea, Onchobothriidae) in elasmobranchs: a metadata analysis Francisco Zaragoza-Tapia1, Griselda Pulido-Flores1,2, Scott L. Gardner2, Scott Monks1,2 1 Universidad Autónoma del Estado de Hidalgo, Centro de Investigaciones Biológicas, Apartado Postal 1-10, C.P. 42001, Pachuca, Hidalgo, México 2 Harold W. Manter Laboratory of Parasitology, University of Nebras- ka-Lincoln, Lincoln, NE 68588-0514, USA Corresponding author: Scott Monks ([email protected]) Academic editor: Boyko Georgiev | Received 6 September 2019 | Accepted 7 April 2020 | Published 11 June 2020 http://zoobank.org/95F2582D-A68C-4728-868D-EEDD5D97B7ED Citation: Zaragoza-Tapia F, Pulido-Flores G, Gardner SL, Monks S (2020) Host relationships and geographic distribution of species of Acanthobothrium Blanchard, 1848 (Onchoproteocephalidea, Onchobothriidae) in elasmobranchs: a metadata analysis. -
Anatomical Description of Scapulocoracoid and Gill Arches of Benthobatis Kreffti
Univ. Sci. 2015, Vol. 20 (3): 305-312 doi: 10.11144/Javeriana.SC20-3.adsg Freely available on line REVIEW ARTICLE Anatomical Description of Scapulocoracoid and Gill Arches of Benthobatis kreffti Ítalo Rafael Bini Junior 1 , Camila Mayumi Hirata dos Santos 1,2, Otto Bismarck Fazzano Gadig1 Abstract This study describes the scapulocoracoid and the ventral gill arches of a rare benthic elasmobranch, Benthobatis kreffti, based on specimens collected at depth of 500 m off the coast of São Paulo state, southern Brazil. The scapulocoracoid has an anterior fontanelle that is placed laterally. Condyles are similar in size, unequally spaced, and they are not aligned horizontally. The mesocondyle is located below the other condyles. The posterior fenestrae are allocated within the cartilage of the scapulocoracoid, while the anterior fenestrae cross its lateral-posterior segment. The suprascapula is arched posteriorly, and it is not connected or fused to the synarcual or the vertebral column. Three unfused hypobranchial elements were found in the ventral gill arches. The ceratobranchials are rod-like shaped, with fenestrae from first to fourth ceratobranchials. The fifth is morphologically distinct and connected to the scapulocoracoid. There is a pair of elements above the basibranchial copula, of unknown origin, also reported for other congeneric species, Benthobatis marcida. Such character could represent an autapomorphy of the genus. Keywords: anatomy, skeleton, electric ray, Torpediniformes; Chondrichthyes Introduction The batoid fishes (rays, skates, guitarfishes and sawfishes) represent approximately 54 % (630 in Edited by Juan Carlos Salcedo-Reyes & Andrés Felipe Navia 1170) of all Chondrichthyes species (Aschliman et al. 1. Laboratório de Pesquisa de Elasmobrânquios, Universidade 2012). -
Boletim Pag1 Copy
N° 107 – ISSN 1808-1436 Londrina, 31 de Dezembro de 2013 EDITORIAL Prezados leitores, matérias para serem divulgadas neste Boletim. Na seção Destaques tivemos a contribuição dos sócios e participantes Ao findar mais um ano, é muito bom fazer um do Fifth International Conference of Pan African Fish and balanço e verificar que a ictiologia brasileira avançou Fisheries Association, que nos enviaram uma matéria muito bastante. No início do ano tivemos a satisfação de interessante, contendo informações do evento, de acompanhar o Encontro Brasileiro de Ictiologia, cujo expedições de coletas na região de Bujumbura e do povo de sucesso pode ser atribuído aos organizadores, participantes Burundi. Na seção Entrevista, tivemos a honra de conversar e patrocinadores. O número de inscritos no evento com Stanley H. Weitzman, um dos ictiólogos sistematas evidencia a magnitude da ictiologia nacional, cuja norte-americanos que muito contribuíram ao conhecimento excelente qualidade pode ser vista nos trabalhos dos peixes neotropicais e que continua em plena atividade. apresentados. Também pudemos acompanhar os artigos Em Comunicações publicamos a primeira parte do artigo publicados pela Neotropical Ichthyology, cujo fator de que trata da biografia dos pesquisadores que descreveram impacto também se deve à qualidade dos trabalhos. A peixes brasileiros no século XIX. No Peixe da Vez são publicação desses artigos, por sua vez, é decorrente da apresentadas novas informações a respeito de Atlantirivulus dedicação exaustiva do editor chefe e dos editores de área, depressus. Acreditamos que a remodelagem do Boletim, que não mediram esforços para manter a periodicidade dos com a criação de novas seções como a de entrevistas com fascículos. -
(Elasmobranchii, Narcinidae) in Southern Brazil
Diet of the lesser electric ray Narcine brasiliensis (Olfers, 1831) (Elasmobranchii, Narcinidae) in southern Brazil * LUCIANA CERQUEIRA FERREIRA , CAROLUS MARIA VOOREN Universidade Federal do Rio Grande, Laboratório de Elasmobrânquios e Aves Marinhas, Instituto de Oceanografia, Avenida Itália s/n°, Campos Carreiros, CP 474, 96201-900, Rio Grande, RS. *E-mail:[email protected] Abstract. The objective of this study was to describe the diet of the lesser electric ray (Narcine brasiliensis) in the waters along the coast of Rio Grande do Sul during summer. In February 2005, all individuals caught in bottom trawl fishing hauls of the inshore waters between latitudes 29° S and 34° S were collected. Sex and total length were recorded for each individual; stomachs were fixed in 4% formalin. Food items were identified, and the frequency of occurrence, number and weight proportions, and index of relative importance were calculated for each item. Ingested food was found in 95% of the stomachs of the collected individuals. Polychaetes constituted 97% of total prey, with Notomastus lobatus being the most important food item. Stomach repletion was non-different between the sexes; no correlation was found between the richness of the diet and the total body length and between wet weight of stomach content and total weight. Thus, N. brasiliensis caught in the waters off the coast of southern Brazil during summer feed mostly on polychaetes, which could be the result of the aggregation of rays in areas with the highest abundance of a specific prey because of prey population increase. Key words: benthic organisms, food, polychaete, Rio Grande do Sul Resumo.